1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
use bitflags::*;

use core::fmt;

use crate::Ring;

/// Specifies which element to load into a segment from
/// descriptor tables (i.e., is a index to LDT or GDT table
/// with some additional flags).
///
/// See Intel 3a, Section 3.4.2 "Segment Selectors"
bitflags! {
    pub struct SegmentSelector: u16 {
        /// Requestor Privilege Level
        const RPL_0 = 0b00;
        const RPL_1 = 0b01;
        const RPL_2 = 0b10;
        const RPL_3 = 0b11;

        /// Table Indicator (TI) 0 means GDT is used.
        const TI_GDT = 0 << 2;
        /// Table Indicator (TI) 1 means LDT is used.
        const TI_LDT = 1 << 2;
    }
}

impl SegmentSelector {
    /// Create a new SegmentSelector
    ///
    /// # Arguments
    ///  * `index` - index in GDT or LDT array.
    ///  * `rpl` - Requested privilege level of the selector
    pub const fn new(index: u16, rpl: Ring) -> SegmentSelector {
        SegmentSelector {
            bits: index << 3 | (rpl as u16),
        }
    }

    /// Make a new segment selector from a untyped u16 value.
    pub const fn from_raw(bits: u16) -> SegmentSelector {
        SegmentSelector { bits: bits }
    }
}

impl fmt::Display for SegmentSelector {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let r0 = match self.contains(SegmentSelector::RPL_0) {
            false => "",
            true => "Ring 0 segment selector.",
        };
        let r1 = match self.contains(SegmentSelector::RPL_1) {
            false => "",
            true => "Ring 1 segment selector.",
        };
        let r2 = match self.contains(SegmentSelector::RPL_2) {
            false => "",
            true => "Ring 2 segment selector.",
        };
        let r3 = match self.contains(SegmentSelector::RPL_3) {
            false => "",
            true => "Ring 3 segment selector.",
        };
        let tbl = match self.contains(SegmentSelector::TI_LDT) {
            false => "GDT Table",
            true => "LDT Table",
        };

        write!(
            f,
            "Index {} in {}, {}{}{}{}",
            self.bits >> 3,
            tbl,
            r0,
            r1,
            r2,
            r3
        )
    }
}

/// System-Segment and Gate-Descriptor Types 64-bit mode
/// See also Intel 3a, Table 3-2 System Segment and Gate-Descriptor Types.
#[repr(u8)]
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum SystemDescriptorTypes64 {
    //Reserved0 = 0b0000,
    //Reserved1 = 0b0001,
    LDT = 0b0010,
    //Reserved = 0b0011,
    //Reserved = 0b0100,
    //Reserved = 0b0101,
    //Reserved = 0b0110,
    //Reserved = 0b0111,
    //Reserved = 0b1000,
    TssAvailable = 0b1001,
    //Reserved = 0b1010,
    TssBusy = 0b1011,
    CallGate = 0b1100,
    //Reserved = 0b1101,
    InterruptGate = 0b1110,
    TrapGate = 0b1111,
}

/// System-Segment and Gate-Descriptor Types 32-bit mode.
/// See also Intel 3a, Table 3-2 System Segment and Gate-Descriptor Types.
#[repr(u8)]
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum SystemDescriptorTypes32 {
    //Reserved0 = 0b0000,
    TSSAvailable16 = 0b0001,
    LDT = 0b0010,
    TSSBusy16 = 0b0011,
    CallGate16 = 0b0100,
    TaskGate = 0b0101,
    InterruptGate16 = 0b0110,
    TrapGate16 = 0b0111,
    //Reserved1 = 0b1000,
    TssAvailable32 = 0b1001,
    //Reserved2 = 0b1010,
    TssBusy32 = 0b1011,
    CallGate32 = 0b1100,
    //Reserved3 = 0b1101,
    InterruptGate32 = 0b1110,
    TrapGate32 = 0b1111,
}

/// Data Segment types for descriptors.
/// See also Intel 3a, Table 3-1 Code- and Data-Segment Types.
#[repr(u8)]
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum DataSegmentType {
    /// Data Read-Only
    ReadOnly = 0b0000,
    /// Data Read-Only, accessed
    ReadOnlyAccessed = 0b0001,
    /// Data Read/Write
    ReadWrite = 0b0010,
    /// Data Read/Write, accessed
    ReadWriteAccessed = 0b0011,
    /// Data Read-Only, expand-down
    ReadExpand = 0b0100,
    /// Data Read-Only, expand-down, accessed
    ReadExpandAccessed = 0b0101,
    /// Data Read/Write, expand-down
    ReadWriteExpand = 0b0110,
    /// Data Read/Write, expand-down, accessed
    ReadWriteExpandAccessed = 0b0111,
}

/// Code Segment types for descriptors.
/// See also Intel 3a, Table 3-1 Code- and Data-Segment Types.
#[repr(u8)]
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum CodeSegmentType {
    /// Code Execute-Only
    Execute = 0b1000,
    /// Code Execute-Only, accessed
    ExecuteAccessed = 0b1001,
    /// Code Execute/Read
    ExecuteRead = 0b1010,
    /// Code Execute/Read, accessed
    ExecuteReadAccessed = 0b1011,
    /// Code Execute-Only, conforming
    ExecuteConforming = 0b1100,
    /// Code Execute-Only, conforming, accessed
    ExecuteConformingAccessed = 0b1101,
    /// Code Execute/Read, conforming
    ExecuteReadConforming = 0b1110,
    /// Code Execute/Read, conforming, accessed
    ExecuteReadConformingAccessed = 0b1111,
}

/// Helper enum type to differentiate between the different descriptor types that all end up written in the same field.
#[derive(Debug, Eq, PartialEq)]
pub(crate) enum DescriptorType {
    System64(SystemDescriptorTypes64),
    System32(SystemDescriptorTypes32),
    Data(DataSegmentType),
    Code(CodeSegmentType),
}

/// Trait that defines the architecture specific functions for building various system segment descriptors
/// which are available on all 16, 32, and 64 bits.
pub trait GateDescriptorBuilder<Size> {
    fn tss_descriptor(base: u64, limit: u64, available: bool) -> Self;
    fn call_gate_descriptor(selector: SegmentSelector, offset: Size) -> Self;
    fn interrupt_descriptor(selector: SegmentSelector, offset: Size) -> Self;
    fn trap_gate_descriptor(selector: SegmentSelector, offset: Size) -> Self;
}

/// Trait to implement for building a task-gate (this descriptor is not implemented for 64-bit systems since
/// Hardware task switches are not supported in IA-32e mode.).
pub trait TaskGateDescriptorBuilder {
    fn task_gate_descriptor(selector: SegmentSelector) -> Self;
}

/// Trait to define functions that build architecture specific code and data descriptors.
pub trait SegmentDescriptorBuilder<Size> {
    fn code_descriptor(base: Size, limit: Size, cst: CodeSegmentType) -> Self;
    fn data_descriptor(base: Size, limit: Size, dst: DataSegmentType) -> Self;
}

/// Trait to define functions that build an architecture specific ldt descriptor.
/// There is no corresponding ldt descriptor type for 16 bit.
pub trait LdtDescriptorBuilder<Size> {
    fn ldt_descriptor(base: Size, limit: Size) -> Self;
}

pub trait BuildDescriptor<Descriptor> {
    fn finish(&self) -> Descriptor;
}

/// Makes building descriptors easier (hopefully).
#[derive(Debug)]
pub struct DescriptorBuilder {
    /// The base defines the location of byte 0 of the segment within the 4-GByte linear address space.
    /// The limit is the size of the range covered by the segment. Really a 20bit value.
    pub(crate) base_limit: Option<(u64, u64)>,
    /// Alternative to base_limit we use a selector that points to a segment and an an offset for certain descriptors.
    pub(crate) selector_offset: Option<(SegmentSelector, u64)>,
    /// Descriptor type
    pub(crate) typ: Option<DescriptorType>,
    /// Specifies the privilege level of the segment. The privilege level can range from 0 to 3, with 0 being the most privileged level.
    pub(crate) dpl: Option<Ring>,
    /// Indicates whether the segment is present in memory (set) or not present (clear).
    pub(crate) present: bool,
    /// Available for use by system software
    pub(crate) avl: bool,
    /// Default operation size
    pub(crate) db: bool,
    /// Determines the scaling of the segment limit field. When the granularity flag is clear, the segment limit is interpreted in byte units; when flag is set, the segment limit is interpreted in 4-KByte units.
    pub(crate) limit_granularity_4k: bool,
    /// 64-bit code segment (IA-32e mode only)
    pub(crate) l: bool,
}

impl DescriptorBuilder {
    /// Start building a new descriptor with a base and limit.
    pub(crate) fn with_base_limit(base: u64, limit: u64) -> DescriptorBuilder {
        DescriptorBuilder {
            base_limit: Some((base, limit)),
            selector_offset: None,
            typ: None,
            dpl: None,
            present: false,
            avl: false,
            db: false,
            limit_granularity_4k: false,
            l: false,
        }
    }

    /// Start building a new descriptor with a segment selector and offset.
    pub(crate) fn with_selector_offset(
        selector: SegmentSelector,
        offset: u64,
    ) -> DescriptorBuilder {
        DescriptorBuilder {
            base_limit: None,
            selector_offset: Some((selector, offset)),
            typ: None,
            dpl: None,
            present: false,
            avl: false,
            db: false,
            limit_granularity_4k: false,
            l: false,
        }
    }

    pub(crate) fn set_type(mut self, typ: DescriptorType) -> DescriptorBuilder {
        self.typ = Some(typ);
        self
    }

    /// The segment limit is interpreted in 4-KByte units if this is set.
    pub fn limit_granularity_4kb(mut self) -> DescriptorBuilder {
        self.limit_granularity_4k = true;
        self
    }

    /// Indicates whether the segment is present in memory (set) or not present (clear).
    pub fn present(mut self) -> DescriptorBuilder {
        self.present = true;
        self
    }

    /// Specifies the privilege level of the segment.
    pub fn dpl(mut self, dpl: Ring) -> DescriptorBuilder {
        self.dpl = Some(dpl);
        self
    }

    /// Toggle the AVL bit.
    pub fn avl(mut self) -> DescriptorBuilder {
        self.avl = true;
        self
    }

    /// Set default operation size (false for 16bit segment, true for 32bit segments).
    pub fn db(mut self) -> DescriptorBuilder {
        self.db = true;
        self
    }

    /// Set L bit if this descriptor is a 64-bit code segment.
    /// In IA-32e mode, bit 21 of the second doubleword of the segment descriptor indicates whether a code segment
    /// contains native 64-bit code. A value of 1 indicates instructions in this code segment are executed in 64-bit mode.
    pub fn l(mut self) -> DescriptorBuilder {
        self.l = true;
        self
    }
}

impl GateDescriptorBuilder<u32> for DescriptorBuilder {
    fn tss_descriptor(base: u64, limit: u64, available: bool) -> DescriptorBuilder {
        let typ = match available {
            true => DescriptorType::System32(SystemDescriptorTypes32::TssAvailable32),
            false => DescriptorType::System32(SystemDescriptorTypes32::TssBusy32),
        };

        DescriptorBuilder::with_base_limit(base.into(), limit.into()).set_type(typ)
    }

    fn call_gate_descriptor(selector: SegmentSelector, offset: u32) -> DescriptorBuilder {
        DescriptorBuilder::with_selector_offset(selector, offset.into()).set_type(
            DescriptorType::System32(SystemDescriptorTypes32::CallGate32),
        )
    }

    fn interrupt_descriptor(selector: SegmentSelector, offset: u32) -> DescriptorBuilder {
        DescriptorBuilder::with_selector_offset(selector, offset.into()).set_type(
            DescriptorType::System32(SystemDescriptorTypes32::InterruptGate32),
        )
    }

    fn trap_gate_descriptor(selector: SegmentSelector, offset: u32) -> DescriptorBuilder {
        DescriptorBuilder::with_selector_offset(selector, offset.into()).set_type(
            DescriptorType::System32(SystemDescriptorTypes32::TrapGate32),
        )
    }
}

impl TaskGateDescriptorBuilder for DescriptorBuilder {
    fn task_gate_descriptor(selector: SegmentSelector) -> DescriptorBuilder {
        DescriptorBuilder::with_selector_offset(selector, 0)
            .set_type(DescriptorType::System32(SystemDescriptorTypes32::TaskGate))
    }
}

impl SegmentDescriptorBuilder<u32> for DescriptorBuilder {
    fn code_descriptor(base: u32, limit: u32, cst: CodeSegmentType) -> DescriptorBuilder {
        DescriptorBuilder::with_base_limit(base.into(), limit.into())
            .set_type(DescriptorType::Code(cst))
    }

    fn data_descriptor(base: u32, limit: u32, dst: DataSegmentType) -> DescriptorBuilder {
        DescriptorBuilder::with_base_limit(base.into(), limit.into())
            .set_type(DescriptorType::Data(dst))
    }
}

impl LdtDescriptorBuilder<u32> for DescriptorBuilder {
    fn ldt_descriptor(base: u32, limit: u32) -> DescriptorBuilder {
        DescriptorBuilder::with_base_limit(base.into(), limit.into())
            .set_type(DescriptorType::System32(SystemDescriptorTypes32::LDT))
    }
}

impl BuildDescriptor<Descriptor> for DescriptorBuilder {
    fn finish(&self) -> Descriptor {
        let mut desc: Descriptor = Default::default();
        desc.apply_builder_settings(self);

        let typ = match self.typ {
            Some(DescriptorType::System64(_)) => {
                panic!("You shall not use 64-bit types on 32-bit descriptor.")
            }
            Some(DescriptorType::System32(typ)) => typ as u8,
            Some(DescriptorType::Data(typ)) => {
                desc.set_s();
                typ as u8
            }
            Some(DescriptorType::Code(typ)) => {
                desc.set_s();
                typ as u8
            }
            None => unreachable!("Type not set, this is a library bug in x86."),
        };
        desc.set_type(typ);

        desc
    }
}

/// Entry for IDT, GDT or LDT. Provides size and location of a segment.
///
/// See Intel 3a, Section 3.4.5 "Segment Descriptors", and Section 3.5.2
#[derive(Copy, Clone, Debug, Default)]
#[repr(packed)]
pub struct Descriptor {
    pub lower: u32,
    pub upper: u32,
}

impl fmt::Display for Descriptor {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "Descriptor(0x{:x})", self.as_u64())
    }
}

impl Descriptor {
    pub const NULL: Descriptor = Descriptor { lower: 0, upper: 0 };

    pub fn as_u64(&self) -> u64 {
        (self.upper as u64) << 32 | self.lower as u64
    }

    pub(crate) fn apply_builder_settings(&mut self, builder: &DescriptorBuilder) {
        builder.dpl.map(|ring| self.set_dpl(ring));
        builder
            .base_limit
            .map(|(base, limit)| self.set_base_limit(base as u32, limit as u32));
        builder
            .selector_offset
            .map(|(selector, offset)| self.set_selector_offset(selector, offset as u32));

        if builder.present {
            self.set_p();
        }
        if builder.avl {
            self.set_avl();
        }
        if builder.db {
            self.set_db();
        }
        if builder.limit_granularity_4k {
            self.set_g();
        }
        if builder.l {
            self.set_l();
        }
    }

    /// Create a new segment, TSS or LDT descriptor
    /// by setting the three base and two limit fields.
    pub fn set_base_limit(&mut self, base: u32, limit: u32) {
        // Clear the base and limit fields in Descriptor
        self.lower = 0;
        self.upper = self.upper & 0x00F0FF00;

        // Set the new base
        self.lower |= base << 16;
        self.upper |= (base >> 16) & 0xff;
        self.upper |= (base >> 24) << 24;

        // Set the new limit
        self.lower |= limit & 0xffff;
        let limit_last_four_bits = (limit >> 16) & 0x0f;
        self.upper |= limit_last_four_bits << 16;
    }

    /// Creates a new descriptor with selector and offset (for IDT Gate descriptors,
    /// e.g. Trap, Interrupts and Task gates)
    pub fn set_selector_offset(&mut self, selector: SegmentSelector, offset: u32) {
        // Clear the selector and offset
        self.lower = 0;
        self.upper = self.upper & 0x0000ffff;

        // Set selector
        self.lower |= (selector.bits() as u32) << 16;

        // Set offset
        self.lower |= offset & 0x0000ffff;
        self.upper |= offset & 0xffff0000;
    }

    /// Set the type of the descriptor (bits 8-11).
    /// Indicates the segment or gate type and specifies the kinds of access that can be made to the
    /// segment and the direction of growth. The interpretation of this field depends on whether the descriptor
    /// type flag specifies an application (code or data) descriptor or a system descriptor.
    pub fn set_type(&mut self, typ: u8) {
        self.upper &= !(0x0f << 8); // clear
        self.upper |= (typ as u32 & 0x0f) << 8;
    }

    /// Specifies whether the segment descriptor is for a system segment (S flag is clear) or a code or data segment (S flag is set).
    pub fn set_s(&mut self) {
        self.upper |= bit!(12);
    }

    /// Specifies the privilege level of the segment. The DPL is used to control access to the segment.
    pub fn set_dpl(&mut self, ring: Ring) {
        assert!(ring as u32 <= 0b11);
        self.upper &= !(0b11 << 13);
        self.upper |= (ring as u32) << 13;
    }

    /// Set Present bit.
    /// Indicates whether the segment is present in memory (set) or not present (clear).
    /// If this flag is clear, the processor generates a segment-not-present exception (#NP) when a segment selector
    /// that points to the segment descriptor is loaded into a segment register.
    pub fn set_p(&mut self) {
        self.upper |= bit!(15);
    }

    /// Set AVL bit. System software can use this bit to store information.
    pub fn set_avl(&mut self) {
        self.upper |= bit!(20);
    }

    /// Set L
    /// In IA-32e mode, bit 21 of the second doubleword of the segment descriptor indicates whether a
    /// code segment contains native 64-bit code. A value of 1 indicates instructions in this code
    /// segment are executed in 64-bit mode. A value of 0 indicates the instructions in this code segment
    /// are executed in compatibility mode. If L-bit is set, then D-bit must be cleared.
    pub fn set_l(&mut self) {
        self.upper |= bit!(21);
    }

    /// Set D/B.
    /// Performs different functions depending on whether the segment descriptor is an executable code segment,
    /// an expand-down data segment, or a stack segment.
    pub fn set_db(&mut self) {
        self.upper |= bit!(22);
    }

    /// Set G bit
    /// Determines the scaling of the segment limit field.
    /// When the granularity flag is clear, the segment limit is interpreted in byte units;
    /// when flag is set, the segment limit is interpreted in 4-KByte units.
    pub fn set_g(&mut self) {
        self.upper |= bit!(23);
    }
}

/// Reload stack segment register.
pub unsafe fn load_ss(sel: SegmentSelector) {
    asm!("movw $0, %ss " :: "r" (sel.bits()) : "memory");
}

/// Reload data segment register.
pub unsafe fn load_ds(sel: SegmentSelector) {
    asm!("movw $0, %ds " :: "r" (sel.bits()) : "memory");
}

/// Reload es segment register.
pub unsafe fn load_es(sel: SegmentSelector) {
    asm!("movw $0, %es " :: "r" (sel.bits()) : "memory");
}

/// Reload fs segment register.
pub unsafe fn load_fs(sel: SegmentSelector) {
    asm!("movw $0, %fs " :: "r" (sel.bits()) : "memory");
}

/// Reload gs segment register.
pub unsafe fn load_gs(sel: SegmentSelector) {
    asm!("movw $0, %gs " :: "r" (sel.bits()) : "memory");
}

/// Returns the current value of the code segment register.
pub fn cs() -> SegmentSelector {
    let segment: u16;
    unsafe { asm!("mov %cs, $0" : "=r" (segment) ) };
    SegmentSelector::from_raw(segment)
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::Ring;

    #[test]
    fn test_x86_64_default_gdt() {
        let null: Descriptor = Default::default();
        let code_kernel: Descriptor =
            DescriptorBuilder::code_descriptor(0, 0xFFFFF, CodeSegmentType::ExecuteRead)
                .present()
                .dpl(Ring::Ring0)
                .limit_granularity_4kb()
                .db()
                .finish();
        let stack_kernel: Descriptor =
            DescriptorBuilder::data_descriptor(0, 0xFFFFF, DataSegmentType::ReadWrite)
                .present()
                .dpl(Ring::Ring0)
                .limit_granularity_4kb()
                .db()
                .finish();
        let code_user: Descriptor =
            DescriptorBuilder::code_descriptor(0, 0xFFFFF, CodeSegmentType::ExecuteRead)
                .present()
                .limit_granularity_4kb()
                .db()
                .dpl(Ring::Ring3)
                .finish();
        let stack_user: Descriptor =
            DescriptorBuilder::data_descriptor(0, 0xFFFFF, DataSegmentType::ReadWrite)
                .present()
                .limit_granularity_4kb()
                .db()
                .dpl(Ring::Ring3)
                .finish();

        assert_eq!(0x0000000000000000u64, null.as_u64());
        assert_eq!(
            0x00CF9A000000FFFFu64,
            code_kernel.as_u64(),
            "code_kernel: {:#b} first bit to differ is {}",
            (code_kernel.as_u64() ^ 0x00CF9A000000FFFFu64),
            (code_kernel.as_u64() ^ 0x00CF9A000000FFFFu64).trailing_zeros()
        );
        assert_eq!(
            0x00CF92000000FFFFu64,
            stack_kernel.as_u64(),
            "stack_kernel: {:#b} first bit to differ is {}",
            (stack_kernel.as_u64() ^ 0x00CF92000000FFFFu64),
            (stack_kernel.as_u64() ^ 0x00CF92000000FFFFu64).trailing_zeros()
        );
        assert_eq!(
            0x00CFFA000000FFFFu64,
            code_user.as_u64(),
            "code_user: {:#b} first bit to differ is {}",
            (code_user.as_u64() ^ 0x00CFFA000000FFFFu64),
            (code_user.as_u64() ^ 0x00CFFA000000FFFFu64).trailing_zeros()
        );
        assert_eq!(
            0x00CFF2000000FFFFu64,
            stack_user.as_u64(),
            "stack_user: {:#b} first bit to differ is {}",
            (stack_user.as_u64() ^ 0x00CFF2000000FFFFu64),
            (stack_user.as_u64() ^ 0x00CFF2000000FFFFu64).trailing_zeros()
        );
    }
}