1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
//! A concurrent work-stealing queue for building schedulers.
//!
//! # Examples
//!
//! Distribute some tasks in a thread pool:
//!
//! ```
//! use work_queue::{Queue, LocalQueue};
//!
//! struct Task(Box<dyn Fn(&mut LocalQueue<Task>) + Send>);
//!
//! let threads = 4;
//!
//! let queue: Queue<Task> = Queue::new(threads, 128);
//!
//! // Push some tasks to the queue.
//! for _ in 0..500 {
//!     queue.push(Task(Box::new(|local| {
//!         do_work();
//!
//!         local.push(Task(Box::new(|_| do_work())));
//!         local.push(Task(Box::new(|_| do_work())));
//!     })));
//! }
//!
//! // Spawn threads to complete the tasks.
//! let handles: Vec<_> = queue
//!     .local_queues()
//!     .map(|mut local_queue| {
//!         std::thread::spawn(move || {
//!             while let Some(task) = local_queue.pop() {
//!                 task.0(&mut local_queue);
//!             }
//!         })
//!     })
//!     .collect();
//!
//! for handle in handles {
//!     handle.join().unwrap();
//! }
//! # fn do_work() {}
//! ```
//!
//! # Comparison with crossbeam-deque
//!
//! This crate is similar in purpose to [`crossbeam-deque`](https://docs.rs/crossbeam-deque), which
//! also provides concurrent work-stealing queues. However there are a few notable differences:
//!
//! - This crate is more high level - work stealing is done automatically when calling `pop`
//! instead of you having to manually call it.
//! - As such, we do not support as much customization as `crossbeam-deque` - but the algorithm
//! itself can be optimized better.
//! - Queues have a fixed number of local queues that they support, and this number cannot grow.
//! - Each local queue has a fixed capacity, unlike `crossbeam-deque` which supports local queue
//! growth. This makes our local queues faster.
//!
//! # Implementation
//!
//! This crate's queue implementation is based off [Tokio's current scheduler]. The idea is that
//! each thread holds a fixed-capacity local queue, and there is also an unbounded global queue
//! accessible by all threads. In the general case each worker thread will only interact with its
//! local queue, avoiding lots of synchronization - but if one worker thread happens to have a
//! lot less work than another, it will be spread out evenly due to work stealing.
//!
//! Additionally, each local queue stores a [non-stealable LIFO slot] to optimize for message
//! passing patterns, so that if one task creates another, that created task will be polled
//! immediately, instead of only much later when it reaches the front of the local queue.
//!
//! [Tokio's current scheduler]: https://tokio.rs/blog/2019-10-scheduler
//! [non-stealable LIFO slot]: https://tokio.rs/blog/2019-10-scheduler#optimizing-for-message-passing-patterns
#![warn(missing_debug_implementations, rust_2018_idioms, missing_docs)]

use std::cmp;
use std::collections::hash_map::DefaultHasher;
use std::fmt::{self, Debug, Formatter};
use std::hash::Hasher;
use std::iter::FusedIterator;
use std::mem::{self, MaybeUninit};
use std::ops::Deref;
use std::ptr::{self, NonNull};
#[cfg(not(loom))]
use std::{collections::hash_map::RandomState, hash::BuildHasher};

#[cfg_attr(loom, path = "loom.rs")]
#[cfg_attr(not(loom), path = "std.rs")]
mod facade;
use facade::atomic::{self, AtomicBool, AtomicU16, AtomicU32, AtomicUsize};
use facade::Arc;
use facade::GlobalQueue;
use facade::UnsafeCell;

/// A work queue.
///
/// This implements [`Clone`] and so multiple handles to the queue can be easily created and
/// shared.
#[derive(Debug)]
pub struct Queue<T>(Arc<Shared<T>>);

impl<T> Queue<T> {
    /// Create a new work queue.
    ///
    /// `local_queues` is the number of [`LocalQueue`]s yielded by [`Self::local_queues`]. Typically
    /// you will have a local queue for each thread on a thread pool.
    ///
    /// `local_queue_size` is the number of items that can be stored in each local queue before it
    /// overflows into the global one. You should fine-tune this to your needs.
    ///
    /// # Panics
    ///
    /// This will panic if the local queue size is not a power of two.
    ///
    /// # Examples
    ///
    /// ```
    /// use work_queue::Queue;
    ///
    /// let threads = 4;
    /// let queue: Queue<i32> = Queue::new(threads, 512);
    /// ```
    pub fn new(local_queues: usize, local_queue_size: u16) -> Self {
        assert_eq!(
            local_queue_size.count_ones(),
            1,
            "Queue size is not a power of two"
        );
        let mask = local_queue_size - 1;

        Self(Arc::new(Shared {
            local_queues: (0..local_queues)
                .map(|_| LocalQueueInner {
                    heads: AtomicU32::new(0),
                    tail: AtomicU16::new(0),
                    mask,
                    items: (0..local_queue_size)
                        .map(|_| UnsafeCell::new(MaybeUninit::uninit()))
                        .collect(),
                })
                .collect(),
            global_queue: GlobalQueue::new(),
            stealing_global: AtomicBool::new(false),
            taken_local_queues: AtomicBool::new(false),
            searchers: AtomicUsize::new(0),
        }))
    }

    /// Push an item to the global queue. When one of the local queues empties, they can pick this
    /// item up.
    pub fn push(&self, item: T) {
        let _ = self.0.global_queue.push(item);
    }

    /// Iterate over the local queues of this queue.
    ///
    /// # Panics
    ///
    /// This will panic if called more than one time.
    pub fn local_queues(&self) -> LocalQueues<'_, T> {
        assert!(!self
            .0
            .taken_local_queues
            .swap(true, atomic::Ordering::Relaxed));

        LocalQueues {
            shared: self,
            index: 0,
            #[cfg(not(loom))]
            hasher: RandomState::new().build_hasher(),
            #[cfg(loom)]
            hasher: DefaultHasher::new(),
        }
    }

    /// Get the number of threads that are currently searching for work inside [`pop`](Self::pop).
    ///
    /// If this number is too high, you may wish to avoid calling [`pop`](Self::pop) to reduce
    /// contention.
    #[must_use]
    pub fn searchers(&self) -> usize {
        self.0.searchers.load(atomic::Ordering::Relaxed)
    }
}

impl<T> Clone for Queue<T> {
    fn clone(&self) -> Self {
        Self(Arc::clone(&self.0))
    }
}

#[derive(Debug)]
struct Shared<T> {
    local_queues: Box<[LocalQueueInner<T>]>,
    global_queue: GlobalQueue<T>,
    /// Whether a thread is currently stealing from the global queue. When `true`, threads
    /// should avoid trying to pop from it to reduce contention.
    stealing_global: AtomicBool,
    /// Whether the local queues have already been yielded to the user and so shouldn't be yielded
    /// again.
    taken_local_queues: AtomicBool,
    /// The number of queues searching for work.
    searchers: AtomicUsize,
}

/// The fixed-capacity SP2C queue owned by each local queue.
struct LocalQueueInner<T> {
    /// The two heads (fronts) of the queue, packed into one atomic by `pack_heads` and
    /// `unpack_heads`.
    ///
    /// The first head, the "stealer" head, always lags behind the second head, the "real" head.
    /// Items are popped starting from the real head, but the space between the two heads still
    /// cannot be overwritten by the tail, as it's being read by a stealer.
    heads: AtomicU32,

    /// The back of the queue. Only incremented by the associated queue.
    tail: AtomicU16,

    /// Bitmask applied to the head and tail to obtain the actual indices, so that the atomics can
    /// be incremented and freely overflow outside of the range of the queue itself.
    mask: u16,

    /// The actual items in the queue.
    items: Box<[UnsafeCell<MaybeUninit<T>>]>,
}

unsafe impl<T: Send> Sync for LocalQueueInner<T> {}

impl<T> Debug for LocalQueueInner<T> {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        let (protected_head, head) = unpack_heads(self.heads.load(atomic::Ordering::Acquire));

        f.debug_struct("LocalQueueInner")
            .field("protected_head", &protected_head)
            .field("head", &head)
            .field("tail", &self.tail)
            .field("mask", &format_args!("{:#b}", self.mask))
            .finish()
    }
}

/// Unpack the `heads` value in a `LocalQueueInner`. Returns a tuple of the stealer head and the
/// real head.
fn unpack_heads(heads: u32) -> (u16, u16) {
    ((heads >> 16) as u16, heads as u16)
}
/// Pack the `heads` value in a `LocalQueueInner` from its stealer head and real head.
fn pack_heads(stealer: u16, real: u16) -> u32 {
    (stealer as u32) << 16 | real as u32
}

/// One of the local queues in a [`Queue`].
///
/// You can create this using [`Queue::local_queues`].
#[derive(Debug)]
pub struct LocalQueue<T> {
    /// Special slot that is always popped from first, to optimize for message passing where one
    /// task is blocked on another.
    lifo_slot: Option<T>,
    local: ValidPtr<LocalQueueInner<T>>,
    shared: Queue<T>,
    /// Random number generator used to find which queue to start work stealing from.
    rng: Rng,
}

impl<T> LocalQueue<T> {
    /// Load the tail of the local queue.
    fn local_tail(&mut self) -> u16 {
        // SAFETY: The tail can be loaded without synchronization because only `self` can write to
        // it, and we have an `&mut self`.
        unsafe { facade::atomic_u16_unsync_load(&self.local.tail) }
    }

    /// Push an item to the local queue. If the local queue is full, it will move half of its items
    /// to the global queue.
    pub fn push(&mut self, item: T) {
        if let Some(previous) = self.lifo_slot.replace(item) {
            self.push_yield(previous);
        }
    }

    /// Push an item to the local queue, skipping the LIFO slot. This can be used to give other
    /// tasks a chance to run. Otherwise, there's a risk that one task will completely take over a
    /// thread in a push-pop cycle due to the LIFO slot.
    pub fn push_yield(&mut self, item: T) {
        let tail = self.local_tail();

        // We have to use Acquire to make sure that we don't write into memory that is
        // currently being read by work stealers.
        let mut heads = self.local.heads.load(atomic::Ordering::Acquire);

        loop {
            let (steal_head, head) = unpack_heads(heads);

            // If the local queue is not full, we can simply push to that.
            if tail.wrapping_sub(steal_head) < self.local.items.len() as u16 {
                let i = tail & self.local.mask;

                self.local.items[usize::from(i)]
                    .with_mut(|slot| unsafe { slot.write(MaybeUninit::new(item)) });

                // Release is necessary to make sure the above write is ordered before accesssing
                // values.
                self.local
                    .tail
                    .store(tail.wrapping_add(1), atomic::Ordering::Release);

                return;
            }

            // If no threads are currently stealing, our overflowing local queue will not be
            // drained, so we should push half of it to the global queue.
            //
            // Otherwise (when threads are stealing) we don't want to wait for them to finish, so
            // we just push this single item to the global queue (but we don't need to push any
            // more since we're about to become less full).
            if steal_head == head {
                let half = self.local.items.len() as u16 / 2;
                // TODO: We could use compare_exchange_weak here, which may potentially improve
                // performance.
                let res = self.local.heads.compare_exchange(
                    heads,
                    pack_heads(head.wrapping_add(half), head.wrapping_add(half)),
                    // Release is necessary to ensure that any previous writes to `tail` become
                    // visible after this point. If not made visible, we could get into a situation
                    // where a thread reads an older value for `tail` than `heads`, and if `heads`
                    // has advanced beyond the old `tail` by that point it causes all sorts of
                    // issues.
                    atomic::Ordering::AcqRel,
                    // Acquire is necessary because on failure we use the new value to update the
                    // head (see the Acquire ordering above).
                    atomic::Ordering::Acquire,
                );

                // Moving the head failed because another thread has just stolen some items. This
                // means the queue is less full, so we can retry pushing to the local queue.
                if let Err(new_heads) = res {
                    heads = new_heads;
                    continue;
                }

                // Push half the items in the current queue to the global queue.
                for i in 0..half {
                    let index = head.wrapping_add(i) & self.local.mask;
                    let item = unsafe {
                        self.local.items[usize::from(index)]
                            .with(|slot| slot.read())
                            .assume_init()
                    };
                    let _ = self.shared.0.global_queue.push(item);
                }
            }

            let _ = self.shared.0.global_queue.push(item);

            return;
        }
    }

    /// Pop an item from the local queue, or steal from the global and sibling queues if it is
    /// empty.
    pub fn pop(&mut self) -> Option<T> {
        // First try to pop from the LIFO slot.
        if let Some(item) = self.lifo_slot.take() {
            return Some(item);
        }

        let tail = self.local_tail();

        // First try to pop from the local queue.
        let res = atomic_u32_fetch_update(
            &self.local.heads,
            // No memory orderings are necessary here as this is the only thread that mutates
            // the data, and it's not currently mutating the data.
            atomic::Ordering::Relaxed,
            atomic::Ordering::Relaxed,
            |heads| {
                let (steal_head, head) = unpack_heads(heads);
                if head == tail {
                    None
                } else if steal_head == head {
                    // There are no current stealers; update both heads.
                    Some(pack_heads(head.wrapping_add(1), head.wrapping_add(1)))
                } else {
                    // There is currently a stealer; only update the real head, as it's the
                    // stealer's job to update the stealer head later.
                    Some(pack_heads(steal_head, head.wrapping_add(1)))
                }
            },
        );

        let heads = match res {
            // We have successfully popped something from the local queue.
            Ok(heads) => {
                let (_, head) = unpack_heads(heads);
                let i = head & self.local.mask;
                return Some(unsafe {
                    self.local.items[usize::from(i)]
                        .with(|ptr| ptr.read())
                        .assume_init()
                });
            }
            // The local queue is empty.
            Err(heads) => heads,
        };
        let (steal_head, head) = unpack_heads(heads);
        assert_eq!(head, tail);

        // The number of free slots in the queue we can steal into.
        let space = self.local.items.len() as u16 - head.wrapping_sub(steal_head);

        // Now we will try to steal into this queue from various places.

        // TODO: Potentially throttle stealing?
        self.shared
            .0
            .searchers
            // No ordering is necessary because we use this as a hint, not for safety.
            .fetch_add(1, atomic::Ordering::Relaxed);

        struct DecrementSearchers<'a>(&'a AtomicUsize);
        impl Drop for DecrementSearchers<'_> {
            fn drop(&mut self) {
                self.0.fetch_sub(1, atomic::Ordering::Relaxed);
            }
        }
        let _decrement_searchers = DecrementSearchers(&self.shared.0.searchers);

        // If there are no threads currently stealing from the global queue, we will steal from it.
        if self
            .shared
            .0
            .stealing_global
            .compare_exchange(
                false,
                true,
                // No ordering is necessary because we use this as a hint, not for safety.
                atomic::Ordering::Relaxed,
                atomic::Ordering::Relaxed,
            )
            .is_ok()
        {
            let popped_item = self.shared.0.global_queue.pop();

            if popped_item.is_some() {
                // To avoid having to search for items again after we have completed this one, we
                // fill half of our queue with items from the global queue.

                let steal = cmp::min(self.local.items.len() as u16 / 2, space);
                let mut tail = head;
                let end_tail = head.wrapping_add(steal);

                // Ensure that the following mutations of the local queue of items will not occur
                // before stealers have finished reading.
                u32_acquire_fence(&self.local.heads);

                while tail != end_tail {
                    match self.shared.0.global_queue.pop() {
                        Some(item) => {
                            let i = tail & self.local.mask;
                            self.local.items[usize::from(i)]
                                .with_mut(|slot| unsafe { slot.write(MaybeUninit::new(item)) });
                        }
                        None => break,
                    }
                    tail = tail.wrapping_add(1);
                }
                // Release is necessary to make sure the above write is ordered before accesssing
                // values.
                self.local.tail.store(tail, atomic::Ordering::Release);
            }

            self.shared
                .0
                .stealing_global
                .store(false, atomic::Ordering::Relaxed);

            if let Some(popped_item) = popped_item {
                return Some(popped_item);
            }
        }

        // Steal work from sibling queues starting from a random location.
        let queues = self.shared.0.local_queues.len();
        let start = self.rng.gen_usize_to(queues);

        'sibling_queues: for i in 0..queues {
            let mut i = start + i;
            if i >= queues {
                i -= queues;
            }

            let queue = &self.shared.0.local_queues[i];
            if ptr::eq(queue, &*self.local) {
                continue;
            }

            // Acquire is necessary to make sure that the below load of the tail does not occur
            // before the load of the head.
            let mut queue_heads = queue.heads.load(atomic::Ordering::Acquire);

            let (old_queue_head, mut queue_head, steal) = loop {
                let (queue_steal_head, queue_head) = unpack_heads(queue_heads);

                // If another thread is already stealing from this queue, don't steal from it.
                if queue_steal_head != queue_head {
                    continue 'sibling_queues;
                }

                // Acquire is necessary so we don't read into items that are currently being
                // written by the thread itself.
                let queue_tail = queue.tail.load(atomic::Ordering::Acquire);

                // The number of items that can be stolen.
                let stealable = queue_tail.wrapping_sub(queue_head);

                // The number of items we actually want to steal - this is half of their queue,
                // rounded up.
                let steal = cmp::min(stealable - stealable / 2, space);

                if steal == 0 {
                    continue 'sibling_queues;
                }

                let new_queue_head = queue_head.wrapping_add(steal);

                // TODO: We could use compare_exchange here, which may potentially improve
                // performance.
                let res = queue.heads.compare_exchange_weak(
                    queue_heads,
                    // Only move the real head, as we still need to keep the steal head to read
                    // from the queue.
                    pack_heads(queue_head, new_queue_head),
                    // Release isn't necessary here since the above code doesn't access any memory.
                    atomic::Ordering::Acquire,
                    // Acquire is necessary when the compare_exchange fails because the result is
                    // used to update the values in `queue_heads`; see the Acquire above.
                    atomic::Ordering::Acquire,
                );

                match res {
                    Ok(_) => break (queue_head, new_queue_head, steal),
                    Err(updated_queue_heads) => queue_heads = updated_queue_heads,
                }
            };

            assert_ne!(steal, 0);

            // Ensure that the following mutations of the local queue of items will not occur
            // before stealers of our own queue have finished reading.
            u32_acquire_fence(&self.local.heads);

            // Read the first item separately, as we will be returning it.
            let first_item = unsafe {
                queue.items[usize::from(old_queue_head & queue.mask)]
                    .with(|slot| slot.read())
                    .assume_init()
            };

            // Copy over the stolen items to our queue.
            for i in 1..steal {
                let src = &queue.items[usize::from(old_queue_head.wrapping_add(i) & queue.mask)];
                let dst =
                    &self.local.items[usize::from(head.wrapping_add(i - 1) & self.local.mask)];

                src.with(|src| dst.with_mut(|dst| unsafe { src.copy_to_nonoverlapping(dst, 1) }))
            }

            // Update the steal head to match the real head.
            loop {
                let res = queue.heads.compare_exchange_weak(
                    pack_heads(old_queue_head, queue_head),
                    pack_heads(queue_head, queue_head),
                    // Release is necessary to make sure the above reads are ordered before any
                    // other thread can write to the values.
                    atomic::Ordering::Release,
                    // No ordering is necessary because we're not accessing shared mutable state
                    // after this point.
                    atomic::Ordering::Relaxed,
                );

                match res {
                    Ok(_) => break,
                    Err(updated_queue_heads) => {
                        let (updated_queue_steal_head, update_queue_head) =
                            unpack_heads(updated_queue_heads);
                        assert_eq!(updated_queue_steal_head, old_queue_head);
                        queue_head = update_queue_head;
                    }
                }
            }

            if steal > 1 {
                // Release is necessary to make sure the above writes are ordered before accessing
                // values.
                self.local
                    .tail
                    .store(tail.wrapping_add(steal - 1), atomic::Ordering::Release);
            }

            return Some(first_item);
        }

        // Lastly, pop from the global queue without guarding against contention, since there is
        // nowhere else we can currently get items from.
        self.shared.0.global_queue.pop()
    }

    /// Get the number of threads that are currently searching for work inside [`pop`](Self::pop).
    ///
    /// If this number is too high, you may wish to avoid calling [`pop`](Self::pop) to reduce
    /// contention.
    #[must_use]
    pub fn searchers(&self) -> usize {
        self.shared.searchers()
    }

    /// Get the global queue that is associated with this local queue.
    #[must_use]
    pub fn global(&self) -> &Queue<T> {
        &self.shared
    }
}

/// An iterator over the [`LocalQueue`]s in a [`Queue`]. Created by [`Queue::local_queues`].
#[derive(Debug)]
#[must_use = "iterators are lazy and do nothing unless consumed"]
pub struct LocalQueues<'a, T> {
    shared: &'a Queue<T>,
    index: usize,
    hasher: DefaultHasher,
}

impl<T> Iterator for LocalQueues<'_, T> {
    type Item = LocalQueue<T>;

    fn next(&mut self) -> Option<Self::Item> {
        let inner = self.shared.0.local_queues.get(self.index)?;
        self.index += 1;

        Some(LocalQueue {
            lifo_slot: None,
            // SAFETY: The `LocalQueue` stores an `Arc` so this pointer is guaranteed to be valid
            // until the type is dropped.
            local: unsafe { ValidPtr::new(inner) },
            shared: self.shared.clone(),
            rng: Rng {
                state: {
                    self.hasher.write_usize(self.index);
                    self.hasher.finish()
                },
            },
        })
    }
    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = self.len();
        (len, Some(len))
    }
}

impl<T> ExactSizeIterator for LocalQueues<'_, T> {
    fn len(&self) -> usize {
        self.shared.0.local_queues.len() - self.index
    }
}

impl<T> FusedIterator for LocalQueues<'_, T> {}

/// A `*const T` that is guaranteed to always be valid and non-null.
struct ValidPtr<T: ?Sized>(NonNull<T>);
impl<T: ?Sized> ValidPtr<T> {
    unsafe fn new(ptr: *const T) -> Self {
        Self(NonNull::new_unchecked(ptr as *mut T))
    }
}
impl<T: ?Sized> Clone for ValidPtr<T> {
    fn clone(&self) -> Self {
        *self
    }
}
impl<T: ?Sized> Copy for ValidPtr<T> {}
impl<T: ?Sized> Deref for ValidPtr<T> {
    type Target = T;
    fn deref(&self) -> &Self::Target {
        unsafe { self.0.as_ref() }
    }
}
impl<T: ?Sized + Debug> Debug for ValidPtr<T> {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        T::fmt(self, f)
    }
}
unsafe impl<T: ?Sized + Sync> Send for ValidPtr<T> {}
unsafe impl<T: ?Sized + Sync> Sync for ValidPtr<T> {}

#[cfg(target_pointer_width = "64")]
type DoubleUsize = u128;
#[cfg(target_pointer_width = "32")]
type DoubleUsize = u64;

/// Wyrand RNG.
#[derive(Debug)]
struct Rng {
    state: u64,
}
impl Rng {
    fn gen_u64(&mut self) -> u64 {
        self.state = self.state.wrapping_add(0xA0761D6478BD642F);
        let t = u128::from(self.state) * u128::from(self.state ^ 0xE7037ED1A0B428DB);
        (t >> 64) as u64 ^ t as u64
    }
    fn gen_usize(&mut self) -> usize {
        self.gen_u64() as usize
    }
    fn gen_usize_to(&mut self, to: usize) -> usize {
        // Adapted from https://www.pcg-random.org/posts/bounded-rands.html
        const USIZE_BITS: usize = mem::size_of::<usize>() * 8;

        let mut x = self.gen_usize();
        let mut m = ((x as DoubleUsize * to as DoubleUsize) >> USIZE_BITS) as usize;
        let mut l = x.wrapping_mul(to);
        if l < to {
            let t = to.wrapping_neg() % to;
            while l < t {
                x = self.gen_usize();
                m = ((x as DoubleUsize * to as DoubleUsize) >> USIZE_BITS) as usize;
                l = x.wrapping_mul(to);
            }
        }
        m
    }
}

fn atomic_u32_fetch_update<F>(
    atomic: &AtomicU32,
    set_order: atomic::Ordering,
    fetch_order: atomic::Ordering,
    mut f: F,
) -> Result<u32, u32>
where
    F: FnMut(u32) -> Option<u32>,
{
    let mut prev = atomic.load(fetch_order);
    while let Some(next) = f(prev) {
        match atomic.compare_exchange_weak(prev, next, set_order, fetch_order) {
            Ok(x) => return Ok(x),
            Err(next_prev) => prev = next_prev,
        }
    }
    Err(prev)
}

fn u32_acquire_fence(atomic: &AtomicU32) {
    if cfg!(tsan) {
        // ThreadSanitizer doesn't support fences.
        atomic.load(atomic::Ordering::Acquire);
    } else {
        atomic::fence(atomic::Ordering::Acquire);
    }
}

#[cfg(all(test, not(loom)))]
mod tests {
    use super::*;

    use std::collections::HashSet;

    #[test]
    fn rng() {
        let mut rng = Rng { state: 3493858 };

        let mut remaining: HashSet<_> = (0..15).collect();

        while !remaining.is_empty() {
            let value = rng.gen_usize_to(15);
            assert!(value < 15, "{} is not less than 15!", value);
            remaining.remove(&value);
        }
    }

    #[test]
    fn lifo_slot() {
        let queue = Queue::new(1, 2);
        let mut local = queue.local_queues().next().unwrap();

        assert_eq!(local.pop(), None);
        assert_eq!(local.pop(), None);

        local.push(Box::new(5));
        assert_eq!(local.pop(), Some(Box::new(5)));
        assert_eq!(local.pop(), None);
    }

    #[test]
    fn push_many() {
        let queue = Queue::new(1, 2);
        let mut local = queue.local_queues().next().unwrap();

        for i in 0..4 {
            local.push(Box::new(i));
        }
        assert_eq!(local.pop(), Some(Box::new(3)));
        assert_eq!(local.pop(), Some(Box::new(1)));
        assert_eq!(local.pop(), Some(Box::new(0)));
        assert_eq!(local.pop(), Some(Box::new(2)));
        assert_eq!(local.pop(), None);
    }

    #[test]
    fn wrapping() {
        let queue = Queue::new(1, 2);
        let mut local = queue.local_queues().next().unwrap();

        local.push_yield(Box::new(0));

        for i in 0..10 {
            local.push_yield(Box::new(i + 1));

            assert_eq!(local.pop(), Some(Box::new(i)));
        }

        assert_eq!(local.pop(), Some(Box::new(10)));
        assert_eq!(local.pop(), None);
        assert_eq!(local.pop(), None);
    }

    #[test]
    fn steal_global() {
        for &size in &[2, 4, 8, 16, 32, 64] {
            let queue = Queue::new(4, size);

            for i in 0..16 {
                queue.push(Box::new(i));
            }

            let mut local = queue.local_queues().next().unwrap();

            for i in 0..16 {
                assert_eq!(local.pop(), Some(Box::new(i)));
            }

            assert_eq!(local.pop(), None);
        }
    }

    #[test]
    fn steal_siblings() {
        let queue = Queue::new(2, 64);

        let mut locals: Vec<_> = queue.local_queues().collect();

        locals[0].push_yield(Box::new(4));
        locals[0].push_yield(Box::new(5));

        locals[1].push(Box::new(1));
        locals[1].push(Box::new(0));

        queue.push(Box::new(2));
        queue.push(Box::new(3));

        for i in 0..6 {
            assert_eq!(locals[1].pop(), Some(Box::new(i)));
        }
    }

    #[test]
    fn many_locals() {
        let queue = <Queue<()>>::new(10, 128);
        queue.local_queues().for_each(drop);
    }

    #[test]
    fn searchers() {
        let queue = Queue::new(2, 64);
        let mut locals = queue.local_queues();
        let mut local_a = locals.next().unwrap();
        let mut local_b = locals.next().unwrap();

        assert_eq!(local_a.searchers(), 0);
        assert_eq!(local_b.searchers(), 0);

        local_a.push(());
        local_a.push(());
        local_a.pop().unwrap();
        local_a.pop().unwrap();
        queue.push(());
        local_b.pop().unwrap();
        assert!(local_b.pop().is_none());

        assert_eq!(local_a.searchers(), 0);
        assert_eq!(local_b.searchers(), 0);

        // This test hangs on Miri.
        if cfg!(not(miri)) {
            let stop = Arc::new(AtomicBool::new(false));

            let handle = std::thread::spawn({
                let stop = Arc::clone(&stop);
                move || {
                    while !stop.load(atomic::Ordering::Relaxed) {
                        local_b.pop();
                    }
                }
            });

            loop {
                let searchers = local_a.searchers();
                assert!(searchers < 2);
                if searchers == 1 {
                    break;
                }
            }

            stop.store(true, atomic::Ordering::Relaxed);
            handle.join().unwrap();
        }
    }

    #[test]
    fn stress() {
        let queue = Queue::new(4, 4);

        if cfg!(miri) {
            for _ in 0..3 {
                queue.push(4);
            }
        } else {
            for _ in 0..32 {
                queue.push(6);
            }
        }

        let threads: Vec<_> = queue
            .local_queues()
            .map(|mut queue| {
                std::thread::spawn(move || {
                    while let Some(num) = queue.pop() {
                        for _ in 0..num {
                            queue.push(num - 1);
                        }
                    }
                })
            })
            .collect();

        for thread in threads {
            thread.join().unwrap();
        }
    }

    #[test]
    fn cobb() {
        use std::cell::UnsafeCell;

        struct State(Box<[UnsafeCell<LocalQueue<Box<i32>>>]>);
        unsafe impl Sync for State {}

        cobb::run_test(cobb::TestCfg {
            threads: 4,
            iterations: if cfg!(miri) { 100 } else { 1000 },
            sub_iterations: if cfg!(miri) { 1 } else { 10 },
            setup: || {
                let queue = Queue::new(4, 4);
                State(
                    queue
                        .local_queues()
                        .map(UnsafeCell::new)
                        .collect::<Box<[_]>>(),
                )
            },
            test: |State(local_queues), tctx| {
                let queue = unsafe { &mut *local_queues[tctx.thread_index()].get() };
                if tctx.thread_index() < 2 {
                    queue.push(Box::new(5));
                } else {
                    queue.pop();
                }
            },
            ..Default::default()
        });
    }
}

#[cfg(all(test, loom))]
mod loom_tests {
    use super::*;

    fn locals<T, const N: usize>(queue: &Queue<T>) -> [LocalQueue<T>; N] {
        array_init::from_iter(queue.local_queues()).expect("incorrect number of local queues")
    }

    #[test]
    fn pop_none() {
        loom::model(|| {
            let queue: Queue<()> = Queue::new(2, 1);
            let [mut local_1, mut local_2] = locals(&queue);
            loom::thread::spawn(move || assert!(local_1.pop().is_none()));
            assert!(local_2.pop().is_none());
        });
    }

    #[test]
    fn concurrent_steal_global() {
        loom::model(|| {
            let queue: Queue<Box<i32>> = Queue::new(2, 1);
            let [mut local_1, mut local_2] = locals(&queue);
            for i in 0..2 {
                queue.push(Box::new(i));
            }
            loom::thread::spawn(move || {
                local_1.pop();
                local_1.pop();
            });
            local_2.pop();
        });
    }

    #[test]
    fn concurrent_steal_sibling() {
        loom::model(|| {
            let queue: Queue<Box<i32>> = Queue::new(3, 1);
            let [mut local_1, mut local_2, mut local_3] = locals(&queue);
            for i in 0..4 {
                local_1.push(Box::new(i));
            }
            loom::thread::spawn(move || {
                local_2.pop();
                local_2.pop();
            });
            local_3.pop();
        });
    }

    #[test]
    fn global_spsc() {
        loom::model(|| {
            let queue: Queue<Box<i32>> = Queue::new(1, 4);
            let [mut local] = locals(&queue);
            loom::thread::spawn(move || {
                for i in 0..6 {
                    queue.push(Box::new(i));
                }
            });
            for _ in 0..6 {
                local.pop();
            }
        });
    }

    #[test]
    fn sibling_spsc_few() {
        loom::model(|| {
            let queue: Queue<Box<i32>> = Queue::new(2, 4);
            let [mut local_1, mut local_2] = locals(&queue);
            loom::thread::spawn(move || {
                for i in 0..4 {
                    local_1.push(Box::new(i));
                }
            });
            for _ in 0..4 {
                local_2.pop();
            }
        });
    }

    #[test]
    fn sibling_spsc_many() {
        loom::model(|| {
            let queue: Queue<Box<i32>> = Queue::new(2, 4);
            let [mut local_1, mut local_2] = locals(&queue);
            loom::thread::spawn(move || {
                for i in 0..8 {
                    local_1.push(Box::new(i));
                }
            });
            local_2.pop();
        });
    }
}