1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
use imxrt_hal as hal;
use imxrt_ral as ral;
use ral::{flexio, Valid};
use super::{
dma::WS2812Dma, flexio_configurator::FlexIOConfigurator, interleaved_pixels::InterleavedPixels,
PreprocessedPixels, WS2812Driver, WriteDmaResult,
};
use crate::{errors, pixelstream::PixelStreamRef, Pins};
impl<const N: u8, const L: usize, PINS: Pins<N, L>> WS2812Driver<N, L, PINS>
where
flexio::Instance<N>: Valid,
{
/// Initializes the FlexIO driver.
///
/// IMPORTANT! Make sure that the clock input of the FlexIO instance is at 16MHz
/// prior to calling this function.
///
/// Note that not all amounts of pins are always supported.
/// The limiting factor is most likely the number of FlexIO timers;
/// we need two timers plus an additional two per pin.
///
/// For example, if the FlexIO instance has 8 timers, it supports up to 3 pins.
pub fn init(
flexio: flexio::Instance<N>,
mut pins: PINS,
) -> Result<Self, errors::WS2812InitError> {
// Parameter check
let (version_major, version_minor, available_feature_set) =
ral::read_reg!(ral::flexio, flexio, VERID, MAJOR, MINOR, FEATURE);
let (available_triggers, available_pins, available_timers, available_shifters) =
ral::read_reg!(ral::flexio, flexio, PARAM, TRIGGER, PIN, TIMER, SHIFTER);
// Always u8 because our pins list is &[u8].
let available_pins = available_pins as u8;
log::debug!("Initializing FlexIO #{}.", N);
log::debug!(" Version: {}.{}", version_major, version_minor);
log::debug!(" Feature Set: {}", available_feature_set);
log::debug!(" Peripherals:");
log::debug!(" {} triggers", available_triggers);
log::debug!(" {} pins", available_pins);
log::debug!(" {} timers", available_timers);
log::debug!(" {} shifters", available_shifters);
log::debug!("Output pins: {:?}", PINS::FLEXIO_PIN_OFFSETS);
if available_shifters < 1 {
return Err(errors::WS2812InitError::NotEnoughShifters);
}
if available_timers < 2 + u32::from(PINS::PIN_COUNT) * 2 {
return Err(errors::WS2812InitError::NotEnoughTimers);
}
//////////// Configure FlexIO registers /////////////////
let mut flexio = FlexIOConfigurator::new(flexio);
// Find 4 consecutive pins for the shifter output
let shifter_output_start_pin = {
let mut start = 0;
let mut found = false;
for i in 0..available_pins {
if PINS::FLEXIO_PIN_OFFSETS.contains(&i) {
start = i + 1;
} else if i - start >= 3 {
// We found 4 consecutive free pins!
found = true;
break;
}
}
if !found {
return Err(errors::WS2812InitError::NeedFourConsecutiveInternalPins);
}
start
};
// Find a free pin for the shift timer output
let shift_timer_output_pin = {
let mut found_pin = None;
for i in 0..available_pins {
if !PINS::FLEXIO_PIN_OFFSETS.contains(&i)
&& !(shifter_output_start_pin..shifter_output_start_pin + 4).contains(&i)
{
found_pin = Some(i);
break;
}
}
if let Some(pin) = found_pin {
pin
} else {
return Err(errors::WS2812InitError::NotEnoughPins);
}
};
let data_shifter = Self::get_shifter_id();
let shifter_timer = Self::get_shifter_timer_id();
let idle_timer = Self::get_idle_timer_id();
flexio.configure_shifter(data_shifter, shifter_timer, shifter_output_start_pin);
flexio.configure_shift_timer(shifter_timer, data_shifter, shift_timer_output_pin);
flexio.configure_idle_timer(idle_timer, shift_timer_output_pin, None);
for (pin_pos, pin_id) in PINS::FLEXIO_PIN_OFFSETS.iter().copied().enumerate() {
let pin_pos = pin_pos.try_into().unwrap();
let low_bit_timer = Self::get_low_bit_timer_id(pin_pos);
let high_bit_timer = Self::get_high_bit_timer_id(pin_pos);
let neopixel_output_pin = pin_id;
flexio.configure_low_bit_timer(
low_bit_timer,
shift_timer_output_pin,
neopixel_output_pin,
);
flexio.configure_high_bit_timer(
high_bit_timer,
shifter_output_start_pin + pin_pos,
neopixel_output_pin,
);
}
// Configure pins and create driver object
pins.configure();
Ok(Self {
_pins: pins,
flexio: flexio.finish(),
})
}
const fn get_shifter_id() -> u8 {
0
}
const fn get_shifter_timer_id() -> u8 {
0
}
const fn get_idle_timer_id() -> u8 {
1
}
const fn get_low_bit_timer_id(pin_pos: u8) -> u8 {
2 * pin_pos + 2
}
const fn get_high_bit_timer_id(pin_pos: u8) -> u8 {
2 * pin_pos + 3
}
fn shift_buffer_empty(&self) -> bool {
let mask = 1u32 << Self::get_shifter_id();
(ral::read_reg!(ral::flexio, self.flexio, SHIFTSTAT) & mask) != 0
}
fn fill_shift_buffer(&self, data: u32) {
let buf_id = usize::from(Self::get_shifter_id());
ral::write_reg!(ral::flexio, self.flexio, SHIFTBUFBIS[buf_id], data);
}
fn reset_idle_timer_finished_flag(&mut self) {
let mask = 1u32 << Self::get_idle_timer_id();
ral::write_reg!(ral::flexio, self.flexio, TIMSTAT, mask);
}
fn idle_timer_finished(&mut self) -> bool {
let mask = 1u32 << Self::get_idle_timer_id();
(ral::read_reg!(ral::flexio, self.flexio, TIMSTAT) & mask) != 0
}
/// Writes pixels to an LED strip.
///
/// If the strips are of different length, the shorter ones will be padded
/// with `0` to match the longest strip.
///
/// For technical reasons, an additional `[0, 0, 0]` pixel will be added at
/// the of the transmission.
pub fn write(&mut self, data: [&mut dyn PixelStreamRef; L]) {
// Wait for the buffer to idle and clear timer overflow flag
while !self.shift_buffer_empty() {}
self.reset_idle_timer_finished_flag();
// Write data
for elem in InterleavedPixels::new(data) {
self.fill_shift_buffer(elem);
while !self.shift_buffer_empty() {}
}
// Wait for transfer finished
while !self.idle_timer_finished() {}
}
/// Writes pixels to an LED strip.
///
/// In contrast to [`write()`](write), this one performs the actual copy
/// via DMA, whilst allowing for something else (like the next frame) to be
/// computed concurrently.
///
/// # Arguments
///
/// * `data` - Preprocessed pixel data to send to the LED strips
/// * `dma` - The dma channel that should be used to transmit the data
/// * `dma_signal_id` - The signal the FlexIO unit uses to communicate with the DMA.
/// This is chip specific and must therefore be supplied by the user.
/// The value can be found in the reference manual.
/// * `concurrent_action` - A function that will be executed while the pixels get transferred.
/// Typically used to render the next frame, so it can be
/// transmitted afterwards without a delay, to achieve the maximum possible
/// framerate.
///
/// For technical reasons, an additional `[0, 0, 0]` pixel will be added at
/// the of the transmission.
pub fn write_dma<F, R, const N2: usize, const P: usize>(
&mut self,
data: &PreprocessedPixels<N2, L, P>,
dma: &mut hal::dma::channel::Channel,
dma_signal_id: u32,
concurrent_action: F,
) -> Result<WriteDmaResult<R>, imxrt_hal::dma::Error>
where
F: FnOnce() -> R,
{
// Wait for the buffer to idle and clear timer overflow flag
while !self.shift_buffer_empty() {}
self.reset_idle_timer_finished_flag();
let result = {
// Write data
let data = data.get_dma_data();
let mut destination =
WS2812Dma::new(&mut self.flexio, Self::get_shifter_id(), dma_signal_id);
let write = core::pin::pin!(hal::dma::peripheral::write(dma, data, &mut destination));
let mut write = cassette::Cassette::new(write);
let mut active = write.poll_on().transpose()?.is_none();
// Execute function
let result = concurrent_action();
// Finish write
if active {
// Query once to find out if we potentially lagged
active = write.poll_on().transpose()?.is_none();
}
if active {
write.block_on()?;
}
WriteDmaResult {
result,
lagged: !active,
}
};
// Wait for transfer finished
while !self.shift_buffer_empty() {}
while !self.idle_timer_finished() {}
Ok(result)
}
}