1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455
 3456
 3457
 3458
 3459
 3460
 3461
 3462
 3463
 3464
 3465
 3466
 3467
 3468
 3469
 3470
 3471
 3472
 3473
 3474
 3475
 3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509
 3510
 3511
 3512
 3513
 3514
 3515
 3516
 3517
 3518
 3519
 3520
 3521
 3522
 3523
 3524
 3525
 3526
 3527
 3528
 3529
 3530
 3531
 3532
 3533
 3534
 3535
 3536
 3537
 3538
 3539
 3540
 3541
 3542
 3543
 3544
 3545
 3546
 3547
 3548
 3549
 3550
 3551
 3552
 3553
 3554
 3555
 3556
 3557
 3558
 3559
 3560
 3561
 3562
 3563
 3564
 3565
 3566
 3567
 3568
 3569
 3570
 3571
 3572
 3573
 3574
 3575
 3576
 3577
 3578
 3579
 3580
 3581
 3582
 3583
 3584
 3585
 3586
 3587
 3588
 3589
 3590
 3591
 3592
 3593
 3594
 3595
 3596
 3597
 3598
 3599
 3600
 3601
 3602
 3603
 3604
 3605
 3606
 3607
 3608
 3609
 3610
 3611
 3612
 3613
 3614
 3615
 3616
 3617
 3618
 3619
 3620
 3621
 3622
 3623
 3624
 3625
 3626
 3627
 3628
 3629
 3630
 3631
 3632
 3633
 3634
 3635
 3636
 3637
 3638
 3639
 3640
 3641
 3642
 3643
 3644
 3645
 3646
 3647
 3648
 3649
 3650
 3651
 3652
 3653
 3654
 3655
 3656
 3657
 3658
 3659
 3660
 3661
 3662
 3663
 3664
 3665
 3666
 3667
 3668
 3669
 3670
 3671
 3672
 3673
 3674
 3675
 3676
 3677
 3678
 3679
 3680
 3681
 3682
 3683
 3684
 3685
 3686
 3687
 3688
 3689
 3690
 3691
 3692
 3693
 3694
 3695
 3696
 3697
 3698
 3699
 3700
 3701
 3702
 3703
 3704
 3705
 3706
 3707
 3708
 3709
 3710
 3711
 3712
 3713
 3714
 3715
 3716
 3717
 3718
 3719
 3720
 3721
 3722
 3723
 3724
 3725
 3726
 3727
 3728
 3729
 3730
 3731
 3732
 3733
 3734
 3735
 3736
 3737
 3738
 3739
 3740
 3741
 3742
 3743
 3744
 3745
 3746
 3747
 3748
 3749
 3750
 3751
 3752
 3753
 3754
 3755
 3756
 3757
 3758
 3759
 3760
 3761
 3762
 3763
 3764
 3765
 3766
 3767
 3768
 3769
 3770
 3771
 3772
 3773
 3774
 3775
 3776
 3777
 3778
 3779
 3780
 3781
 3782
 3783
 3784
 3785
 3786
 3787
 3788
 3789
 3790
 3791
 3792
 3793
 3794
 3795
 3796
 3797
 3798
 3799
 3800
 3801
 3802
 3803
 3804
 3805
 3806
 3807
 3808
 3809
 3810
 3811
 3812
 3813
 3814
 3815
 3816
 3817
 3818
 3819
 3820
 3821
 3822
 3823
 3824
 3825
 3826
 3827
 3828
 3829
 3830
 3831
 3832
 3833
 3834
 3835
 3836
 3837
 3838
 3839
 3840
 3841
 3842
 3843
 3844
 3845
 3846
 3847
 3848
 3849
 3850
 3851
 3852
 3853
 3854
 3855
 3856
 3857
 3858
 3859
 3860
 3861
 3862
 3863
 3864
 3865
 3866
 3867
 3868
 3869
 3870
 3871
 3872
 3873
 3874
 3875
 3876
 3877
 3878
 3879
 3880
 3881
 3882
 3883
 3884
 3885
 3886
 3887
 3888
 3889
 3890
 3891
 3892
 3893
 3894
 3895
 3896
 3897
 3898
 3899
 3900
 3901
 3902
 3903
 3904
 3905
 3906
 3907
 3908
 3909
 3910
 3911
 3912
 3913
 3914
 3915
 3916
 3917
 3918
 3919
 3920
 3921
 3922
 3923
 3924
 3925
 3926
 3927
 3928
 3929
 3930
 3931
 3932
 3933
 3934
 3935
 3936
 3937
 3938
 3939
 3940
 3941
 3942
 3943
 3944
 3945
 3946
 3947
 3948
 3949
 3950
 3951
 3952
 3953
 3954
 3955
 3956
 3957
 3958
 3959
 3960
 3961
 3962
 3963
 3964
 3965
 3966
 3967
 3968
 3969
 3970
 3971
 3972
 3973
 3974
 3975
 3976
 3977
 3978
 3979
 3980
 3981
 3982
 3983
 3984
 3985
 3986
 3987
 3988
 3989
 3990
 3991
 3992
 3993
 3994
 3995
 3996
 3997
 3998
 3999
 4000
 4001
 4002
 4003
 4004
 4005
 4006
 4007
 4008
 4009
 4010
 4011
 4012
 4013
 4014
 4015
 4016
 4017
 4018
 4019
 4020
 4021
 4022
 4023
 4024
 4025
 4026
 4027
 4028
 4029
 4030
 4031
 4032
 4033
 4034
 4035
 4036
 4037
 4038
 4039
 4040
 4041
 4042
 4043
 4044
 4045
 4046
 4047
 4048
 4049
 4050
 4051
 4052
 4053
 4054
 4055
 4056
 4057
 4058
 4059
 4060
 4061
 4062
 4063
 4064
 4065
 4066
 4067
 4068
 4069
 4070
 4071
 4072
 4073
 4074
 4075
 4076
 4077
 4078
 4079
 4080
 4081
 4082
 4083
 4084
 4085
 4086
 4087
 4088
 4089
 4090
 4091
 4092
 4093
 4094
 4095
 4096
 4097
 4098
 4099
 4100
 4101
 4102
 4103
 4104
 4105
 4106
 4107
 4108
 4109
 4110
 4111
 4112
 4113
 4114
 4115
 4116
 4117
 4118
 4119
 4120
 4121
 4122
 4123
 4124
 4125
 4126
 4127
 4128
 4129
 4130
 4131
 4132
 4133
 4134
 4135
 4136
 4137
 4138
 4139
 4140
 4141
 4142
 4143
 4144
 4145
 4146
 4147
 4148
 4149
 4150
 4151
 4152
 4153
 4154
 4155
 4156
 4157
 4158
 4159
 4160
 4161
 4162
 4163
 4164
 4165
 4166
 4167
 4168
 4169
 4170
 4171
 4172
 4173
 4174
 4175
 4176
 4177
 4178
 4179
 4180
 4181
 4182
 4183
 4184
 4185
 4186
 4187
 4188
 4189
 4190
 4191
 4192
 4193
 4194
 4195
 4196
 4197
 4198
 4199
 4200
 4201
 4202
 4203
 4204
 4205
 4206
 4207
 4208
 4209
 4210
 4211
 4212
 4213
 4214
 4215
 4216
 4217
 4218
 4219
 4220
 4221
 4222
 4223
 4224
 4225
 4226
 4227
 4228
 4229
 4230
 4231
 4232
 4233
 4234
 4235
 4236
 4237
 4238
 4239
 4240
 4241
 4242
 4243
 4244
 4245
 4246
 4247
 4248
 4249
 4250
 4251
 4252
 4253
 4254
 4255
 4256
 4257
 4258
 4259
 4260
 4261
 4262
 4263
 4264
 4265
 4266
 4267
 4268
 4269
 4270
 4271
 4272
 4273
 4274
 4275
 4276
 4277
 4278
 4279
 4280
 4281
 4282
 4283
 4284
 4285
 4286
 4287
 4288
 4289
 4290
 4291
 4292
 4293
 4294
 4295
 4296
 4297
 4298
 4299
 4300
 4301
 4302
 4303
 4304
 4305
 4306
 4307
 4308
 4309
 4310
 4311
 4312
 4313
 4314
 4315
 4316
 4317
 4318
 4319
 4320
 4321
 4322
 4323
 4324
 4325
 4326
 4327
 4328
 4329
 4330
 4331
 4332
 4333
 4334
 4335
 4336
 4337
 4338
 4339
 4340
 4341
 4342
 4343
 4344
 4345
 4346
 4347
 4348
 4349
 4350
 4351
 4352
 4353
 4354
 4355
 4356
 4357
 4358
 4359
 4360
 4361
 4362
 4363
 4364
 4365
 4366
 4367
 4368
 4369
 4370
 4371
 4372
 4373
 4374
 4375
 4376
 4377
 4378
 4379
 4380
 4381
 4382
 4383
 4384
 4385
 4386
 4387
 4388
 4389
 4390
 4391
 4392
 4393
 4394
 4395
 4396
 4397
 4398
 4399
 4400
 4401
 4402
 4403
 4404
 4405
 4406
 4407
 4408
 4409
 4410
 4411
 4412
 4413
 4414
 4415
 4416
 4417
 4418
 4419
 4420
 4421
 4422
 4423
 4424
 4425
 4426
 4427
 4428
 4429
 4430
 4431
 4432
 4433
 4434
 4435
 4436
 4437
 4438
 4439
 4440
 4441
 4442
 4443
 4444
 4445
 4446
 4447
 4448
 4449
 4450
 4451
 4452
 4453
 4454
 4455
 4456
 4457
 4458
 4459
 4460
 4461
 4462
 4463
 4464
 4465
 4466
 4467
 4468
 4469
 4470
 4471
 4472
 4473
 4474
 4475
 4476
 4477
 4478
 4479
 4480
 4481
 4482
 4483
 4484
 4485
 4486
 4487
 4488
 4489
 4490
 4491
 4492
 4493
 4494
 4495
 4496
 4497
 4498
 4499
 4500
 4501
 4502
 4503
 4504
 4505
 4506
 4507
 4508
 4509
 4510
 4511
 4512
 4513
 4514
 4515
 4516
 4517
 4518
 4519
 4520
 4521
 4522
 4523
 4524
 4525
 4526
 4527
 4528
 4529
 4530
 4531
 4532
 4533
 4534
 4535
 4536
 4537
 4538
 4539
 4540
 4541
 4542
 4543
 4544
 4545
 4546
 4547
 4548
 4549
 4550
 4551
 4552
 4553
 4554
 4555
 4556
 4557
 4558
 4559
 4560
 4561
 4562
 4563
 4564
 4565
 4566
 4567
 4568
 4569
 4570
 4571
 4572
 4573
 4574
 4575
 4576
 4577
 4578
 4579
 4580
 4581
 4582
 4583
 4584
 4585
 4586
 4587
 4588
 4589
 4590
 4591
 4592
 4593
 4594
 4595
 4596
 4597
 4598
 4599
 4600
 4601
 4602
 4603
 4604
 4605
 4606
 4607
 4608
 4609
 4610
 4611
 4612
 4613
 4614
 4615
 4616
 4617
 4618
 4619
 4620
 4621
 4622
 4623
 4624
 4625
 4626
 4627
 4628
 4629
 4630
 4631
 4632
 4633
 4634
 4635
 4636
 4637
 4638
 4639
 4640
 4641
 4642
 4643
 4644
 4645
 4646
 4647
 4648
 4649
 4650
 4651
 4652
 4653
 4654
 4655
 4656
 4657
 4658
 4659
 4660
 4661
 4662
 4663
 4664
 4665
 4666
 4667
 4668
 4669
 4670
 4671
 4672
 4673
 4674
 4675
 4676
 4677
 4678
 4679
 4680
 4681
 4682
 4683
 4684
 4685
 4686
 4687
 4688
 4689
 4690
 4691
 4692
 4693
 4694
 4695
 4696
 4697
 4698
 4699
 4700
 4701
 4702
 4703
 4704
 4705
 4706
 4707
 4708
 4709
 4710
 4711
 4712
 4713
 4714
 4715
 4716
 4717
 4718
 4719
 4720
 4721
 4722
 4723
 4724
 4725
 4726
 4727
 4728
 4729
 4730
 4731
 4732
 4733
 4734
 4735
 4736
 4737
 4738
 4739
 4740
 4741
 4742
 4743
 4744
 4745
 4746
 4747
 4748
 4749
 4750
 4751
 4752
 4753
 4754
 4755
 4756
 4757
 4758
 4759
 4760
 4761
 4762
 4763
 4764
 4765
 4766
 4767
 4768
 4769
 4770
 4771
 4772
 4773
 4774
 4775
 4776
 4777
 4778
 4779
 4780
 4781
 4782
 4783
 4784
 4785
 4786
 4787
 4788
 4789
 4790
 4791
 4792
 4793
 4794
 4795
 4796
 4797
 4798
 4799
 4800
 4801
 4802
 4803
 4804
 4805
 4806
 4807
 4808
 4809
 4810
 4811
 4812
 4813
 4814
 4815
 4816
 4817
 4818
 4819
 4820
 4821
 4822
 4823
 4824
 4825
 4826
 4827
 4828
 4829
 4830
 4831
 4832
 4833
 4834
 4835
 4836
 4837
 4838
 4839
 4840
 4841
 4842
 4843
 4844
 4845
 4846
 4847
 4848
 4849
 4850
 4851
 4852
 4853
 4854
 4855
 4856
 4857
 4858
 4859
 4860
 4861
 4862
 4863
 4864
 4865
 4866
 4867
 4868
 4869
 4870
 4871
 4872
 4873
 4874
 4875
 4876
 4877
 4878
 4879
 4880
 4881
 4882
 4883
 4884
 4885
 4886
 4887
 4888
 4889
 4890
 4891
 4892
 4893
 4894
 4895
 4896
 4897
 4898
 4899
 4900
 4901
 4902
 4903
 4904
 4905
 4906
 4907
 4908
 4909
 4910
 4911
 4912
 4913
 4914
 4915
 4916
 4917
 4918
 4919
 4920
 4921
 4922
 4923
 4924
 4925
 4926
 4927
 4928
 4929
 4930
 4931
 4932
 4933
 4934
 4935
 4936
 4937
 4938
 4939
 4940
 4941
 4942
 4943
 4944
 4945
 4946
 4947
 4948
 4949
 4950
 4951
 4952
 4953
 4954
 4955
 4956
 4957
 4958
 4959
 4960
 4961
 4962
 4963
 4964
 4965
 4966
 4967
 4968
 4969
 4970
 4971
 4972
 4973
 4974
 4975
 4976
 4977
 4978
 4979
 4980
 4981
 4982
 4983
 4984
 4985
 4986
 4987
 4988
 4989
 4990
 4991
 4992
 4993
 4994
 4995
 4996
 4997
 4998
 4999
 5000
 5001
 5002
 5003
 5004
 5005
 5006
 5007
 5008
 5009
 5010
 5011
 5012
 5013
 5014
 5015
 5016
 5017
 5018
 5019
 5020
 5021
 5022
 5023
 5024
 5025
 5026
 5027
 5028
 5029
 5030
 5031
 5032
 5033
 5034
 5035
 5036
 5037
 5038
 5039
 5040
 5041
 5042
 5043
 5044
 5045
 5046
 5047
 5048
 5049
 5050
 5051
 5052
 5053
 5054
 5055
 5056
 5057
 5058
 5059
 5060
 5061
 5062
 5063
 5064
 5065
 5066
 5067
 5068
 5069
 5070
 5071
 5072
 5073
 5074
 5075
 5076
 5077
 5078
 5079
 5080
 5081
 5082
 5083
 5084
 5085
 5086
 5087
 5088
 5089
 5090
 5091
 5092
 5093
 5094
 5095
 5096
 5097
 5098
 5099
 5100
 5101
 5102
 5103
 5104
 5105
 5106
 5107
 5108
 5109
 5110
 5111
 5112
 5113
 5114
 5115
 5116
 5117
 5118
 5119
 5120
 5121
 5122
 5123
 5124
 5125
 5126
 5127
 5128
 5129
 5130
 5131
 5132
 5133
 5134
 5135
 5136
 5137
 5138
 5139
 5140
 5141
 5142
 5143
 5144
 5145
 5146
 5147
 5148
 5149
 5150
 5151
 5152
 5153
 5154
 5155
 5156
 5157
 5158
 5159
 5160
 5161
 5162
 5163
 5164
 5165
 5166
 5167
 5168
 5169
 5170
 5171
 5172
 5173
 5174
 5175
 5176
 5177
 5178
 5179
 5180
 5181
 5182
 5183
 5184
 5185
 5186
 5187
 5188
 5189
 5190
 5191
 5192
 5193
 5194
 5195
 5196
 5197
 5198
 5199
 5200
 5201
 5202
 5203
 5204
 5205
 5206
 5207
 5208
 5209
 5210
 5211
 5212
 5213
 5214
 5215
 5216
 5217
 5218
 5219
 5220
 5221
 5222
 5223
 5224
 5225
 5226
 5227
 5228
 5229
 5230
 5231
 5232
 5233
 5234
 5235
 5236
 5237
 5238
 5239
 5240
 5241
 5242
 5243
 5244
 5245
 5246
 5247
 5248
 5249
 5250
 5251
 5252
 5253
 5254
 5255
 5256
 5257
 5258
 5259
 5260
 5261
 5262
 5263
 5264
 5265
 5266
 5267
 5268
 5269
 5270
 5271
 5272
 5273
 5274
 5275
 5276
 5277
 5278
 5279
 5280
 5281
 5282
 5283
 5284
 5285
 5286
 5287
 5288
 5289
 5290
 5291
 5292
 5293
 5294
 5295
 5296
 5297
 5298
 5299
 5300
 5301
 5302
 5303
 5304
 5305
 5306
 5307
 5308
 5309
 5310
 5311
 5312
 5313
 5314
 5315
 5316
 5317
 5318
 5319
 5320
 5321
 5322
 5323
 5324
 5325
 5326
 5327
 5328
 5329
 5330
 5331
 5332
 5333
 5334
 5335
 5336
 5337
 5338
 5339
 5340
 5341
 5342
 5343
 5344
 5345
 5346
 5347
 5348
 5349
 5350
 5351
 5352
 5353
 5354
 5355
 5356
 5357
 5358
 5359
 5360
 5361
 5362
 5363
 5364
 5365
 5366
 5367
 5368
 5369
 5370
 5371
 5372
 5373
 5374
 5375
 5376
 5377
 5378
 5379
 5380
 5381
 5382
 5383
 5384
 5385
 5386
 5387
 5388
 5389
 5390
 5391
 5392
 5393
 5394
 5395
 5396
 5397
 5398
 5399
 5400
 5401
 5402
 5403
 5404
 5405
 5406
 5407
 5408
 5409
 5410
 5411
 5412
 5413
 5414
 5415
 5416
 5417
 5418
 5419
 5420
 5421
 5422
 5423
 5424
 5425
 5426
 5427
 5428
 5429
 5430
 5431
 5432
 5433
 5434
 5435
 5436
 5437
 5438
 5439
 5440
 5441
 5442
 5443
 5444
 5445
 5446
 5447
 5448
 5449
 5450
 5451
 5452
 5453
 5454
 5455
 5456
 5457
 5458
 5459
 5460
 5461
 5462
 5463
 5464
 5465
 5466
 5467
 5468
 5469
 5470
 5471
 5472
 5473
 5474
 5475
 5476
 5477
 5478
 5479
 5480
 5481
 5482
 5483
 5484
 5485
 5486
 5487
 5488
 5489
 5490
 5491
 5492
 5493
 5494
 5495
 5496
 5497
 5498
 5499
 5500
 5501
 5502
 5503
 5504
 5505
 5506
 5507
 5508
 5509
 5510
 5511
 5512
 5513
 5514
 5515
 5516
 5517
 5518
 5519
 5520
 5521
 5522
 5523
 5524
 5525
 5526
 5527
 5528
 5529
 5530
 5531
 5532
 5533
 5534
 5535
 5536
 5537
 5538
 5539
 5540
 5541
 5542
 5543
 5544
 5545
 5546
 5547
 5548
 5549
 5550
 5551
 5552
 5553
 5554
 5555
 5556
 5557
 5558
 5559
 5560
 5561
 5562
 5563
 5564
 5565
 5566
 5567
 5568
 5569
 5570
 5571
 5572
 5573
 5574
 5575
 5576
 5577
 5578
 5579
 5580
 5581
 5582
 5583
 5584
 5585
 5586
 5587
 5588
 5589
 5590
 5591
 5592
 5593
 5594
 5595
 5596
 5597
 5598
 5599
 5600
 5601
 5602
 5603
 5604
 5605
 5606
 5607
 5608
 5609
 5610
 5611
 5612
 5613
 5614
 5615
 5616
 5617
 5618
 5619
 5620
 5621
 5622
 5623
 5624
 5625
 5626
 5627
 5628
 5629
 5630
 5631
 5632
 5633
 5634
 5635
 5636
 5637
 5638
 5639
 5640
 5641
 5642
 5643
 5644
 5645
 5646
 5647
 5648
 5649
 5650
 5651
 5652
 5653
 5654
 5655
 5656
 5657
 5658
 5659
 5660
 5661
 5662
 5663
 5664
 5665
 5666
 5667
 5668
 5669
 5670
 5671
 5672
 5673
 5674
 5675
 5676
 5677
 5678
 5679
 5680
 5681
 5682
 5683
 5684
 5685
 5686
 5687
 5688
 5689
 5690
 5691
 5692
 5693
 5694
 5695
 5696
 5697
 5698
 5699
 5700
 5701
 5702
 5703
 5704
 5705
 5706
 5707
 5708
 5709
 5710
 5711
 5712
 5713
 5714
 5715
 5716
 5717
 5718
 5719
 5720
 5721
 5722
 5723
 5724
 5725
 5726
 5727
 5728
 5729
 5730
 5731
 5732
 5733
 5734
 5735
 5736
 5737
 5738
 5739
 5740
 5741
 5742
 5743
 5744
 5745
 5746
 5747
 5748
 5749
 5750
 5751
 5752
 5753
 5754
 5755
 5756
 5757
 5758
 5759
 5760
 5761
 5762
 5763
 5764
 5765
 5766
 5767
 5768
 5769
 5770
 5771
 5772
 5773
 5774
 5775
 5776
 5777
 5778
 5779
 5780
 5781
 5782
 5783
 5784
 5785
 5786
 5787
 5788
 5789
 5790
 5791
 5792
 5793
 5794
 5795
 5796
 5797
 5798
 5799
 5800
 5801
 5802
 5803
 5804
 5805
 5806
 5807
 5808
 5809
 5810
 5811
 5812
 5813
 5814
 5815
 5816
 5817
 5818
 5819
 5820
 5821
 5822
 5823
 5824
 5825
 5826
 5827
 5828
 5829
 5830
 5831
 5832
 5833
 5834
 5835
 5836
 5837
 5838
 5839
 5840
 5841
 5842
 5843
 5844
 5845
 5846
 5847
 5848
 5849
 5850
 5851
 5852
 5853
 5854
 5855
 5856
 5857
 5858
 5859
 5860
 5861
 5862
 5863
 5864
 5865
 5866
 5867
 5868
 5869
 5870
 5871
 5872
 5873
 5874
 5875
 5876
 5877
 5878
 5879
 5880
 5881
 5882
 5883
 5884
 5885
 5886
 5887
 5888
 5889
 5890
 5891
 5892
 5893
 5894
 5895
 5896
 5897
 5898
 5899
 5900
 5901
 5902
 5903
 5904
 5905
 5906
 5907
 5908
 5909
 5910
 5911
 5912
 5913
 5914
 5915
 5916
 5917
 5918
 5919
 5920
 5921
 5922
 5923
 5924
 5925
 5926
 5927
 5928
 5929
 5930
 5931
 5932
 5933
 5934
 5935
 5936
 5937
 5938
 5939
 5940
 5941
 5942
 5943
 5944
 5945
 5946
 5947
 5948
 5949
 5950
 5951
 5952
 5953
 5954
 5955
 5956
 5957
 5958
 5959
 5960
 5961
 5962
 5963
 5964
 5965
 5966
 5967
 5968
 5969
 5970
 5971
 5972
 5973
 5974
 5975
 5976
 5977
 5978
 5979
 5980
 5981
 5982
 5983
 5984
 5985
 5986
 5987
 5988
 5989
 5990
 5991
 5992
 5993
 5994
 5995
 5996
 5997
 5998
 5999
 6000
 6001
 6002
 6003
 6004
 6005
 6006
 6007
 6008
 6009
 6010
 6011
 6012
 6013
 6014
 6015
 6016
 6017
 6018
 6019
 6020
 6021
 6022
 6023
 6024
 6025
 6026
 6027
 6028
 6029
 6030
 6031
 6032
 6033
 6034
 6035
 6036
 6037
 6038
 6039
 6040
 6041
 6042
 6043
 6044
 6045
 6046
 6047
 6048
 6049
 6050
 6051
 6052
 6053
 6054
 6055
 6056
 6057
 6058
 6059
 6060
 6061
 6062
 6063
 6064
 6065
 6066
 6067
 6068
 6069
 6070
 6071
 6072
 6073
 6074
 6075
 6076
 6077
 6078
 6079
 6080
 6081
 6082
 6083
 6084
 6085
 6086
 6087
 6088
 6089
 6090
 6091
 6092
 6093
 6094
 6095
 6096
 6097
 6098
 6099
 6100
 6101
 6102
 6103
 6104
 6105
 6106
 6107
 6108
 6109
 6110
 6111
 6112
 6113
 6114
 6115
 6116
 6117
 6118
 6119
 6120
 6121
 6122
 6123
 6124
 6125
 6126
 6127
 6128
 6129
 6130
 6131
 6132
 6133
 6134
 6135
 6136
 6137
 6138
 6139
 6140
 6141
 6142
 6143
 6144
 6145
 6146
 6147
 6148
 6149
 6150
 6151
 6152
 6153
 6154
 6155
 6156
 6157
 6158
 6159
 6160
 6161
 6162
 6163
 6164
 6165
 6166
 6167
 6168
 6169
 6170
 6171
 6172
 6173
 6174
 6175
 6176
 6177
 6178
 6179
 6180
 6181
 6182
 6183
 6184
 6185
 6186
 6187
 6188
 6189
 6190
 6191
 6192
 6193
 6194
 6195
 6196
 6197
 6198
 6199
 6200
 6201
 6202
 6203
 6204
 6205
 6206
 6207
 6208
 6209
 6210
 6211
 6212
 6213
 6214
 6215
 6216
 6217
 6218
 6219
 6220
 6221
 6222
 6223
 6224
 6225
 6226
 6227
 6228
 6229
 6230
 6231
 6232
 6233
 6234
 6235
 6236
 6237
 6238
 6239
 6240
 6241
 6242
 6243
 6244
 6245
 6246
 6247
 6248
 6249
 6250
 6251
 6252
 6253
 6254
 6255
 6256
 6257
 6258
 6259
 6260
 6261
 6262
 6263
 6264
 6265
 6266
 6267
 6268
 6269
 6270
 6271
 6272
 6273
 6274
 6275
 6276
 6277
 6278
 6279
 6280
 6281
 6282
 6283
 6284
 6285
 6286
 6287
 6288
 6289
 6290
 6291
 6292
 6293
 6294
 6295
 6296
 6297
 6298
 6299
 6300
 6301
 6302
 6303
 6304
 6305
 6306
 6307
 6308
 6309
 6310
 6311
 6312
 6313
 6314
 6315
 6316
 6317
 6318
 6319
 6320
 6321
 6322
 6323
 6324
 6325
 6326
 6327
 6328
 6329
 6330
 6331
 6332
 6333
 6334
 6335
 6336
 6337
 6338
 6339
 6340
 6341
 6342
 6343
 6344
 6345
 6346
 6347
 6348
 6349
 6350
 6351
 6352
 6353
 6354
 6355
 6356
 6357
 6358
 6359
 6360
 6361
 6362
 6363
 6364
 6365
 6366
 6367
 6368
 6369
 6370
 6371
 6372
 6373
 6374
 6375
 6376
 6377
 6378
 6379
 6380
 6381
 6382
 6383
 6384
 6385
 6386
 6387
 6388
 6389
 6390
 6391
 6392
 6393
 6394
 6395
 6396
 6397
 6398
 6399
 6400
 6401
 6402
 6403
 6404
 6405
 6406
 6407
 6408
 6409
 6410
 6411
 6412
 6413
 6414
 6415
 6416
 6417
 6418
 6419
 6420
 6421
 6422
 6423
 6424
 6425
 6426
 6427
 6428
 6429
 6430
 6431
 6432
 6433
 6434
 6435
 6436
 6437
 6438
 6439
 6440
 6441
 6442
 6443
 6444
 6445
 6446
 6447
 6448
 6449
 6450
 6451
 6452
 6453
 6454
 6455
 6456
 6457
 6458
 6459
 6460
 6461
 6462
 6463
 6464
 6465
 6466
 6467
 6468
 6469
 6470
 6471
 6472
 6473
 6474
 6475
 6476
 6477
 6478
 6479
 6480
 6481
 6482
 6483
 6484
 6485
 6486
 6487
 6488
 6489
 6490
 6491
 6492
 6493
 6494
 6495
 6496
 6497
 6498
 6499
 6500
 6501
 6502
 6503
 6504
 6505
 6506
 6507
 6508
 6509
 6510
 6511
 6512
 6513
 6514
 6515
 6516
 6517
 6518
 6519
 6520
 6521
 6522
 6523
 6524
 6525
 6526
 6527
 6528
 6529
 6530
 6531
 6532
 6533
 6534
 6535
 6536
 6537
 6538
 6539
 6540
 6541
 6542
 6543
 6544
 6545
 6546
 6547
 6548
 6549
 6550
 6551
 6552
 6553
 6554
 6555
 6556
 6557
 6558
 6559
 6560
 6561
 6562
 6563
 6564
 6565
 6566
 6567
 6568
 6569
 6570
 6571
 6572
 6573
 6574
 6575
 6576
 6577
 6578
 6579
 6580
 6581
 6582
 6583
 6584
 6585
 6586
 6587
 6588
 6589
 6590
 6591
 6592
 6593
 6594
 6595
 6596
 6597
 6598
 6599
 6600
 6601
 6602
 6603
 6604
 6605
 6606
 6607
 6608
 6609
 6610
 6611
 6612
 6613
 6614
 6615
 6616
 6617
 6618
 6619
 6620
 6621
 6622
 6623
 6624
 6625
 6626
 6627
 6628
 6629
 6630
 6631
 6632
 6633
 6634
 6635
 6636
 6637
 6638
 6639
 6640
 6641
 6642
 6643
 6644
 6645
 6646
 6647
 6648
 6649
 6650
 6651
 6652
 6653
 6654
 6655
 6656
 6657
 6658
 6659
 6660
 6661
 6662
 6663
 6664
 6665
 6666
 6667
 6668
 6669
 6670
 6671
 6672
 6673
 6674
 6675
 6676
 6677
 6678
 6679
 6680
 6681
 6682
 6683
 6684
 6685
 6686
 6687
 6688
 6689
 6690
 6691
 6692
 6693
 6694
 6695
 6696
 6697
 6698
 6699
 6700
 6701
 6702
 6703
 6704
 6705
 6706
 6707
 6708
 6709
 6710
 6711
 6712
 6713
 6714
 6715
 6716
 6717
 6718
 6719
 6720
 6721
 6722
 6723
 6724
 6725
 6726
 6727
 6728
 6729
 6730
 6731
 6732
 6733
 6734
 6735
 6736
 6737
 6738
 6739
 6740
 6741
 6742
 6743
 6744
 6745
 6746
 6747
 6748
 6749
 6750
 6751
 6752
 6753
 6754
 6755
 6756
 6757
 6758
 6759
 6760
 6761
 6762
 6763
 6764
 6765
 6766
 6767
 6768
 6769
 6770
 6771
 6772
 6773
 6774
 6775
 6776
 6777
 6778
 6779
 6780
 6781
 6782
 6783
 6784
 6785
 6786
 6787
 6788
 6789
 6790
 6791
 6792
 6793
 6794
 6795
 6796
 6797
 6798
 6799
 6800
 6801
 6802
 6803
 6804
 6805
 6806
 6807
 6808
 6809
 6810
 6811
 6812
 6813
 6814
 6815
 6816
 6817
 6818
 6819
 6820
 6821
 6822
 6823
 6824
 6825
 6826
 6827
 6828
 6829
 6830
 6831
 6832
 6833
 6834
 6835
 6836
 6837
 6838
 6839
 6840
 6841
 6842
 6843
 6844
 6845
 6846
 6847
 6848
 6849
 6850
 6851
 6852
 6853
 6854
 6855
 6856
 6857
 6858
 6859
 6860
 6861
 6862
 6863
 6864
 6865
 6866
 6867
 6868
 6869
 6870
 6871
 6872
 6873
 6874
 6875
 6876
 6877
 6878
 6879
 6880
 6881
 6882
 6883
 6884
 6885
 6886
 6887
 6888
 6889
 6890
 6891
 6892
 6893
 6894
 6895
 6896
 6897
 6898
 6899
 6900
 6901
 6902
 6903
 6904
 6905
 6906
 6907
 6908
 6909
 6910
 6911
 6912
 6913
 6914
 6915
 6916
 6917
 6918
 6919
 6920
 6921
 6922
 6923
 6924
 6925
 6926
 6927
 6928
 6929
 6930
 6931
 6932
 6933
 6934
 6935
 6936
 6937
 6938
 6939
 6940
 6941
 6942
 6943
 6944
 6945
 6946
 6947
 6948
 6949
 6950
 6951
 6952
 6953
 6954
 6955
 6956
 6957
 6958
 6959
 6960
 6961
 6962
 6963
 6964
 6965
 6966
 6967
 6968
 6969
 6970
 6971
 6972
 6973
 6974
 6975
 6976
 6977
 6978
 6979
 6980
 6981
 6982
 6983
 6984
 6985
 6986
 6987
 6988
 6989
 6990
 6991
 6992
 6993
 6994
 6995
 6996
 6997
 6998
 6999
 7000
 7001
 7002
 7003
 7004
 7005
 7006
 7007
 7008
 7009
 7010
 7011
 7012
 7013
 7014
 7015
 7016
 7017
 7018
 7019
 7020
 7021
 7022
 7023
 7024
 7025
 7026
 7027
 7028
 7029
 7030
 7031
 7032
 7033
 7034
 7035
 7036
 7037
 7038
 7039
 7040
 7041
 7042
 7043
 7044
 7045
 7046
 7047
 7048
 7049
 7050
 7051
 7052
 7053
 7054
 7055
 7056
 7057
 7058
 7059
 7060
 7061
 7062
 7063
 7064
 7065
 7066
 7067
 7068
 7069
 7070
 7071
 7072
 7073
 7074
 7075
 7076
 7077
 7078
 7079
 7080
 7081
 7082
 7083
 7084
 7085
 7086
 7087
 7088
 7089
 7090
 7091
 7092
 7093
 7094
 7095
 7096
 7097
 7098
 7099
 7100
 7101
 7102
 7103
 7104
 7105
 7106
 7107
 7108
 7109
 7110
 7111
 7112
 7113
 7114
 7115
 7116
 7117
 7118
 7119
 7120
 7121
 7122
 7123
 7124
 7125
 7126
 7127
 7128
 7129
 7130
 7131
 7132
 7133
 7134
 7135
 7136
 7137
 7138
 7139
 7140
 7141
 7142
 7143
 7144
 7145
 7146
 7147
 7148
 7149
 7150
 7151
 7152
 7153
 7154
 7155
 7156
 7157
 7158
 7159
 7160
 7161
 7162
 7163
 7164
 7165
 7166
 7167
 7168
 7169
 7170
 7171
 7172
 7173
 7174
 7175
 7176
 7177
 7178
 7179
 7180
 7181
 7182
 7183
 7184
 7185
 7186
 7187
 7188
 7189
 7190
 7191
 7192
 7193
 7194
 7195
 7196
 7197
 7198
 7199
 7200
 7201
 7202
 7203
 7204
 7205
 7206
 7207
 7208
 7209
 7210
 7211
 7212
 7213
 7214
 7215
 7216
 7217
 7218
 7219
 7220
 7221
 7222
 7223
 7224
 7225
 7226
 7227
 7228
 7229
 7230
 7231
 7232
 7233
 7234
 7235
 7236
 7237
 7238
 7239
 7240
 7241
 7242
 7243
 7244
 7245
 7246
 7247
 7248
 7249
 7250
 7251
 7252
 7253
 7254
 7255
 7256
 7257
 7258
 7259
 7260
 7261
 7262
 7263
 7264
 7265
 7266
 7267
 7268
 7269
 7270
 7271
 7272
 7273
 7274
 7275
 7276
 7277
 7278
 7279
 7280
 7281
 7282
 7283
 7284
 7285
 7286
 7287
 7288
 7289
 7290
 7291
 7292
 7293
 7294
 7295
 7296
 7297
 7298
 7299
 7300
 7301
 7302
 7303
 7304
 7305
 7306
 7307
 7308
 7309
 7310
 7311
 7312
 7313
 7314
 7315
 7316
 7317
 7318
 7319
 7320
 7321
 7322
 7323
 7324
 7325
 7326
 7327
 7328
 7329
 7330
 7331
 7332
 7333
 7334
 7335
 7336
 7337
 7338
 7339
 7340
 7341
 7342
 7343
 7344
 7345
 7346
 7347
 7348
 7349
 7350
 7351
 7352
 7353
 7354
 7355
 7356
 7357
 7358
 7359
 7360
 7361
 7362
 7363
 7364
 7365
 7366
 7367
 7368
 7369
 7370
 7371
 7372
 7373
 7374
 7375
 7376
 7377
 7378
 7379
 7380
 7381
 7382
 7383
 7384
 7385
 7386
 7387
 7388
 7389
 7390
 7391
 7392
 7393
 7394
 7395
 7396
 7397
 7398
 7399
 7400
 7401
 7402
 7403
 7404
 7405
 7406
 7407
 7408
 7409
 7410
 7411
 7412
 7413
 7414
 7415
 7416
 7417
 7418
 7419
 7420
 7421
 7422
 7423
 7424
 7425
 7426
 7427
 7428
 7429
 7430
 7431
 7432
 7433
 7434
 7435
 7436
 7437
 7438
 7439
 7440
 7441
 7442
 7443
 7444
 7445
 7446
 7447
 7448
 7449
 7450
 7451
 7452
 7453
 7454
 7455
 7456
 7457
 7458
 7459
 7460
 7461
 7462
 7463
 7464
 7465
 7466
 7467
 7468
 7469
 7470
 7471
 7472
 7473
 7474
 7475
 7476
 7477
 7478
 7479
 7480
 7481
 7482
 7483
 7484
 7485
 7486
 7487
 7488
 7489
 7490
 7491
 7492
 7493
 7494
 7495
 7496
 7497
 7498
 7499
 7500
 7501
 7502
 7503
 7504
 7505
 7506
 7507
 7508
 7509
 7510
 7511
 7512
 7513
 7514
 7515
 7516
 7517
 7518
 7519
 7520
 7521
 7522
 7523
 7524
 7525
 7526
 7527
 7528
 7529
 7530
 7531
 7532
 7533
 7534
 7535
 7536
 7537
 7538
 7539
 7540
 7541
 7542
 7543
 7544
 7545
 7546
 7547
 7548
 7549
 7550
 7551
 7552
 7553
 7554
 7555
 7556
 7557
 7558
 7559
 7560
 7561
 7562
 7563
 7564
 7565
 7566
 7567
 7568
 7569
 7570
 7571
 7572
 7573
 7574
 7575
 7576
 7577
 7578
 7579
 7580
 7581
 7582
 7583
 7584
 7585
 7586
 7587
 7588
 7589
 7590
 7591
 7592
 7593
 7594
 7595
 7596
 7597
 7598
 7599
 7600
 7601
 7602
 7603
 7604
 7605
 7606
 7607
 7608
 7609
 7610
 7611
 7612
 7613
 7614
 7615
 7616
 7617
 7618
 7619
 7620
 7621
 7622
 7623
 7624
 7625
 7626
 7627
 7628
 7629
 7630
 7631
 7632
 7633
 7634
 7635
 7636
 7637
 7638
 7639
 7640
 7641
 7642
 7643
 7644
 7645
 7646
 7647
 7648
 7649
 7650
 7651
 7652
 7653
 7654
 7655
 7656
 7657
 7658
 7659
 7660
 7661
 7662
 7663
 7664
 7665
 7666
 7667
 7668
 7669
 7670
 7671
 7672
 7673
 7674
 7675
 7676
 7677
 7678
 7679
 7680
 7681
 7682
 7683
 7684
 7685
 7686
 7687
 7688
 7689
 7690
 7691
 7692
 7693
 7694
 7695
 7696
 7697
 7698
 7699
 7700
 7701
 7702
 7703
 7704
 7705
 7706
 7707
 7708
 7709
 7710
 7711
 7712
 7713
 7714
 7715
 7716
 7717
 7718
 7719
 7720
 7721
 7722
 7723
 7724
 7725
 7726
 7727
 7728
 7729
 7730
 7731
 7732
 7733
 7734
 7735
 7736
 7737
 7738
 7739
 7740
 7741
 7742
 7743
 7744
 7745
 7746
 7747
 7748
 7749
 7750
 7751
 7752
 7753
 7754
 7755
 7756
 7757
 7758
 7759
 7760
 7761
 7762
 7763
 7764
 7765
 7766
 7767
 7768
 7769
 7770
 7771
 7772
 7773
 7774
 7775
 7776
 7777
 7778
 7779
 7780
 7781
 7782
 7783
 7784
 7785
 7786
 7787
 7788
 7789
 7790
 7791
 7792
 7793
 7794
 7795
 7796
 7797
 7798
 7799
 7800
 7801
 7802
 7803
 7804
 7805
 7806
 7807
 7808
 7809
 7810
 7811
 7812
 7813
 7814
 7815
 7816
 7817
 7818
 7819
 7820
 7821
 7822
 7823
 7824
 7825
 7826
 7827
 7828
 7829
 7830
 7831
 7832
 7833
 7834
 7835
 7836
 7837
 7838
 7839
 7840
 7841
 7842
 7843
 7844
 7845
 7846
 7847
 7848
 7849
 7850
 7851
 7852
 7853
 7854
 7855
 7856
 7857
 7858
 7859
 7860
 7861
 7862
 7863
 7864
 7865
 7866
 7867
 7868
 7869
 7870
 7871
 7872
 7873
 7874
 7875
 7876
 7877
 7878
 7879
 7880
 7881
 7882
 7883
 7884
 7885
 7886
 7887
 7888
 7889
 7890
 7891
 7892
 7893
 7894
 7895
 7896
 7897
 7898
 7899
 7900
 7901
 7902
 7903
 7904
 7905
 7906
 7907
 7908
 7909
 7910
 7911
 7912
 7913
 7914
 7915
 7916
 7917
 7918
 7919
 7920
 7921
 7922
 7923
 7924
 7925
 7926
 7927
 7928
 7929
 7930
 7931
 7932
 7933
 7934
 7935
 7936
 7937
 7938
 7939
 7940
 7941
 7942
 7943
 7944
 7945
 7946
 7947
 7948
 7949
 7950
 7951
 7952
 7953
 7954
 7955
 7956
 7957
 7958
 7959
 7960
 7961
 7962
 7963
 7964
 7965
 7966
 7967
 7968
 7969
 7970
 7971
 7972
 7973
 7974
 7975
 7976
 7977
 7978
 7979
 7980
 7981
 7982
 7983
 7984
 7985
 7986
 7987
 7988
 7989
 7990
 7991
 7992
 7993
 7994
 7995
 7996
 7997
 7998
 7999
 8000
 8001
 8002
 8003
 8004
 8005
 8006
 8007
 8008
 8009
 8010
 8011
 8012
 8013
 8014
 8015
 8016
 8017
 8018
 8019
 8020
 8021
 8022
 8023
 8024
 8025
 8026
 8027
 8028
 8029
 8030
 8031
 8032
 8033
 8034
 8035
 8036
 8037
 8038
 8039
 8040
 8041
 8042
 8043
 8044
 8045
 8046
 8047
 8048
 8049
 8050
 8051
 8052
 8053
 8054
 8055
 8056
 8057
 8058
 8059
 8060
 8061
 8062
 8063
 8064
 8065
 8066
 8067
 8068
 8069
 8070
 8071
 8072
 8073
 8074
 8075
 8076
 8077
 8078
 8079
 8080
 8081
 8082
 8083
 8084
 8085
 8086
 8087
 8088
 8089
 8090
 8091
 8092
 8093
 8094
 8095
 8096
 8097
 8098
 8099
 8100
 8101
 8102
 8103
 8104
 8105
 8106
 8107
 8108
 8109
 8110
 8111
 8112
 8113
 8114
 8115
 8116
 8117
 8118
 8119
 8120
 8121
 8122
 8123
 8124
 8125
 8126
 8127
 8128
 8129
 8130
 8131
 8132
 8133
 8134
 8135
 8136
 8137
 8138
 8139
 8140
 8141
 8142
 8143
 8144
 8145
 8146
 8147
 8148
 8149
 8150
 8151
 8152
 8153
 8154
 8155
 8156
 8157
 8158
 8159
 8160
 8161
 8162
 8163
 8164
 8165
 8166
 8167
 8168
 8169
 8170
 8171
 8172
 8173
 8174
 8175
 8176
 8177
 8178
 8179
 8180
 8181
 8182
 8183
 8184
 8185
 8186
 8187
 8188
 8189
 8190
 8191
 8192
 8193
 8194
 8195
 8196
 8197
 8198
 8199
 8200
 8201
 8202
 8203
 8204
 8205
 8206
 8207
 8208
 8209
 8210
 8211
 8212
 8213
 8214
 8215
 8216
 8217
 8218
 8219
 8220
 8221
 8222
 8223
 8224
 8225
 8226
 8227
 8228
 8229
 8230
 8231
 8232
 8233
 8234
 8235
 8236
 8237
 8238
 8239
 8240
 8241
 8242
 8243
 8244
 8245
 8246
 8247
 8248
 8249
 8250
 8251
 8252
 8253
 8254
 8255
 8256
 8257
 8258
 8259
 8260
 8261
 8262
 8263
 8264
 8265
 8266
 8267
 8268
 8269
 8270
 8271
 8272
 8273
 8274
 8275
 8276
 8277
 8278
 8279
 8280
 8281
 8282
 8283
 8284
 8285
 8286
 8287
 8288
 8289
 8290
 8291
 8292
 8293
 8294
 8295
 8296
 8297
 8298
 8299
 8300
 8301
 8302
 8303
 8304
 8305
 8306
 8307
 8308
 8309
 8310
 8311
 8312
 8313
 8314
 8315
 8316
 8317
 8318
 8319
 8320
 8321
 8322
 8323
 8324
 8325
 8326
 8327
 8328
 8329
 8330
 8331
 8332
 8333
 8334
 8335
 8336
 8337
 8338
 8339
 8340
 8341
 8342
 8343
 8344
 8345
 8346
 8347
 8348
 8349
 8350
 8351
 8352
 8353
 8354
 8355
 8356
 8357
 8358
 8359
 8360
 8361
 8362
 8363
 8364
 8365
 8366
 8367
 8368
 8369
 8370
 8371
 8372
 8373
 8374
 8375
 8376
 8377
 8378
 8379
 8380
 8381
 8382
 8383
 8384
 8385
 8386
 8387
 8388
 8389
 8390
 8391
 8392
 8393
 8394
 8395
 8396
 8397
 8398
 8399
 8400
 8401
 8402
 8403
 8404
 8405
 8406
 8407
 8408
 8409
 8410
 8411
 8412
 8413
 8414
 8415
 8416
 8417
 8418
 8419
 8420
 8421
 8422
 8423
 8424
 8425
 8426
 8427
 8428
 8429
 8430
 8431
 8432
 8433
 8434
 8435
 8436
 8437
 8438
 8439
 8440
 8441
 8442
 8443
 8444
 8445
 8446
 8447
 8448
 8449
 8450
 8451
 8452
 8453
 8454
 8455
 8456
 8457
 8458
 8459
 8460
 8461
 8462
 8463
 8464
 8465
 8466
 8467
 8468
 8469
 8470
 8471
 8472
 8473
 8474
 8475
 8476
 8477
 8478
 8479
 8480
 8481
 8482
 8483
 8484
 8485
 8486
 8487
 8488
 8489
 8490
 8491
 8492
 8493
 8494
 8495
 8496
 8497
 8498
 8499
 8500
 8501
 8502
 8503
 8504
 8505
 8506
 8507
 8508
 8509
 8510
 8511
 8512
 8513
 8514
 8515
 8516
 8517
 8518
 8519
 8520
 8521
 8522
 8523
 8524
 8525
 8526
 8527
 8528
 8529
 8530
 8531
 8532
 8533
 8534
 8535
 8536
 8537
 8538
 8539
 8540
 8541
 8542
 8543
 8544
 8545
 8546
 8547
 8548
 8549
 8550
 8551
 8552
 8553
 8554
 8555
 8556
 8557
 8558
 8559
 8560
 8561
 8562
 8563
 8564
 8565
 8566
 8567
 8568
 8569
 8570
 8571
 8572
 8573
 8574
 8575
 8576
 8577
 8578
 8579
 8580
 8581
 8582
 8583
 8584
 8585
 8586
 8587
 8588
 8589
 8590
 8591
 8592
 8593
 8594
 8595
 8596
 8597
 8598
 8599
 8600
 8601
 8602
 8603
 8604
 8605
 8606
 8607
 8608
 8609
 8610
 8611
 8612
 8613
 8614
 8615
 8616
 8617
 8618
 8619
 8620
 8621
 8622
 8623
 8624
 8625
 8626
 8627
 8628
 8629
 8630
 8631
 8632
 8633
 8634
 8635
 8636
 8637
 8638
 8639
 8640
 8641
 8642
 8643
 8644
 8645
 8646
 8647
 8648
 8649
 8650
 8651
 8652
 8653
 8654
 8655
 8656
 8657
 8658
 8659
 8660
 8661
 8662
 8663
 8664
 8665
 8666
 8667
 8668
 8669
 8670
 8671
 8672
 8673
 8674
 8675
 8676
 8677
 8678
 8679
 8680
 8681
 8682
 8683
 8684
 8685
 8686
 8687
 8688
 8689
 8690
 8691
 8692
 8693
 8694
 8695
 8696
 8697
 8698
 8699
 8700
 8701
 8702
 8703
 8704
 8705
 8706
 8707
 8708
 8709
 8710
 8711
 8712
 8713
 8714
 8715
 8716
 8717
 8718
 8719
 8720
 8721
 8722
 8723
 8724
 8725
 8726
 8727
 8728
 8729
 8730
 8731
 8732
 8733
 8734
 8735
 8736
 8737
 8738
 8739
 8740
 8741
 8742
 8743
 8744
 8745
 8746
 8747
 8748
 8749
 8750
 8751
 8752
 8753
 8754
 8755
 8756
 8757
 8758
 8759
 8760
 8761
 8762
 8763
 8764
 8765
 8766
 8767
 8768
 8769
 8770
 8771
 8772
 8773
 8774
 8775
 8776
 8777
 8778
 8779
 8780
 8781
 8782
 8783
 8784
 8785
 8786
 8787
 8788
 8789
 8790
 8791
 8792
 8793
 8794
 8795
 8796
 8797
 8798
 8799
 8800
 8801
 8802
 8803
 8804
 8805
 8806
 8807
 8808
 8809
 8810
 8811
 8812
 8813
 8814
 8815
 8816
 8817
 8818
 8819
 8820
 8821
 8822
 8823
 8824
 8825
 8826
 8827
 8828
 8829
 8830
 8831
 8832
 8833
 8834
 8835
 8836
 8837
 8838
 8839
 8840
 8841
 8842
 8843
 8844
 8845
 8846
 8847
 8848
 8849
 8850
 8851
 8852
 8853
 8854
 8855
 8856
 8857
 8858
 8859
 8860
 8861
 8862
 8863
 8864
 8865
 8866
 8867
 8868
 8869
 8870
 8871
 8872
 8873
 8874
 8875
 8876
 8877
 8878
 8879
 8880
 8881
 8882
 8883
 8884
 8885
 8886
 8887
 8888
 8889
 8890
 8891
 8892
 8893
 8894
 8895
 8896
 8897
 8898
 8899
 8900
 8901
 8902
 8903
 8904
 8905
 8906
 8907
 8908
 8909
 8910
 8911
 8912
 8913
 8914
 8915
 8916
 8917
 8918
 8919
 8920
 8921
 8922
 8923
 8924
 8925
 8926
 8927
 8928
 8929
 8930
 8931
 8932
 8933
 8934
 8935
 8936
 8937
 8938
 8939
 8940
 8941
 8942
 8943
 8944
 8945
 8946
 8947
 8948
 8949
 8950
 8951
 8952
 8953
 8954
 8955
 8956
 8957
 8958
 8959
 8960
 8961
 8962
 8963
 8964
 8965
 8966
 8967
 8968
 8969
 8970
 8971
 8972
 8973
 8974
 8975
 8976
 8977
 8978
 8979
 8980
 8981
 8982
 8983
 8984
 8985
 8986
 8987
 8988
 8989
 8990
 8991
 8992
 8993
 8994
 8995
 8996
 8997
 8998
 8999
 9000
 9001
 9002
 9003
 9004
 9005
 9006
 9007
 9008
 9009
 9010
 9011
 9012
 9013
 9014
 9015
 9016
 9017
 9018
 9019
 9020
 9021
 9022
 9023
 9024
 9025
 9026
 9027
 9028
 9029
 9030
 9031
 9032
 9033
 9034
 9035
 9036
 9037
 9038
 9039
 9040
 9041
 9042
 9043
 9044
 9045
 9046
 9047
 9048
 9049
 9050
 9051
 9052
 9053
 9054
 9055
 9056
 9057
 9058
 9059
 9060
 9061
 9062
 9063
 9064
 9065
 9066
 9067
 9068
 9069
 9070
 9071
 9072
 9073
 9074
 9075
 9076
 9077
 9078
 9079
 9080
 9081
 9082
 9083
 9084
 9085
 9086
 9087
 9088
 9089
 9090
 9091
 9092
 9093
 9094
 9095
 9096
 9097
 9098
 9099
 9100
 9101
 9102
 9103
 9104
 9105
 9106
 9107
 9108
 9109
 9110
 9111
 9112
 9113
 9114
 9115
 9116
 9117
 9118
 9119
 9120
 9121
 9122
 9123
 9124
 9125
 9126
 9127
 9128
 9129
 9130
 9131
 9132
 9133
 9134
 9135
 9136
 9137
 9138
 9139
 9140
 9141
 9142
 9143
 9144
 9145
 9146
 9147
 9148
 9149
 9150
 9151
 9152
 9153
 9154
 9155
 9156
 9157
 9158
 9159
 9160
 9161
 9162
 9163
 9164
 9165
 9166
 9167
 9168
 9169
 9170
 9171
 9172
 9173
 9174
 9175
 9176
 9177
 9178
 9179
 9180
 9181
 9182
 9183
 9184
 9185
 9186
 9187
 9188
 9189
 9190
 9191
 9192
 9193
 9194
 9195
 9196
 9197
 9198
 9199
 9200
 9201
 9202
 9203
 9204
 9205
 9206
 9207
 9208
 9209
 9210
 9211
 9212
 9213
 9214
 9215
 9216
 9217
 9218
 9219
 9220
 9221
 9222
 9223
 9224
 9225
 9226
 9227
 9228
 9229
 9230
 9231
 9232
 9233
 9234
 9235
 9236
 9237
 9238
 9239
 9240
 9241
 9242
 9243
 9244
 9245
 9246
 9247
 9248
 9249
 9250
 9251
 9252
 9253
 9254
 9255
 9256
 9257
 9258
 9259
 9260
 9261
 9262
 9263
 9264
 9265
 9266
 9267
 9268
 9269
 9270
 9271
 9272
 9273
 9274
 9275
 9276
 9277
 9278
 9279
 9280
 9281
 9282
 9283
 9284
 9285
 9286
 9287
 9288
 9289
 9290
 9291
 9292
 9293
 9294
 9295
 9296
 9297
 9298
 9299
 9300
 9301
 9302
 9303
 9304
 9305
 9306
 9307
 9308
 9309
 9310
 9311
 9312
 9313
 9314
 9315
 9316
 9317
 9318
 9319
 9320
 9321
 9322
 9323
 9324
 9325
 9326
 9327
 9328
 9329
 9330
 9331
 9332
 9333
 9334
 9335
 9336
 9337
 9338
 9339
 9340
 9341
 9342
 9343
 9344
 9345
 9346
 9347
 9348
 9349
 9350
 9351
 9352
 9353
 9354
 9355
 9356
 9357
 9358
 9359
 9360
 9361
 9362
 9363
 9364
 9365
 9366
 9367
 9368
 9369
 9370
 9371
 9372
 9373
 9374
 9375
 9376
 9377
 9378
 9379
 9380
 9381
 9382
 9383
 9384
 9385
 9386
 9387
 9388
 9389
 9390
 9391
 9392
 9393
 9394
 9395
 9396
 9397
 9398
 9399
 9400
 9401
 9402
 9403
 9404
 9405
 9406
 9407
 9408
 9409
 9410
 9411
 9412
 9413
 9414
 9415
 9416
 9417
 9418
 9419
 9420
 9421
 9422
 9423
 9424
 9425
 9426
 9427
 9428
 9429
 9430
 9431
 9432
 9433
 9434
 9435
 9436
 9437
 9438
 9439
 9440
 9441
 9442
 9443
 9444
 9445
 9446
 9447
 9448
 9449
 9450
 9451
 9452
 9453
 9454
 9455
 9456
 9457
 9458
 9459
 9460
 9461
 9462
 9463
 9464
 9465
 9466
 9467
 9468
 9469
 9470
 9471
 9472
 9473
 9474
 9475
 9476
 9477
 9478
 9479
 9480
 9481
 9482
 9483
 9484
 9485
 9486
 9487
 9488
 9489
 9490
 9491
 9492
 9493
 9494
 9495
 9496
 9497
 9498
 9499
 9500
 9501
 9502
 9503
 9504
 9505
 9506
 9507
 9508
 9509
 9510
 9511
 9512
 9513
 9514
 9515
 9516
 9517
 9518
 9519
 9520
 9521
 9522
 9523
 9524
 9525
 9526
 9527
 9528
 9529
 9530
 9531
 9532
 9533
 9534
 9535
 9536
 9537
 9538
 9539
 9540
 9541
 9542
 9543
 9544
 9545
 9546
 9547
 9548
 9549
 9550
 9551
 9552
 9553
 9554
 9555
 9556
 9557
 9558
 9559
 9560
 9561
 9562
 9563
 9564
 9565
 9566
 9567
 9568
 9569
 9570
 9571
 9572
 9573
 9574
 9575
 9576
 9577
 9578
 9579
 9580
 9581
 9582
 9583
 9584
 9585
 9586
 9587
 9588
 9589
 9590
 9591
 9592
 9593
 9594
 9595
 9596
 9597
 9598
 9599
 9600
 9601
 9602
 9603
 9604
 9605
 9606
 9607
 9608
 9609
 9610
 9611
 9612
 9613
 9614
 9615
 9616
 9617
 9618
 9619
 9620
 9621
 9622
 9623
 9624
 9625
 9626
 9627
 9628
 9629
 9630
 9631
 9632
 9633
 9634
 9635
 9636
 9637
 9638
 9639
 9640
 9641
 9642
 9643
 9644
 9645
 9646
 9647
 9648
 9649
 9650
 9651
 9652
 9653
 9654
 9655
 9656
 9657
 9658
 9659
 9660
 9661
 9662
 9663
 9664
 9665
 9666
 9667
 9668
 9669
 9670
 9671
 9672
 9673
 9674
 9675
 9676
 9677
 9678
 9679
 9680
 9681
 9682
 9683
 9684
 9685
 9686
 9687
 9688
 9689
 9690
 9691
 9692
 9693
 9694
 9695
 9696
 9697
 9698
 9699
 9700
 9701
 9702
 9703
 9704
 9705
 9706
 9707
 9708
 9709
 9710
 9711
 9712
 9713
 9714
 9715
 9716
 9717
 9718
 9719
 9720
 9721
 9722
 9723
 9724
 9725
 9726
 9727
 9728
 9729
 9730
 9731
 9732
 9733
 9734
 9735
 9736
 9737
 9738
 9739
 9740
 9741
 9742
 9743
 9744
 9745
 9746
 9747
 9748
 9749
 9750
 9751
 9752
 9753
 9754
 9755
 9756
 9757
 9758
 9759
 9760
 9761
 9762
 9763
 9764
 9765
 9766
 9767
 9768
 9769
 9770
 9771
 9772
 9773
 9774
 9775
 9776
 9777
 9778
 9779
 9780
 9781
 9782
 9783
 9784
 9785
 9786
 9787
 9788
 9789
 9790
 9791
 9792
 9793
 9794
 9795
 9796
 9797
 9798
 9799
 9800
 9801
 9802
 9803
 9804
 9805
 9806
 9807
 9808
 9809
 9810
 9811
 9812
 9813
 9814
 9815
 9816
 9817
 9818
 9819
 9820
 9821
 9822
 9823
 9824
 9825
 9826
 9827
 9828
 9829
 9830
 9831
 9832
 9833
 9834
 9835
 9836
 9837
 9838
 9839
 9840
 9841
 9842
 9843
 9844
 9845
 9846
 9847
 9848
 9849
 9850
 9851
 9852
 9853
 9854
 9855
 9856
 9857
 9858
 9859
 9860
 9861
 9862
 9863
 9864
 9865
 9866
 9867
 9868
 9869
 9870
 9871
 9872
 9873
 9874
 9875
 9876
 9877
 9878
 9879
 9880
 9881
 9882
 9883
 9884
 9885
 9886
 9887
 9888
 9889
 9890
 9891
 9892
 9893
 9894
 9895
 9896
 9897
 9898
 9899
 9900
 9901
 9902
 9903
 9904
 9905
 9906
 9907
 9908
 9909
 9910
 9911
 9912
 9913
 9914
 9915
 9916
 9917
 9918
 9919
 9920
 9921
 9922
 9923
 9924
 9925
 9926
 9927
 9928
 9929
 9930
 9931
 9932
 9933
 9934
 9935
 9936
 9937
 9938
 9939
 9940
 9941
 9942
 9943
 9944
 9945
 9946
 9947
 9948
 9949
 9950
 9951
 9952
 9953
 9954
 9955
 9956
 9957
 9958
 9959
 9960
 9961
 9962
 9963
 9964
 9965
 9966
 9967
 9968
 9969
 9970
 9971
 9972
 9973
 9974
 9975
 9976
 9977
 9978
 9979
 9980
 9981
 9982
 9983
 9984
 9985
 9986
 9987
 9988
 9989
 9990
 9991
 9992
 9993
 9994
 9995
 9996
 9997
 9998
 9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
// Copyright (c) 2020-2022 Weird Constructor <weirdconstructor@gmail.com>
// This is a part of WLambda. See README.md and COPYING for details.

/*!
This module defines some default functions and operations
available in the WLambda language.

You there are two WLambda modules provided by this module:

- [core_symbol_table()](fn.core_symbol_table.html)
- [std_symbol_table()](fn.std_symbol_table.html)

[]: ---- REFERENCE DOC START ----

# WLambda Language Reference

WLambda is a functional programming language. The main goal of this
implementation is the extension of Rust applications with dynamic scripting.
The syntax gravitates around the concept that everything is callable like a
function. There is special syntax for composing arguments of functions, to give
the programmer the ability to express his thoughts as they see fit.

You can use this document as reference or as cover to cover lecture. It starts
out with functions and the base data types of WLambda, where I also explain
some semantics of the language.

Please note: I expect you to know how to program and be familiar with at least
one other dynamic language like _JavaScript_, _Perl_ or at least _Python_. The
syntax and semantics of WLambda are different from what you might know. Think
of it more like a LISP without parenthesis. The syntax is loosely inspired from
Smalltalk, LISP and Perl.

-----
**Table Of Contents:**

- [1](#1-variable-definition-and-assignment) Variable Definition and Assignment
  - [1.1](#11-destructuring-to-variables) Destructuring to Variables
  - [1.2](#12-global-variables) Global Variables
  - [1.3](#13-constants) Constants
- [2](#2-functions-part-12) Functions (part 1/2)
  - [2.1](#21-closures) Closures
    - [2.1.1](#211-object-oriented-programming-with-closures) Object Oriented Programming with Closures
  - [2.2](#22-function-calling) Function calling
  - [2.3](#23-function-arity-checks) Function arity checks
    - [2.3.1](#231-stdtonoarity-function) std:to\_no\_arity _function_
  - [2.4](#24-calling-fields--method-calling) Calling fields / Method calling
    - [2.4.1](#241-the-self-and-data-special-variables) The $self and $data special variables
    - [2.4.2](#242-object-oriented-programming-with-prototypes) Object Oriented Programming with Prototypes
    - [2.4.3](#243-object-oriented-with-prototypes-and-inheritance) Object Oriented with Prototypes and Inheritance
    - [2.4.4](#244-object-oriented-with-prototypes-and-self-references-and-data-references) Object Oriented with Prototypes and $self References and $data References
  - [2.5](#25-function-call-composition) Function call composition
    - [2.5.1](#251--tail-argument-function-chaninig) '|' Tail Argument Function Chaninig
    - [2.5.2](#252--left-hand-function-chaining) '|>' Left Hand Function Chaining
    - [2.5.3](#253-forward-argument-pipe-arg--fun) Forward Argument Pipe `arg &> fun`
    - [2.5.4](#254-forward-argument-apply-pipe-list--fun) Forward Argument Apply Pipe `list &@> fun`
    - [2.5.5](#255-reverse-argument-pipe-fun--arg) Reverse Argument Pipe `fun <& arg`
    - [2.5.6](#256-reverse-argument-apply-pipe-list--fun) Reverse Argument Apply Pipe `list &@> fun`
  - [2.6](#26-control-flow---returning) Control Flow - Returning
    - [2.6.1](#261-return-label-value) return [_label_] _value_
    - [2.6.2](#262-block-label-function) block [label] _function_
    - [2.6.3](#263-stdtodrop-function-or-raii-destructors-or-drop-functions) std:to\_drop _function_ (or RAII, Destructors or Drop Functions)
    - [2.6.4](#264-stdtimenow-unit) std:time:now [_unit_]
    - [2.6.5](#265-stdsrand-seed) std:srand [_seed_]
    - [2.6.6](#266-stdrand-max-or-mode) std:rand [_max-or-mode_]
  - [2.7](#27-function-utilities) Function utilities
    - [2.7.1](#271-isfun-value) is\_fun _value_
- [3](#3-data-types) Data Types
  - [3.1](#31-none-sentinel-value-n-or-none) None sentinel value: `$n` or `$none`
    - [3.1.1](#311-isnone-value) is\_none _value_
    - [3.1.2](#312-issome-value) is\_some _value_
  - [3.2](#32-optional-values-o-and-o) Optional values `$o()` and `$o(...)`
    - [3.2.1](#321-isoptional-value) is\_optional _value_
    - [3.2.2](#322-unwrapping-optionals) Unwrapping optionals
  - [3.3](#33-error-values-e-expr-or-error-expr) Error values: `$e expr` or `$error expr`
    - [3.3.1](#331--label-value) _? [_label_] _value_
    - [3.3.2](#332-unwrap-value) unwrap _value_
    - [3.3.3](#333-unwraperr-error-value) unwrap\_err _error-value_
    - [3.3.4](#334-onerror-handler-maybe-error-value) on\_error _handler_ _maybe-error-value_
    - [3.3.5](#335-iserr-value) is\_err _value_
    - [3.3.6](#336-stderrortostr-value) std:error\_to\_str _value_
  - [3.4](#34-booleans) Booleans
    - [3.4.1](#341-isbool-any-value) is\_bool _any-value_
    - [3.4.2](#342-bool-any-value) bool _any-value_
    - [3.4.3](#343-not-value) not _value_
    - [3.4.4](#344-boolean-list-indexing) Boolean List Indexing
  - [3.5](#35-64-bit-integers) 64-Bit Integers
    - [3.5.1](#351-int-value) int _value_
    - [3.5.2](#352-isint-value) is\_int _value_
    - [3.5.3](#353-stdnegi64-integer) std:neg\_i64 _integer_
    - [3.5.4](#354-stdnoti64-integer) std:not\_i64 _integer_
    - [3.5.5](#355-stdnegu32-integer) std:neg\_u32 _integer_
    - [3.5.6](#356-stdnotu32-integer) std:not\_u32 _integer_
  - [3.6](#36-64-bit-floats) 64-Bit Floats
    - [3.6.1](#361-float-value) float _value_
    - [3.6.2](#362-isfloat-value) is\_float _value_
    - [3.6.3](#363-stdnumacos-float) std:num:acos _float_
    - [3.6.4](#364-stdnumacosh-float) std:num:acosh _float_
    - [3.6.5](#365-stdnumasin-float) std:num:asin _float_
    - [3.6.6](#366-stdnumasinh-float) std:num:asinh _float_
    - [3.6.7](#367-stdnumatan-float) std:num:atan _float_
    - [3.6.8](#368-stdnumatan2-y-x) std:num:atan2 _y_ _x_
    - [3.6.9](#369-stdnumatanh-float) std:num:atanh _float_
    - [3.6.10](#3610-stdnumcbrt-float) std:num:cbrt _float_
    - [3.6.11](#3611-stdnumceil-float) std:num:ceil _float_
    - [3.6.12](#3612-stdnumcos-float) std:num:cos _float_
    - [3.6.13](#3613-stdnumcosh-float) std:num:cosh _float_
    - [3.6.14](#3614-stdnumexp-float) std:num:exp _float_
    - [3.6.15](#3615-stdnumexp2-float) std:num:exp2 _float_
    - [3.6.16](#3616-stdnumexpm1-float) std:num:exp\_m1 _float_
    - [3.6.17](#3617-stdnumfloor-float) std:num:floor _float_
    - [3.6.18](#3618-stdnumhypot-y-x) std:num:hypot _y_ _x_
    - [3.6.19](#3619-stdnumln-float) std:num:ln _float_
    - [3.6.20](#3620-stdnumlog-float) std:num:log _float_
    - [3.6.21](#3621-stdnumlog10-float) std:num:log10 _float_
    - [3.6.22](#3622-stdnumlog2-float) std:num:log2 _float_
    - [3.6.23](#3623-stdnumpow-float) std:num:pow _float_
    - [3.6.24](#3624-stdnumrecip-float) std:num:recip _float_
    - [3.6.25](#3625-stdnumround-float) std:num:round _float_
    - [3.6.26](#3626-stdnumsin-float) std:num:sin _float_
    - [3.6.27](#3627-stdnumsinh-float) std:num:sinh _float_
    - [3.6.28](#3628-stdnumsqrt-float) std:num:sqrt _float_
    - [3.6.29](#3629-stdnumtan-float) std:num:tan _float_
    - [3.6.30](#3630-stdnumtanh-float) std:num:tanh _float_
    - [3.6.31](#3631-stdnumtodegrees-float) std:num:to\_degrees _float_
    - [3.6.32](#3632-stdnumtoradians-float) std:num:to\_radians _float_
    - [3.6.33](#3633-stdnumtrunc-float) std:num:trunc _float_
    - [3.6.34](#3634-stdnumlerp-a-b-x) std:num:lerp _a_ _b_ _x_
    - [3.6.35](#3635-stdnumsmoothstep-a-b-x) std:num:smoothstep _a_ _b_ _x_
    - [3.6.36](#3636-stdnumfract-float) std:num:fract _float_
  - [3.7](#37-numeric-functions) Numeric Functions
    - [3.7.1](#371-stdnumabs-number) std:num:abs _number_
    - [3.7.2](#372-stdnumsignum-number) std:num:signum _number_
    - [3.7.3](#373-stdnuminttoclosedopen01-integer) std:num:int\_to\_closed\_open01 _integer_
    - [3.7.4](#374-stdnuminttoopen01-integer) std:num:int\_to\_open01 _integer_
    - [3.7.5](#375-stdnuminttoopenclosed01-integer) std:num:int\_to\_open\_closed01 _integer_
  - [3.8](#38-numerical-mathematical-vectors) Numerical Mathematical Vectors
    - [3.8.1](#381-vector-conversions) Vector Conversions
    - [3.8.2](#382-vector-component-access) Vector Component Access
    - [3.8.3](#383-named-field-access-and-swizzling) Named Field Access and Swizzling
    - [3.8.4](#384-euler-additionsubtraction) Euler Addition/Subtraction
    - [3.8.5](#385-scalar-multiplicationdivision) Scalar Multiplication/Division
    - [3.8.6](#386-unary-vector-operations) Unary Vector Operations
    - [3.8.7](#387-isfvec-value) is\_fvec _value_
    - [3.8.8](#388-isivec-value) is\_ivec _value_
    - [3.8.9](#389-isnvec-value) is\_nvec _value_
    - [3.8.10](#3810-nveclen-value) nvec\_len _value_
    - [3.8.11](#3811-fvec-value) fvec _value_
    - [3.8.12](#3812-fvec2-value) fvec2 _value_
    - [3.8.13](#3813-fvec3-value) fvec3 _value_
    - [3.8.14](#3814-fvec4-value) fvec4 _value_
    - [3.8.15](#3815-ivec-value) ivec _value_
    - [3.8.16](#3816-ivec2-value) ivec2 _value_
    - [3.8.17](#3817-ivec3-value) ivec3 _value_
    - [3.8.18](#3818-ivec4-value) ivec4 _value_
    - [3.8.19](#3819-stdvdims-vec) std:v:dims _vec_
    - [3.8.20](#3820-stdvmag2-vec) std:v:mag2 _vec_
    - [3.8.21](#3821-stdvmag-vec) std:v:mag _vec_
    - [3.8.22](#3822-stdvnorm-vec) std:v:norm _vec_
    - [3.8.23](#3823-stdvdot-vec1-vec2) std:v:dot _vec1_ _vec2_
    - [3.8.24](#3824-stdvcross-vec1-vec2) std:v:cross _vec1_ _vec2_
    - [3.8.25](#3825-stdvlerp-vec1-vec2-t) std:v:lerp _vec1_ _vec2_ _t_
    - [3.8.26](#3826-stdvslerp-vec1-vec2-t) std:v:slerp _vec1_ _vec2_ _t_
    - [3.8.27](#3827-stdvvec2rad-vec) std:v:vec2rad _vec_
    - [3.8.28](#3828-stdvrad2vec-radians) std:v:rad2vec _radians_
  - [3.9](#39-characters-and-bytes) Characters and Bytes
    - [3.9.1](#391-byte-value) byte _value_
    - [3.9.2](#392-char-value) char _value_
    - [3.9.3](#393-isbyte-value) is\_byte _value_
    - [3.9.4](#394-ischar-value) is\_char _value_
    - [3.9.5](#395-stdchartolowercase-value) std:char:to\_lowercase _value_
    - [3.9.6](#396-stdchartouppercase-value) std:char:to\_uppercase _value_
  - [3.10](#310-strings) Strings
    - [3.10.1](#3101-string-literal-syntaxes) String Literal Syntaxes
    - [3.10.2](#3102-str-value) str _value_
    - [3.10.3](#3103-stdwritestr-value) std:write\_str _value_
    - [3.10.4](#3104-isstr-value) is\_str _value_
    - [3.10.5](#3105-stdstrcat-a-b-) std:str:cat _a_ _b_ ...
    - [3.10.6](#3106-stdstrjoin-sep-vector) std:str:join _sep_ _vector_
    - [3.10.7](#3107-stdstrlen-value) std:str:len _value_
    - [3.10.8](#3108-stdstrfind-pattern-string-offset) std:str:find _pattern_ _string_ [_offset_]
    - [3.10.9](#3109-stdstrreplace-pattern-replacement-string) std:str:replace _pattern_ _replacement_ _string_
    - [3.10.10](#31010-stdstrreplacen-pattern-replacement-count-string) std:str:replace\_n _pattern_ _replacement_ _count_ _string_
    - [3.10.11](#31011-stdstrtrim-value) std:str:trim _value_
    - [3.10.12](#31012-stdstrtrimstart-value) std:str:trim\_start _value_
    - [3.10.13](#31013-stdstrtrimend-value) std:str:trim\_end _value_
    - [3.10.14](#31014-stdstrpadstart-len-pad-str-value) std:str:pad\_start _len_ _pad-str_ _value_
    - [3.10.15](#31015-stdstrpadend-len-pad-str-value) std:str:pad\_end _len_ _pad-str_ _value_
    - [3.10.16](#31016-stdstrtobytes-string) std:str:to\_bytes _string_
    - [3.10.17](#31017-stdstrtobyteslatin1-string) std:str:to\_bytes\_latin1 _string_
    - [3.10.18](#31018-stdstrfromlatin1-byte-vector) std:str:from\_latin1 _byte-vector_
    - [3.10.19](#31019-stdstrfromutf8-byte-vector) std:str:from\_utf8 _byte-vector_
    - [3.10.20](#31020-stdstrfromutf8lossy-byte-vector) std:str:from\_utf8\_lossy _byte-vector_
    - [3.10.21](#31021-stdstrtocharvec-string) std:str:to\_char\_vec _string_
    - [3.10.22](#31022-stdstrfromcharvec-vector) std:str:from\_char\_vec _vector_
    - [3.10.23](#31023-stdstrtolowercase-string) std:str:to\_lowercase _string_
    - [3.10.24](#31024-stdstrtouppercase-string) std:str:to\_uppercase _string_
    - [3.10.25](#31025-stdstreditdistance-str-a-strb) std:str:edit\_distance _str-a_ _str\_b
  - [3.11](#311-byte-vectors) Byte Vectors
    - [3.11.1](#3111-call-properties-of-bytes) Call Properties of Bytes
    - [3.11.2](#3112-byte-conversion-functions) Byte Conversion Functions
    - [3.11.3](#3113-isbytes-value) is\_bytes _value_
    - [3.11.4](#3114-stdbytesfind-pattern-string-offset) std:bytes:find _pattern_ _string_ [_offset_]
    - [3.11.5](#3115-stdbytesreplace-byte-vector-pattern-replacement) std:bytes:replace _byte-vector_ _pattern_ _replacement_
    - [3.11.6](#3116-stdbytesfromhex-string-with-hex-chars) std:bytes:from\_hex _string-with-hex-chars_
    - [3.11.7](#3117-stdbytesfromvec-vector-of-ints) std:bytes:from\_vec _vector-of-ints_
    - [3.11.8](#3118-stdbytestohex-byte-vector) std:bytes:to\_hex _byte-vector_
    - [3.11.9](#3119-stdbytestobase64-byte-vector-config) std:bytes:to\_base64 _byte-vector_ [_config_]
    - [3.11.10](#31110-stdbytesfrombase64-byte-vector-config) std:bytes:from\_base64 _byte-vector_ [_config_]
    - [3.11.11](#31111-stdbytestovec-byte-vector) std:bytes:to\_vec _byte-vector_
    - [3.11.12](#31112-stdbytespack-pack-format-string-list-of-values) std:bytes:pack _pack-format-string_ _list-of-values_
    - [3.11.13](#31113-stdbytesunpack-pack-format-string-byte-vector) std:bytes:unpack _pack-format-string_ _byte-vector_
  - [3.12](#312-symbols) Symbols
    - [3.12.1](#3121-sym-value) sym _value_
    - [3.12.2](#3122-issym-value) is\_sym _value_
    - [3.12.3](#3123-stdsymbolscollect) std:symbols:collect
  - [3.13](#313-syntax-block) Syntax `$%:Block`
    - [3.13.1](#3131-stdsynpos-syntax) std:syn:pos _syntax_
    - [3.13.2](#3132-stdsyntype-syntax) std:syn:type _syntax_
  - [3.14](#314-pairs-pa-b) Pairs `$p(a, b)`
    - [3.14.1](#3141-pair-operator-a--b) Pair Operator `a => b`
    - [3.14.2](#3142-cons-a-b) cons _a_ _b_
    - [3.14.3](#3143-pair-stringbyte-vector-operations) Pair string/byte vector operations
      - [3.14.3.1](#31431-p-from--count--string-or-byte-vec) $p( _from_ , _count_ ) _string-or-byte-vec_
      - [3.14.3.2](#31432-p-pattern--replacement--string-or-byte-vec) $p( _pattern_ , _replacement_ ) _string-or-byte-vec_
      - [3.14.3.3](#31433-p-split-pattern--max--string-or-byte-vec) $p( _split-pattern_ , _max_ ) _string-or-byte-vec_
    - [3.14.4](#3144-pair-to-iterator) Pair to Iterator
      - [3.14.4.1](#31441-iter---range) Iter - Range
      - [3.14.4.2](#31442-iter---enumerate) Iter - Enumerate
      - [3.14.4.3](#31443-iter---values) Iter - Values
      - [3.14.4.4](#31444-iter---keys) Iter - Keys
    - [3.14.5](#3145-ispair-value) is\_pair _value_
  - [3.15](#315-vectors-or-lists) Vectors (or Lists)
    - [3.15.1](#3151-stdpush-vector-item) std:push _vector_ _item_
    - [3.15.2](#3152-stdpop-vector) std:pop _vector_
    - [3.15.3](#3153-stdunshift-vector-item) std:unshift _vector_ _item_
    - [3.15.4](#3154-isvec-value) is\_vec _value_
    - [3.15.5](#3155-vector-splicing) Vector Splicing
    - [3.15.6](#3156-stdappend-vec-a-value-or-vec-) std:append _vec-a_ _value-or-vec_ ...
    - [3.15.7](#3157-stdprepend-vec-a-value-or-vec-) std:prepend _vec-a_ _value-or-vec_ ...
    - [3.15.8](#3158-stdtake-count-vector) std:take _count_ _vector_
    - [3.15.9](#3159-stddrop-count-vector) std:drop _count_ _vector_
  - [3.16](#316-associative-maps-or-string-to-value-mappings) Associative Maps (or String to Value mappings)
    - [3.16.1](#3161-map-splicing) Map Splicing
    - [3.16.2](#3162-ismap-value) is\_map _value_
  - [3.17](#317-references) References
    - [3.17.1](#3171-stdtoref-value) std:to\_ref _value_
    - [3.17.2](#3172-stdrefweaken-ref) std:ref:weaken _ref_
    - [3.17.3](#3173-stdrefhide-value) std:ref:hide _value_
    - [3.17.4](#3174-isref-value) is\_ref _value_
    - [3.17.5](#3175-iswref-value) is\_wref _value_
    - [3.17.6](#3176-stdrefstrengthen-ref) std:ref:strengthen _ref_
    - [3.17.7](#3177-stdrefset-ref-value) std:ref:set _ref_ _value_
  - [3.18](#318-iterators-iter-expression) Iterators $iter _expression_
    - [3.18.1](#3181-iterator-kinds) Iterator Kinds
    - [3.18.2](#3182-iterators-on-mutated-data) Iterators on mutated data
    - [3.18.3](#3183-splicing-an-iterator) Splicing an Iterator
    - [3.18.4](#3184-calling-an-iterator-with-a-function) Calling an Iterator with a Function
    - [3.18.5](#3185-zip-iterators) Zip Iterators
    - [3.18.6](#3186-isiter-value) is\_iter _value_
  - [3.19](#319-calling-semantics-of-data-types) Calling Semantics of Data Types
- [4](#4-conditional-execution---if--then--else) Conditional Execution - if / then / else
  - [4.1](#41-if-condition-then-expr-else-expr) if/? _condition_ _then-expr_ [_else-expr_]
  - [4.2](#42-using-booleans-for-conditional-execution) Using Booleans for Conditional Execution
    - [4.2.1](#421-pick-bool-a--b-) pick _bool_ _a_ -b-
    - [4.2.2](#422-indexing-by-booleans) Indexing by Booleans
  - [4.3](#43-value-matching-with---match-value-expr-) Value matching with - match _value-expr_ ...
- [5](#5-loops-and-iteration) Loops And Iteration
  - [5.1](#51-control-flow) Control Flow
    - [5.1.1](#511-while-predicate-body) while _predicate_ _body_
    - [5.1.2](#512-iter-var-iterable-body) iter _var_ _iterable_ _body_
      - [5.1.2.1](#5121-counting-loop-with-iter) Counting loop with _iter_
      - [5.1.2.2](#5122-vector-iteration-with-iter) Vector iteration with _iter_
      - [5.1.2.3](#5123-map-iteration-with-iter) Map iteration with _iter_
      - [5.1.2.4](#5124-closures-and-iter-iter-i-) Closures and _iter_ `iter i ...`
    - [5.1.3](#513-range-start-end-step-fun) range _start_ _end_ _step_ _fun_
    - [5.1.4](#514-break-value) break _value_
    - [5.1.5](#515-next) next
    - [5.1.6](#516-jump-index-val-branch1--last-branch) jump _index-val_ _branch1_ ... _last-branch_
  - [5.2](#52-collection-iteration) Collection Iteration
    - [5.2.1](#521-iteration-over-vectors) Iteration over vectors
    - [5.2.2](#522-iteration-over-maps) Iteration over maps
    - [5.2.3](#523-for-iteratable-value-function) for _iteratable-value_ _function_
    - [5.2.4](#524-map-function-iterable) map _function_ _iterable_
    - [5.2.5](#525-filter-function-iterable) filter _function_ _iterable_
  - [5.3](#53-accumulation-and-collection) Accumulation and Collection
    - [5.3.1](#531-transforming-a-vector) Transforming a vector
    - [5.3.2](#532-example-of-) Example of `$@@`
    - [5.3.3](#533-transforming-a-vector-to-a-map) Transforming a vector to a map
    - [5.3.4](#534-iteratively-concatenating-strings) Iteratively concatenating strings
    - [5.3.5](#535-accumulating-sums) Accumulating sums
  - [5.4](#54-utilities) Utilities
    - [5.4.1](#541-stdaccum-collection-a-b-) std:accum _collection_ _a_ _b_ ...
    - [5.4.2](#542-stdzip-vector-map-fn) std:zip _vector_ _map-fn_
    - [5.4.3](#543-stdfold-accumulator-func-iteratable) std:fold _accumulator_ _func_ _iteratable_
    - [5.4.4](#544-stdenumerate-map-fn) std:enumerate _map-fn_
- [6](#6-operators) Operators
  - [6.1](#61-operator-assignment) Operator Assignment
  - [6.2](#62-arithmetic) Arithmetic
    - [6.2.1](#621--operand-1-operand-2-) + _operand-1_ _operand-2_ ...
    - [6.2.2](#622---operand-1-operand-2-) - _operand-1_ _operand-2_ ...
    - [6.2.3](#623--op-a-op-b) * _op-a_ _op-b_
    - [6.2.4](#624--op-a-op-b) / _op-a_ _op-b_
    - [6.2.5](#625--op-a-op-b) % _op-a_ _op-b_
    - [6.2.6](#626--op-a-op-b) ^ _op-a_ _op-b_
  - [6.3](#63-comparison) Comparison
    - [6.3.1](#631--op-a-op-b) == _op-a_ _op-b_
    - [6.3.2](#632--op-a-op-b) != _op-a_ _op-b_
    - [6.3.3](#633--op-a-op-b) < _op-a_ _op-b_
    - [6.3.4](#634--op-a-op-b) <= _op-a_ _op-b_
    - [6.3.5](#635--op-a-op-b) > _op-a_ _op-b_
    - [6.3.6](#636--op-a-op-b) >= _op-a_ _op-b_
  - [6.4](#64-bit-operations) Bit Operations
    - [6.4.1](#641--op-a-op-b) & _op-a_ _op-b_
    - [6.4.2](#642--op-a-op-b) &^ _op-a_ _op-b_
    - [6.4.3](#643--op-a-op-b) &| _op-a_ _op-b_
    - [6.4.4](#644--op-a-op-b) << _op-a_ _op-b_
    - [6.4.5](#645--op-a-op-b) >> _op-a_ _op-b_
  - [6.5](#65-collection-addition-operators--and-) Collection Addition Operators +> and <+
    - [6.5.1](#651--collection-a-) +> _collection_ _a_ ...
    - [6.5.2](#652--collection-a-) <+ _collection_ _a_ ...
- [7](#7-string-and-byte-vector-formatting) String and Byte Vector Formatting
    - [7.0.1](#701-stdformatter-format-string) std:formatter _format-string_
  - [7.1](#71-formatting-numbers) Formatting Numbers
- [8](#8-data-structure-matchers-selectors-and-string-patternsregex) Data Structure Matchers, Selectors and String Patterns/Regex
  - [8.1](#81-data-structure-matcher) Data Structure Matcher
    - [8.1.1](#811-match-value-expr-match-pair1--default-expr) match _value-expr_ _match-pair1_ ... [_default-expr_]
    - [8.1.2](#812-m-expr) $M _expr_
    - [8.1.3](#813-data-structure-matcher-syntax) Data Structure Matcher Syntax
  - [8.2](#82-data-structure-selectors-s) Data Structure Selectors `$S(...)`
    - [8.2.1](#821-selector-and-wlambda-regex-syntax) Selector and WLambda Regex Syntax:
    - [8.2.2](#822-stdselector-string) std:selector _string_
  - [8.3](#83-string-patterns-regex-r) String Patterns (Regex) `$r/.../`
    - [8.3.1](#831-global-patterns-rg) Global Patterns `$rg/.../`
    - [8.3.2](#832-pattern-substitutions-rs) Pattern Substitutions `$rs/.../`
    - [8.3.3](#833-pattern-syntax-overview) Pattern Syntax Overview
    - [8.3.4](#834-standard-regular-expressions) Standard Regular Expressions
    - [8.3.5](#835-stdpattern-string-mode) std:pattern _string_ [_mode_]
- [9](#9-modules) Modules
  - [9.1](#91-export) export
  - [9.2](#92-import) import
- [10](#10-core-library) Core Library
    - [10.0.1](#1001-type-value) type _value_
    - [10.0.2](#1002-len-value) len _value_
    - [10.0.3](#1003-panic-message) panic _message_
- [11](#11-standard-library) Standard Library
    - [11.0.1](#1101-stdshuffle-randfunc-vec) std:shuffle _rand\_func_ _vec_
    - [11.0.2](#1102-stddelete-vector-or-map-index-or-key) std:delete _vector-or-map_ _index-or-key_
    - [11.0.3](#1103-stdrefid-value) std:ref\_id _value_
    - [11.0.4](#1104-stdcopy-vecormap) std:copy _vec\_or\_map_
    - [11.0.5](#1105-stdvalues-collection-or-iter) std:values _collection-or-iter_
    - [11.0.6](#1106-stdkeys-collection-or-iter) std:keys _collection-or-iter_
    - [11.0.7](#1107-stdsort-comparefun-vec) std:sort [_compare\_fun_] _vec_
    - [11.0.8](#1108-stdcmpnumasc-a-b) std:cmp:num:asc _a_ _b_
    - [11.0.9](#1109-stdcmpnumdesc-a-b) std:cmp:num:desc _a_ _b_
    - [11.0.10](#11010-stdcmpstrasc-a-b) std:cmp:str:asc _a_ _b_
    - [11.0.11](#11011-stdcmpstrdesc-a-b) std:cmp:str:desc _a_ _b_
    - [11.0.12](#11012-stdreverse-value) std:reverse _value_
    - [11.0.13](#11013-stddisplayln-arg1-) std:displayln _arg1_ ...
    - [11.0.14](#11014-debug-arg1-) $DEBUG _arg1_ ...
    - [11.0.15](#11015-stdwriteln-arg1-) std:writeln _arg1_ ...
    - [11.0.16](#11016-stdeval-code-string) std:eval _code-string_
    - [11.0.17](#11017-stdassert-bool-message) std:assert _bool_ \[_message_]
    - [11.0.18](#11018-stdasserteq-actual-expected-message) std:assert\_eq _actual_ _expected_ \[_message_]
    - [11.0.19](#11019-stdassertstreq-actual-expected) std:assert\_str\_eq _actual_ _expected_
    - [11.0.20](#11020-stdassertreleq-l-r-epsilon-message) std:assert\_rel\_eq _l_ _r_ _epsilon_ \[_message_]
    - [11.0.21](#11021-stdmeasuretime-unit-function) std:measure\_time _unit_ _function_
  - [11.1](#111-io) I/O
    - [11.1.1](#1111-stdioline) std:io:line
    - [11.1.2](#1112-stdiolines-value) std:io:lines [_value_]
    - [11.1.3](#1113-stdiofilereadtext-filename) std:io:file:read\_text _filename_
    - [11.1.4](#1114-stdiofileread-filename) std:io:file:read _filename_
    - [11.1.5](#1115-stdiofilewritesafe-filename-bytes-or-string) std:io:file:write\_safe _filename_ _bytes-or-string_
    - [11.1.6](#1116-stdiofileappend-filename-bytes-or-string) std:io:file:append _filename_ _bytes-or-string_
    - [11.1.7](#1117-stdiostdoutnewline) std:io:stdout:newline
    - [11.1.8](#1118-stdiostdoutflush) std:io:stdout:flush
    - [11.1.9](#1119-stdiostdoutprint-value) std:io:stdout:print _value_
    - [11.1.10](#11110-stdiostdoutwrite-value) std:io:stdout:write _value_
    - [11.1.11](#11111-stdioflush-handle) std:io:flush _handle_
    - [11.1.12](#11112-stdioreadsome-handle) std:io:read\_some _handle_
    - [11.1.13](#11113-stdiowrite-handle-data-offs) std:io:write _handle_ _data_ [_offs_]
    - [11.1.14](#11114-stdiowritesome-handle-data) std:io:write\_some _handle_ _data_
  - [11.2](#112-networking) Networking
    - [11.2.1](#1121-stdnettcpconnect-socket-addr-connect-timeout) std:net:tcp:connect _socket-addr_ [_connect-timeout_]
    - [11.2.2](#1122-stdnettcplisten-socket-addr-function) std:net:tcp:listen _socket-addr_ _function_
    - [11.2.3](#1123-stdnetudpnew-socket-addr-connect-addr) std:net:udp:new _socket-addr_ [_connect-addr_]
    - [11.2.4](#1124-stdnetudpsend-socket-data-socket-addr) std:net:udp:send _socket_ _data_ [_socket-addr_]
    - [11.2.5](#1125-stdnetudprecv-socket-byte-count) std:net:udp:recv _socket_ [_byte-count_]
  - [11.3](#113-processes) Processes
    - [11.3.1](#1131-stdprocessrun-executable-path-arguments) std:process:run _executable-path_ [_arguments_]
    - [11.3.2](#1132-stdprocessspawn-executable-path-arg-vector-inheritout--inheritall) std:process:spawn _executable-path_ _arg-vector_ [:inherit\_out | :inherit\_all]
    - [11.3.3](#1133-stdprocesstrywait-child-handle) std:process:try\_wait _child-handle_
    - [11.3.4](#1134-stdprocesskillwait-child-handle) std:process:kill\_wait _child-handle_
    - [11.3.5](#1135-stdprocesswait-child-handle) std:process:wait _child-handle_
  - [11.4](#114-file-system) File System
    - [11.4.1](#1141-stdfsrename-file-path-new-file-name) std:fs:rename _file-path_ _new-file-name_
    - [11.4.2](#1142-stdfscopy-src-file-path-dst-file-path) std:fs:copy _src-file-path_ _dst-file-path_
    - [11.4.3](#1143-stdfsreaddir-path-function) std:fs:read\_dir _path_ _function_
    - [11.4.4](#1144-stdfsremovefile-file-path) std:fs:remove\_file _file-path_
    - [11.4.5](#1145-stdfsremovedir-dir-path) std:fs:remove\_dir _dir-path_
    - [11.4.6](#1146-stdfsremovedirall-dir-path) std:fs:remove\_dir\_all _dir-path_
  - [11.5](#115-system) System
    - [11.5.1](#1151-stdsysos) std:sys:os
  - [11.6](#116-threading) Threading
    - [11.6.1](#1161-stdthreadspawn-string-globals-map) std:thread:spawn _string_ [_globals-map_]
    - [11.6.2](#1162-stdthreadsleep-duration) std:thread:sleep _duration_
    - [11.6.3](#1163-thread-handle-api) Thread Handle API
      - [11.6.3.1](#11631-thdljoin) thdl.join
      - [11.6.3.2](#11632-thdlrecvready) thdl.recv\_ready
    - [11.6.4](#1164-atom-api) Atom API
      - [11.6.4.1](#11641-stdsyncatomnew-value) std:sync:atom:new _value_
      - [11.6.4.2](#11642-atomread) atom.read
      - [11.6.4.3](#11643-atomwrite-value) atom.write _value_
      - [11.6.4.4](#11644-atomswap-value) atom.swap _value_
    - [11.6.5](#1165-atom-value-slot-api) Atom Value Slot API
      - [11.6.5.1](#11651-stdsyncslotnew) std:sync:slot:new
      - [11.6.5.2](#11652-atomslotsend-value) atom\_slot.send _value_
      - [11.6.5.3](#11653-atomslotrecv) atom\_slot.recv
      - [11.6.5.4](#11654-atomslottryrecv) atom\_slot.try\_recv
      - [11.6.5.5](#11655-atomslotrecvtimeout-duration) atom\_slot.recv\_timeout _duration_
      - [11.6.5.6](#11656-atomslotcheckempty) atom\_slot.check\_empty
      - [11.6.5.7](#11657-atomslotwaitempty) atom\_slot.wait\_empty
      - [11.6.5.8](#11658-atomslotwaitemptytimeout-duration) atom\_slot.wait\_empty\_timeout _duration_
    - [11.6.6](#1166-channel-api) Channel API
      - [11.6.6.1](#11661-stdsyncmpscnew) std:sync:mpsc:new
      - [11.6.6.2](#11662-channelsend-value) channel.send _value_
      - [11.6.6.3](#11663-channelrecv) channel.recv
      - [11.6.6.4](#11664-channeltryrecv) channel.try\_recv
      - [11.6.6.5](#11665-channelrecvtimeout-duration) channel.recv\_timeout _duration_
- [12](#12-optional-standard-library) Optional Standard Library
  - [12.1](#121-serialization) serialization
    - [12.1.1](#1211-stdserwlambda-arg) std:ser:wlambda _arg_
    - [12.1.2](#1212-stdserjson-data-nopretty) std:ser:json _data_ \[_no\_pretty_]
    - [12.1.3](#1213-stddeserjson-string) std:deser:json _string_
    - [12.1.4](#1214-stdsercsv-fielddelim-rowseparator-escapeall-table) std:ser:csv _field\_delim_ _row\_separator_ _escape\_all_ _table_
    - [12.1.5](#1215-stddesercsv-fielddelim-rowseparator-data) std:deser:csv _field\_delim_ _row\_separator_ _data_
    - [12.1.6](#1216-stdsermsgpack-data) std:ser:msgpack _data_
    - [12.1.7](#1217-stddesermsgpack-bytes) std:deser:msgpack _bytes_
  - [12.2](#122-regular-expressions-more-classic-syntax) Regular Expressions (more classic syntax)
    - [12.2.1](#1221-stdrematch-regex-string-input-string-function) std:re:match _regex-string_ _input-string_ _function_
    - [12.2.2](#1222-stdrematchcompile-regex-string) std:re:match\_compile _regex-string_
    - [12.2.3](#1223-stdremap-regex-string-function-input-string) std:re:map _regex-string_ _function_ _input-string_
    - [12.2.4](#1224-stdrereplaceall-regex-string-replace-function-input-string) std:re:replace\_all _regex-string_ _replace-function_ _input-string_
  - [12.3](#123-xml) xml
    - [12.3.1](#1231-stdxmlreadsax-xml-string-event-callback-function-do-not-trim-text) std:xml:read\_sax _xml-string_ _event-callback-function_ [_do-not-trim-text_]
    - [12.3.2](#1232-stdxmlcreatesaxwriter-indent) std:xml:create\_sax\_writer [_indent_]
    - [12.3.3](#1233-stdxmlcreatetreebuilder) std:xml:create\_tree\_builder
  - [12.4](#124-chrono) chrono
    - [12.4.1](#1241-stdchronotimestamp-format) std:chrono:timestamp \[_format_]
    - [12.4.2](#1242-stdchronoformatutc-utc-timestamp-format) std:chrono:format\_utc _utc-timestamp_ [_format_]
    - [12.4.3](#1243-stdchronoformatlocal-utc-timestamp-format) std:chrono:format\_local _utc-timestamp_ [_format_]
  - [12.5](#125-color-conversion) color conversion
    - [12.5.1](#1251-stdvrgb2hsv-color-vector) std:v:rgb2hsv _color-vector_
    - [12.5.2](#1252-stdvhsv2rgb-color-vector) std:v:hsv2rgb _color-vector_
    - [12.5.3](#1253-stdvrgba2hex-color-vector) std:v:rgba2hex _color-vector_
    - [12.5.4](#1254-stdvhex2rgbaf-string) std:v:hex2rgba\_f _string_
    - [12.5.5](#1255-stdvhex2rgbai-string) std:v:hex2rgba\_i _string_
    - [12.5.6](#1256-stdvhex2hsvai-string) std:v:hex2hsva\_i _string_
    - [12.5.7](#1257-stdvhex2hsvaf-string) std:v:hex2hsva\_f _string_
  - [12.6](#126-hash) hash
    - [12.6.1](#1261-stdhashfnv1a-arg1-) std:hash:fnv1a _arg1_ ...
  - [12.7](#127-rand) rand
    - [12.7.1](#1271-stdrandsplitmix64new) std:rand:split\_mix64\_new
    - [12.7.2](#1272-stdrandsplitmix64newfrom-seed) std:rand:split\_mix64\_new\_from _seed_
    - [12.7.3](#1273-stdrandsplitmix64next-smstate-count) std:rand:split\_mix64\_next _sm\_state_ \[_count_]
    - [12.7.4](#1274-stdrandsplitmix64nextopen01-smstate-count) std:rand:split\_mix64\_next\_open01 _sm\_state_ \[_count_]
    - [12.7.5](#1275-stdrandsplitmix64nextopenclosed01-smstate-count) std:rand:split\_mix64\_next\_open\_closed01 _sm\_state_ \[_count_]
    - [12.7.6](#1276-stdrandsplitmix64nextclosedopen01-smstate-count) std:rand:split\_mix64\_next\_closed\_open01 _sm\_state_ \[_count_]
  - [12.8](#128-utility-functions) Utility Functions
    - [12.8.1](#1281-stddumpupvals-function) std:dump\_upvals _function_
    - [12.8.2](#1282-stdwlambdaversion) std:wlambda:version
    - [12.8.3](#1283-stdwlambdasizes) std:wlambda:sizes
    - [12.8.4](#1284-stdwlambdaparse-string) std:wlambda:parse _string_
  - [12.9](#129-http-client) HTTP Client
    - [12.9.1](#1291-stdhttpclientnew) std:http:client:new
    - [12.9.2](#1292-stdhttpget-http-client-url-string-headers-and-options-map) std:http:get _http-client_ _url-string_ [_headers-and-options-map_]
    - [12.9.3](#1293-stdhttppost-http-client-url-string-body-bytes-headers-and-options-map) std:http:post _http-client_ _url-string_ _body-bytes_ [_headers-and-options-map_]
    - [12.9.4](#1294-stdhttprequest-http-client-method-string-url-string-body-bytes-headers-and-options-map) std:http:request _http-client_ _method-string_ _url-string_ [_body-bytes_ [_headers-and-options-map_]]
  - [12.10](#1210-mqtt-messaging) MQTT Messaging
    - [12.10.1](#12101-stdmqttbrokernew-config) std:mqtt:broker:new _config_
      - [12.10.1.1](#121011-brokerpublish-topic-string-payload-bytes) broker.publish _topic-string_ _payload-bytes_
    - [12.10.2](#12102-stdmqttclientnew-channel-client-id-broker-host-broker-port) std:mqtt:client:new _channel_ _client-id_ _broker-host_ _broker-port_
      - [12.10.2.1](#121021-mqttclientpublish-topic-string-payload-bytes) mqtt\_client.publish _topic-string_ _payload-bytes_
      - [12.10.2.2](#121022-mqttclientsubscribe-topic-string) mqtt\_client.subscribe _topic-string_
- [13](#13-wlambda-lexical-syntax-and-grammar) WLambda Lexical Syntax and Grammar
  - [13.1](#131-special-forms) Special Forms
  - [13.2](#132-string-formatting-syntax) String Formatting Syntax
  - [13.3](#133-format-string-syntax-for-stdbytespack-and-stdbytesunpack) Format String Syntax for std:bytes:pack and std:bytes:unpack

-----

## <a name="1-variable-definition-and-assignment"></a>1 - Variable Definition and Assignment

As this manual assumes you have some programming knowledge,
we will just take a short look at the variable definition and assignment
syntax:

```wlambda
!a = 10;            # variable definition & initialization

.a = 20;            # assignment of a new value to a variable
```

WLambda also supports destructuring assignment of vectors:

```wlambda
!v = $[1,2,3];
!(a, b, c) = v;     # destructuring definition of variables
.(a, b, c) = v;     # destructuring assignment

std:assert_eq a 1;
std:assert_eq b 2;
std:assert_eq c 3;
```

This also works with maps, where the key names are matched to
the variable names:

```wlambda
!m = ${ a = 10, b = 20, c = 30 };
!(a, b, c) = m;     # destructuring definition by map
.(a, b, c) = m;     # destructuring assignment by map

std:assert_eq a 10;
std:assert_eq b 20;
std:assert_eq c 30;
```

And also with pairs:

```wlambda
!p = $p(10, 20);
!(a, b) = p;
.(a, b) = p;

std:assert_eq a 10;
std:assert_eq b 20;
```

### <a name="11-destructuring-to-variables"></a>1.1 - Destructuring to Variables

Like highlighted in the previous section you can define and assign to
multiple variables at once. Following data types support destructuring:

- Vectors:
```wlambda
!(a, b, c) = $[1, 2, 3];

std:assert_eq a 1;
std:assert_eq b 2;
std:assert_eq c 3;
```
- Maps:
```wlambda
!(x, foo, lol) = ${foo = 33, lol = 42, x = 2};

std:assert_eq x   2;
std:assert_eq foo 33;
std:assert_eq lol 42;
```
- Pairs:
```wlambda
!(x, y) = $p("ex", "uepsilon");

std:assert_eq x "ex";
std:assert_eq y "uepsilon";
```
- Numerical Vectors:
```wlambda
!(x, y, z) = $i(3, 44, 4);

std:assert_eq x 3;
std:assert_eq y 44;
std:assert_eq z 4;

!(r, g, b, a) = $f(0.3, 1.0, 0.4, 1.0);

std:assert_eq r 0.3;
std:assert_eq g 1.0;
std:assert_eq b 0.4;
std:assert_eq a 1.0;
```

### <a name="12-global-variables"></a>1.2 - Global Variables

You can define global variables that are not bound to
a lexical scope as follows:

```wlambda
{
    !:global a = 13;
}[];

std:assert_eq a 13;
```

Global variables however do not live beyond file or module boundaries.

### <a name="13-constants"></a>1.3 - Constants

WLambda supports constant _variables_. These are global variables you can't
assign to. They are resolved and inserted at compile time and offer a slight
performance advantage (roughly 3-4%) over (global or local) variables.

```wlambda
!:const X = 11;

std:assert_eq X 11;

# Destructuring works too, but only with compile time literal values
# in the vectors / maps:
!:const (ON, OFF) = $[$true, $false];
!:const (RED, BLUE) = ${
    BLUE = 0x0000FF,
    RED  = 0xFF0000,
};

std:assert_eq ON  $true;
std:assert_eq OFF $false;

std:assert_eq RED 0xFF0000;
std:assert_eq BLUE 0x0000FF;
```

However, be aware that these _constants_ are not really constant.  Due to
performance reasons referential values like Lists or Maps are not copied
(neither shallow, nor deep) if you access them through a constant.

```wlambda
!:const V = $[1,2,3];

std:assert_eq (str V) (str $[1,2,3]);

std:push V 43;  # Mutation of a 'constant'
std:assert_eq V.3 43;
```

Constants also work across module borders:

```wlambda
!:const X = 10;

# When imported the X will remain constant:
!@export X = X;
```

## <a name="2-functions-part-12"></a>2 - Functions (part 1/2)

A function can be defined using the `{ ... }` syntax and the `\ _statement_`
syntax: To give functions a name, you need to assign them to a variable with
the `!_name_ = _expr_` syntax.

### <a name="21-closures"></a>2.1 - Closures

Functions take values from the outer scope by promoting the variable
at runtime to a hidden reference to their previous value:

```wlambda
!a = 10;
!b = 20;

# function transforms a and b to hidden references
!add_a_and_b = { a + b };

std:assert_eq add_a_and_b[] 30;

# The assignment assigns to the hidden reference, so the closure add_a_and_b
# also receives the new value:
.a = 33;

std:assert_eq add_a_and_b[] 53;

# a and b are dereferenced on local variable access.
std:assert_eq a + b         53;
```

#### <a name="211-object-oriented-programming-with-closures"></a>2.1.1 - Object Oriented Programming with Closures

This section explains how to create objects and hide state using closures.
Keep in mind, that there are also `$self` and `$data` available, which
allow a different approach for referring to the object state/data than to
capture the object as reference in a closure.

Keep in mind, that care must be taken (references need to be captures weakly)
with the references as shown below, because otherwise you will get reference
cycles and memory leaks.

```wlambda
!new_Cat = {!(name) = @;
    # Captures by closures upgrade the outer `self` variable to a _hidden_
    # reference, which is then captured. As the closure is stored in
    # `self`, this would create a ref cycle. This is why we needed
    # to make a weak reference to self.

    # Make an explicit hidden reference:
    !self_ = $& ${
        name = name,
    };

    # Create a weak reference form the hidden reference:
    !self = $weak& $:self_;

    self.meow     = { std:displayln self.name " meows!"; };
    self.get_name = { self.name };

    # To keep the object alive, we retrieve a strong reference
    # from the hidden reference:
    $:self
};

!my_cat = new_Cat "Spot";

my_cat.meow[]; # Prints 'Spot meows!'

std:assert_eq my_cat.get_name[] "Spot";
```

Alternatively you can just make the cat name private:

```wlambda
!new_Cat = {!(name) = @;
    # This does not make cycles, because `name` does not contain
    # the closures in the end.
    !cat_name = name;

    !meow     = { std:displayln cat_name " meows!"; };
    !get_name = { $*cat_name };
    !set_name = { .*cat_name = _; };

    # Just holds the methods
    ${
        meow     = meow,
        get_name = get_name,
        set_name = set_name,
    };
};

!my_cat = new_Cat "Spot";

my_cat.meow[]; # Prints 'Spot meows!'

std:assert_eq my_cat.get_name[] "Spot";

my_cat.set_name "Spotty";

std:assert_eq my_cat.get_name[] "Spotty";
```

### <a name="22-function-calling"></a>2.2 - Function calling

To call functions, you have at least 4 alternatives. First is the bare
`_expr_ arg1 arg2 arg3 arg4` syntax. And the second is the fully delimited
variant: `_expr_[arg1, arg2, arg3, ...]`. You can always delimit the first
variant using the `( ... )` parenthesis around the whole call,
i.e. `(_expr_ arg1 arg2 arg3 arg4)`.

Third you can call a function with a vector as argument with `_expr_[[_expr_]]`,
where the second expression should return a vector (if it doesn't it will use the
value as first argument).

The fourth alternative is the `&>` and `<&` (and the apply variants `&@>` and
`<@&`) argument pipe operators which can be conveniently used in conjunction
with the first variant to prevent some parenthesis. Also belonging into the
category of function calling operators there is the collection addition operators
`+>` and `<+` which are described in their own section.

Here are examples:

```wlambda
# All the second variant:
std:assert_eq[std:str:cat[1, 2, 3], "123"];

# Can also be written as:
std:assert_eq (std:str:cat 1 2 3) "123";

# As the third variant:
!some_args = $[1, 2, 3];
std:assert_eq std:str:cat[[some_args]] "123";

# The fourth variant:
std:assert_eq str <& $[1, 2, 3]     "$[1,2,3]";
std:assert_eq $[1, 2, 3] &> str     "$[1,2,3]";
```

The arguments passed to the function are accessible using the `_`, `_1`, `_2`, ..., `_9`
variables. If you need to access more arguments the `@` variable holds a vector of all
arguments.

```wlambda
!twoify = { _ * 2 };

std:assert_eq twoify[2] 4;

!twoify2 = \_ * 2;

std:assert_eq twoify2[2] 4;

# You may also call them directly, notice the parenthesis ( ... ) syntax
# for delimiting the inner function call:
std:assert_eq ({ _ * 2 } 2) 4;
```

If you want to name arguments, you can use the destructuring assignment
syntax:

```wlamdba
!add = {!(a, b) = @;
    a + b
};

std:assert_eq add[1, 2] 3;
```

### <a name="23-function-arity-checks"></a>2.3 - Function arity checks

Functions check the number of arguments passed to them. The compiler tries to
infer the number of arguments the function requires by looking at the parameter
variables `_` to `_9` and `@`. If the compiler gets it wrong, you can:

* Define minimum and maximum number of arguments with: `{|min < max| ... }`
* Define exact number of arguments with: `{|num_of_args| ... }`
* Accept any number of arguments: `{|| ... }`

For the shortened function syntax there is:

* `\|min < max| ...`
* `\|num_of_args| ...`
* `\|| ...`

Here an example:

```wlambda
!dosomething = {|2 < 4| !(a, b, c, d) = @;
    # Please note: We have to assign the
    # parameters to named values here, because
    # the arms of the conditional below have
    # their own set of arguments.

    (is_none c) { a + b } { a * b + c * d }
};

std:assert_eq dosomething[1, 2]         3;
std:assert_eq dosomething[2, 2, 3, 4]  16;
```

#### <a name="231-stdtonoarity-function"></a>2.3.1 - std:to\_no\_arity _function_

This function disables all arity checks of a function. Use this with care
and diligence.

```wlambda
!f = { _ }; # accepts exactly 1 param

# f keeps its arity checks, but f2 will
# call the same function, but without arity checks.
!f2 = std:to_no_arity f;

std:assert_eq (f2 1 2 3) 1;
```

### <a name="24-calling-fields--method-calling"></a>2.4 - Calling fields / Method calling

If you use the '.' for accessing fields in a map,
the object the most recent field is accessed of is passed
to the called function. The object the function/method
was called upon can be accessed using the special value '$self'.

```wlambda
!some_map = ${
    some_func = { $self.a_value },
    a_value = 11,
};

std:assert_eq some_map.some_func[] 11;
```

This in combination with the special key `'_proto'` can be used to
implement a basic form of object orientation with prototype inheritance.

It can also be combined with the closure OOP approach or used for
other purposes.

You can also use a vector/list as object, in that case the `_proto`
field that holds the class method map is the first element of the
vector. The second element of the vector can be accessed using `$data`.

#### <a name="241-the-self-and-data-special-variables"></a>2.4.1 - The $self and $data special variables

If you call a method using the dot `.`, and the value on the left
side is a map or vector, you will get the map or vector by `$self`.
However, if you define a `_data` key on the map, or put something in
the second element of the vector, you can refer to it using `$data`.

You can use this to refer to the members and other functions of a structure:

```wlambda
!new_ab_struct = {
    ${
        _data = ${ a = 1, b = 2 },
        inc_a = { $data.a += 1; },
        inc_b = { $data.b += 1; },
        a = { $data.a },
        b = { $data.b },
        inc_both = {
            $self.inc_a[];
            $self.inc_b[];
        },
    }
};

!ab = new_ab_struct[];

ab.inc_a[];
std:assert_eq ab.a[] 2;

ab.inc_b[];
std:assert_eq ab.b[] 3;

ab.inc_both[];
std:assert_eq ab.a[] 3;
std:assert_eq ab.b[] 4;
```

The next seconds show how this can be used to do prototyped object
oriented programming.

#### <a name="242-object-oriented-programming-with-prototypes"></a>2.4.2 - Object Oriented Programming with Prototypes

Instead of using closures for OOP the preferred way is to use
maps of functions as classes and form an inheritance hierarchy
by using the `'_proto'` key of a map:

```wlambda
!class_a = ${
    # $self is set by any key access using the '.' calling form:
    new = { ${ _proto = $self } },
    generate = { "I am A" },  # A method
};

!a_instance = class_a.new[];

std:assert_eq a_instance.generate[] "I am A";
```

The special key `'_data'` can be used (and is encouraged to be used)
as storage for data members of your objects. This is useful to separate
method name space inside objects from the data member namespace.
To quickly access the data members you can use the special value `$data`,
which will evaluate to `$self._data` in case `$self` is a map, and
to `$self.1` in case `$self` is a vector.

Here is an example with a map and data:

```wlambda
!class_b = ${
    new = {
        ${
            _proto = $self, # $self is class_b
            _data = ${
                a = 10
            },
        }
    },
    gen  = { _ * $data.a },     # $data is equivalent to `$self._data` here
    gen2 = { _ * $self._data.a },
};

!inst = class_b.new[];

std:assert_eq inst.gen[2] 20;
std:assert_eq inst.gen2[2] 20;
```

You can also use vectors as objects, which can be beneficial as they are
a bit slimmer and access to `_proto` and `_data` are reduced to a single
vector index lookup instead of an array lookup.

```wlambda
!class_b = ${
    new = {
        $[  # return a vector
            $self, # $self is class_b
            ${ a = 10 },
        ]
    },
    gen  = { _ * $data.a },     # $data is equivalent to `$self.1` here
    gen2 = { _ * $self.1.a },
};

!inst = class_b.new[];

std:assert_eq inst.gen[3] 30;
std:assert_eq inst.gen2[4] 40;
```

#### <a name="243-object-oriented-with-prototypes-and-inheritance"></a>2.4.3 - Object Oriented with Prototypes and Inheritance

You can inherit functionality from a different class by assigning
it to the prototype of the class itself.

```wlambda
!SuperClass = ${
    init_super_class = {
        $data.inc = 0;
    },
    inc = {
        $data.inc += 1;
        $data.inc
    },
};
```

Please notice, that _SuperClass_ does not have it's own constructor,
instead you should define a custom init function like `init_super_class`,
to define the used fields. The _SuperClass_ will refer to the
`$data` of the object that is going to be created by _MyClass_ in the next
step.

```wlambda
!SuperClass = ${
    init_super_class = {
        $data.inc = 0;
    },
    inc = {
        $data.inc += 1;
        $data.inc
    },
};

!MyClass = ${
    _proto = SuperClass,
    new = {
        !self = ${
            _proto = $self,
            _data = ${ other = 10 },
        };
        self.init_super_class[];
        self
    },
    get_other = { $data.other },
    get_inc = { $data.inc },
};

!my_obj = MyClass.new[];

std:assert_eq my_obj.get_other[] 10;
std:assert_eq my_obj.inc[] 1;
std:assert_eq my_obj.inc[] 2;
std:assert_eq my_obj.inc[] 3;

std:assert_eq my_obj._data.other 10;
std:assert_eq my_obj._data.inc   3;
```

#### <a name="244-object-oriented-with-prototypes-and-self-references-and-data-references"></a>2.4.4 - Object Oriented with Prototypes and $self References and $data References

There might come a time, when you want to pass a reference of your
object around, but you want to prevent cyclic references.
For this you will need to return a strong reference `$&&` from your
constructor as `$self` and if you want to refer to `$data` from callback
functions, you are advised to also wrap it into a strong reference.

```wlambda
!destroyed = $false;

!MyClass = ${
    new = {
        $&& ${
            _proto = $self,
            _data  = $&& ${
                x = 1
            },
            dropper = std:to_drop { .destroyed = $t; },
        }
    },
    inc_x = { $data.x += 1 },
    install_on = {!(callchain) = @;
        !self = $w& $self;
        std:push callchain { self.inc_x[]; };
    },
    install_getter = {!(callchain) = @;
        !data = $w& $data;
        std:push callchain { data.x };
    },
};

# Create instance:
!my_obj = MyClass.new[];

my_obj.inc_x[];

!chain = $[];
my_obj.install_on     chain;
my_obj.install_getter chain;

# There are now 3 references to 'my_obj':
# - my_obj variable
# - first callback in chain
# - second callback in chain

std:assert_eq my_obj._data.x 2;
chain.0[]; # calls my_ocj.inc_x[];
std:assert_eq my_obj._data.x 3;

# Second callback gets x:
std:assert_eq chain.1[] 3;

!my_obj = $n; # destroy only strong reference
std:assert destroyed;
```

Of course the callbacks now refer to `$none` to call `inc_x`, a more
sophisticated way of cleanup is of course necessary. But this is just an
example.

### <a name="25-function-call-composition"></a>2.5 - Function call composition

- chaining
- traditional () call syntax
- ~ syntax
- || syntax

>> $[] || push 10
> $[10]
>> $[] || push 10 || push 20
> $[10,20]
>> !x = { push _1 _ };
> $n
>> $[] | x 10 | x 20
> $[10,20]
>>

- [...] syntax

#### <a name="251--tail-argument-function-chaninig"></a>2.5.1 - '|' Tail Argument Function Chaninig

This syntax is useful if you have following function call composition:

```text
(fn arg1 arg2 (fn2 arg_b1 arg_b2 (fn3 arg_c1 arg_c2 ...)))
```

These can be written more comfortably like this:

```text
fn3 arg1 arg2 | fn2 arg_b1 arg_b2 | fn arg1 arg2
```

An example with actual values:

```wlambda
!x = 10 | { _ * 4 } | { _ + 2 };

std:assert_eq x 42;
```

Think of it as if the value `10` was _piped_ through the
functions on the right.

The call reordering of the `|` operator looks like this:

```text
    fn1 a1 a2 | fn2 b1 b2 (   )   =>   fn2 b1 b2 (fn1 a1 a2)
    """""""""               ^
        v                   |
        --------------------|
```

#### <a name="252--left-hand-function-chaining"></a>2.5.2 - '|>' Left Hand Function Chaining

This syntax is useful if you want to make deep call chains like these:

```text
(((fn arg1 arg2 ...) arg_b1 arg_b2 ...) arg_c1 arg_c2 ...)
```

These can be written more comfortably like this:

```text
fn arg1 arg2 |> arg_b1 arg_b2 |> arg_c1 arg_c2
```

or nicer formatted:

```text
fn arg1 arg2
    |> arg_b1 arg_b2
    |> arg_c1 arg_c2
```

Here an actual example:

```wlambda
!res = $@v
    1 + 1
    |> $["abc", "def", "ceg"]
    |> { $+ ~ std:str:cat "|" _ "|" };

std:assert_eq res.0 "|c|";
std:assert_eq res.1 "|e|";
std:assert_eq res.2 "|g|";
```

The call reordering of the `|>` operator looks like this:

```text
    fn1 a1 a2 |> b1 b2    =>   ((   )   )
    """""""""    """""            ^   ^
        v          v              |   |
        -----------|--------------|   |
                   -------------------|
```

#### <a name="253-forward-argument-pipe-arg--fun"></a>2.5.3 - Forward Argument Pipe `arg &> fun`

This operator has the highest precedence over all other operators
and is used to be able to write this:

```wlambda
if "foob" &> $r/f(^*)b/ {
    std:assert_eq $\.1 "oo";
} {
    std:assert $false;
}
```

That means `f a &> b` is equivalent to writing `f[b[a]]` or `(f (b a))`.
Chaining multiple is also possible and left associative: `a &> b &> c` is `(c (b a))`.
You can see it as piping operation:

```wlambda
!r = "ABC" &> std:str:to_lowercase &> \std:str:pad_start 10 "0" _;

std:assert_eq r "0000000abc";
```

#### <a name="254-forward-argument-apply-pipe-list--fun"></a>2.5.4 - Forward Argument Apply Pipe `list &@> fun`

This operator is like `&>`. But it will call the function with the elements
in the given _list_ as arguments.

That means: `list &@> fun` is equivalent to `fun[[list]]`.

```wlambda
std:assert_eq $[2, 5] &@> `+`   7;
```

#### <a name="255-reverse-argument-pipe-fun--arg"></a>2.5.5 - Reverse Argument Pipe `fun <& arg`

Like the `&>` operator this operator, but it has a lower precedence (does not bind
as strongly as `&>`) and is right associative. That means you can write this:

```wlambda
!r = (\std:str:pad_start 10 "0" _) <& std:str:to_lowercase <& "ABC";

std:assert_eq r "0000000abc";
```

That means, writing `f <& a <& x` becomes `f[a[x]]` or `(f (a x))`.

#### <a name="256-reverse-argument-apply-pipe-list--fun"></a>2.5.6 - Reverse Argument Apply Pipe `list &@> fun`

This operator is like `<&`. But it will call the function with the elements
in the given _list_ as arguments.

That means: `fun <@& list` is equivalent to `fun[[list]]`.

```wlambda
std:assert_eq `+` <@& $[2, 5]   7;
```

### <a name="26-control-flow---returning"></a>2.6 - Control Flow - Returning

WLambda uses labelled blocks for control flow, as returning from the current function would not be
very helpful for the control flow in wlambda in case of conditional execution using the
boolean calling semantics.

```wlambda
!some_func = \:outer {
    !x = 10;

    # does stuff...

    (x == 10) {
        return :outer 20
    };

    # more stuff that is not executed if x == 10.
}
```

#### <a name="261-return-label-value"></a>2.6.1 - return [_label_] _value_

Returns _value_ from the current function if no _label_ is given.
If _label_ is given, the call stack will unwind until either a `block`
or a function with the given _label_ is encountered.

```wlambda
!f = {
    10;
    return 20;
    30
};

std:assert_eq f[] 20;
```

Here an example for unwinding two call frames:

```wlambda
!f = \:x {
    10;
    { return :x 20 }[];
    30;
};

std:assert_eq f[] 20;
```

The labels do not adhere to lexical scoping and are dynamically scoped:

```wlambda
!g = { return :x 30 };

!f = \:x { 20; g[]; 40 };

std:assert_eq f[] 30;
```

#### <a name="262-block-label-function"></a>2.6.2 - block [label] _function_

Calls the _function_ with the given _label_ for `return`to jump to.

If you just want to setup a point inside a function to jump to
with `return` the `block` function is more convenient to use:

```wlambda
!y = 1;

!res = block :x {
    .y = y + 1;
    (y >= 2) \return :x 20;
    .y = y + 1;
    .y = y + 1;
};

std:assert_eq res 20;
```

The alternative is the less clear syntax would be in this case:

```wlambda
!y = 1;

!res = \:x {
    .y = y + 1;
    (y >= 2) \return :x 20;
    .y = y + 1;
    .y = y + 1;
}[];

std:assert_eq res 20;
```

#### <a name="263-stdtodrop-function-or-raii-destructors-or-drop-functions"></a>2.6.3 - std:to\_drop _function_ (or RAII, Destructors or Drop Functions)

You can create a function that is called when it is
dropped/its reference count goes to 0.

```wlambda
!dropped = $false;

!x = std:to_drop { .dropped = $true; };

std:assert not[dropped];

.x = $none;

std:assert dropped;
```

Please note, that the drop function will be executed in a newly constructed
default EvalContext, this means there is some overhead and that the EvalContext
dependent results of `std:eval` might be different.

#### <a name="264-stdtimenow-unit"></a>2.6.4 - std:time:now [_unit_]

Returns the current system time since the UNIX epoch (1970-01-01 00:00:00 UTC).
If no _unit_ is specified, the default is `:ms`. Following units are available:

- seconds: `"s"`
- milliseconds: `"ms"`
- microseconds: `"us"`
- nanoseconds: `"ns"`

```wlambda
std:assert (std:time:now :s)  > 1000;
std:assert (std:time:now :ms) > 1000;
std:assert len[str[std:time:now :ns]] > 18;
```

#### <a name="265-stdsrand-seed"></a>2.6.5 - std:srand [_seed_]

With this function you can seed the internal pseudo random number
generator based on an unspecified PRNG algorithm, that might or might not
change in the next WLambda version.
If no _seed_ is provided, the current system time (in `ns` resolution) is used.
If _seed_ is provided, it is set to the integer value of that.

```wlambda
std:srand[];

std:srand 1000;
```

#### <a name="266-stdrand-max-or-mode"></a>2.6.6 - std:rand [_max-or-mode_]

Returns a random number between 0 and _max_.  The interval 0
to _max-or-mode_ is closed/open, that means 0 is included but _max-or-mode_
is not included.

If _max-or-mode_ is a string `"i64"` or symbol `:i64`, then std:rand will
return a random signed 64 bit integer.

If _max-or-mode_ is not provided, a float number between 0.0
and 1.0 (including 0.0 but not including 1.0) is returned.

```wlambda
std:srand 1234567890;

!zeros = $@i iter i 0 => 1000 {
    if std:rand[100] == 0 \$+ 1;
};

!count_100 = $@i iter i 0 => 1000 {
    if std:rand[100] == 100 \$+ 1;
};

std:assert zeros     >  0;
std:assert count_100 == 0;

std:assert std:rand[] < 1.0;
std:assert std:rand[] >= 0.0;
```

Please note: The PRNG algorithm used for `std:rand` may change
without further notice. If you require your project to have consistent
PRNG results across all WLambda versions use `std:rand:split_mix64_*`.

### <a name="27-function-utilities"></a>2.7 - Function utilities

#### <a name="271-isfun-value"></a>2.7.1 - is\_fun _value_

Returns `$true` if _value_ is a function.

```wlambda
std:assert ~ is_fun {};
std:assert ~ is_fun is_fun;
std:assert ~ not ~ is_fun ${a=10};
```

## <a name="3-data-types"></a>3 - Data Types

### <a name="31-none-sentinel-value-n-or-none"></a>3.1 - None sentinel value: `$n` or `$none`

This is a special sentinel value that is returned by functions and
when a non existing field of a datastructure is accessed. It's semantic
meaning is that there is no value.

Most functions that expect a string value will turn a `$none` into an
empty string. If you need an unambigous representation use `std:ser:wlambda`
for dumping WLambda data structures.

Please note for API design: In case of errornous states you should not
return a `$none` but an `$error` value.

```wlambda
std:assert ~ $n                  == $none;
std:assert ~ int[$n]             == 0;
std:assert ~ float[$n]           == 0.0;
std:assert ~ str[$n]             == "";
std:assert ~ std:ser:wlambda[$n] == "$n";
std:assert ~ is_none[$n];
```

#### <a name="311-isnone-value"></a>3.1.1 - is\_none _value_

Returns `$true` if _value_ is `$none` or `$o()`.

```wlambda
std:assert ~ is_none $none;
std:assert ~ is_none $o();
std:assert ~ not ~ is_none $false;
std:assert ~ not ~ is_none $o(10);
```

#### <a name="312-issome-value"></a>3.1.2 - is\_some _value_

Returns `$true` if _value_ is anything except `$none` or `$o()`.

```wlambda
std:assert ~ not ~ is_some $none;
std:assert ~ not ~ is_some $o();
std:assert ~ is_some $false;
std:assert ~ is_some 30;
std:assert ~ is_some $o(30);
```

### <a name="32-optional-values-o-and-o"></a>3.2 - Optional values `$o()` and `$o(...)`

An optional value can either contain another value, or contain no value at all.
An empty optional value is not much different from `$none`, but it is sometimes
desirabel to make a difference between an optional value and a `$none` value
if the `$none` value is used as sentinel value.

Optional values were introduced for functions that lookup stuff and either
return _something_ that might be `$none` (eg. if some element in a vector is
searched for), or return that nothing was found.

The functions `is_none` and `is_some` like stated above work for these
optional values too:

```wlambda
std:assert ~ is_none $o();
std:assert ~ is_some $o(10);
std:assert ~ is_some $o($none);
std:assert ~ is_some $o($o());
```

Calling an optional value will return it's contents or `$none`:

```wlambda
std:assert_eq $o()[]     $none;
std:assert_eq $o(10)[]   10;

!do_something = {
    if _ == 0 {
        $o()
    } {
        $o(_ + 10)
    }
};

!result = do_something 11;
std:assert_eq result[] 21;

!result = do_something 0;
std:assert_eq result[] $none;
```

In a boolean context an optional becomes `$true` if it contains
something and `$false` if it has nothing.

```wlambda
std:assert ~ not ~ bool $o();
std:assert ~ bool $o(10);

!x = $o();
!res1 = if x "something" "nothing";
std:assert_eq res1 "nothing";

.x = $o(30);
!res2 = if x "something" "nothing";
std:assert_eq res2 "something";
```

Many other operations are just forwarded to the contents of the
optional value:

```wlambda
std:assert_eq $o(33) + 44    77;

!x = $o($[1,2,3]);
std:push x 4;
std:assert_eq (str x) (str $[1,2,3,4]);

std:assert_eq (float $o(4.4))   4.4;
std:assert_eq (int $o(4.4))     4;
```

An optional value can also be dereferenced:

```wlambda
std:assert_eq $*$o()    $none;
std:assert_eq $*$o(10)  10;
```

Calls with more than zero arguments are forwarded to the contents:

```wlambda
std:assert_eq ($o("xx") "yy")  "xxyy";

!x = { _ * 20 };
std:assert_eq ($o(x) 30)    600;
```

#### <a name="321-isoptional-value"></a>3.2.1 - is\_optional _value_

Returns `$true` if _value_ is an optional value. That means either `$o()` or
`$o(...)`.

```wlambda
std:assert ~ is_optional $o();
std:assert ~ is_optional $o($none);
std:assert ~ is_optional $o(10);

std:assert ~ not ~ is_optional $true;
std:assert ~ not ~ is_optional $none;
std:assert ~ not ~ is_optional $false;
std:assert ~ not ~ is_optional 303;
```

#### <a name="322-unwrapping-optionals"></a>3.2.2 - Unwrapping optionals

You can unwrap an optional with `unwrap`. It will panic if there is no value provided.
Otherwise it will return the contents.

```wlambda
std:assert_eq unwrap[$o(10)] 10;
```

### <a name="33-error-values-e-expr-or-error-expr"></a>3.3 - Error values: `$e expr` or `$error expr`

There are no exceptions in WLambda, except the panic, that
halts all execution of the currently running WLambda
program. To signal errors, you return an `$error` value.

These error values, if not handled, will cause a panic of your
program. This means, you need to handle returned error values
one way or the other.

The error value wraps any value you pass to the `$error` or `$e`
constructor syntax.

```wlambda
std:assert ~ is_err ~ $e "something went wrong!"
```

There are more routines except `is_err` to handle an error.
`_?` will return from the currently executed function
up until some given label. `on_error` executes a function
if the second argument was an error value. Otherwise it
just passes through the value. `unwrap` will explicitly cause
an panic if an error value was passed to it. All other values
will be passed through. And `unwrap_err` unwraps an error value, it's
the opposite of `unwrap` because it will cause a panic if you don't pass
an error value.

Most functions don't accept errors in their arguments.
If an error is encountered, a panic will occur. There are only
a few functions that accept error values in their arguments:

- panic
- `_?`
- unwrap_err
- std:error_to_str
- unwrap
- on_error
- return
- break
- bool
- type
- match
- assert
- assert_eq
- is_some
- is_none
- is_err
- is_map
- is_vec
- is_fun
- is_str
- is_wref
- is_ref
- is_bool
- is_bytes
- is_sym
- is_float
- is_optional
- is_int
- ==
- !=
- std:to_ref
- std:ref_id
- std:ser:wlambda

All other functions don't accept errors as their argument.

#### <a name="331--label-value"></a>3.3.1 - _? [_label_] _value_

Unwind the call stack from the current function to a given _label_ if _value_ is an error value.
If no _label_ is given only the current function is returned from with the error value.  If there
is no error, the given value is returned.

The best usecase is, if you just want to hand any errors that might be returned
further upwards the call stack for the parent functions to handle.

```wlambda
!func = { $e "this failed!" };

!other = {
    # some code ...

    _? func[]; # If you would not catch the error value here,
               # the program would panic, as an error value
               # must not be ignored!

    # other code ...

    panic "this will never be reached!";

    # something here...
};

std:assert ~ (unwrap_err other[]) == "this failed!";
```

`_?` can take up to 2 arguments. If so, the first argument is interpreted
as jump label. That is handy if you want to jump up multiple call frames:

```wlambda
!failing_func = { $e :FAIL };

!func = \:some_unique_label {
    ( _ == 42 ) {
        std:displayln "We got 42!";

        # The `then` branch we are currently in is a call frame.
        # To jump further up the call stack, we need the label
        # we defined for the function above.
        !val = _? :some_unique_label failing_func[];

        std:displayln "Returned:" val;
    }
};

std:assert_eq (unwrap_err ~ func 42) :FAIL;
```

A more elaborate example:

```wlambda
!do_fail = $false;

!maybe_fails1 = { 10 };
!maybe_fails2 = {
    do_fail { $error "something is wrong" }
            { .do_fail = $true; 2 };
};

!a = {
    !x = _? maybe_fails1[];
    .x = x + (_? maybe_fails2[]);
    x
};

!first  = a[];
!second = a[];

std:assert_eq first 12;
std:assert (is_err second);
```

#### <a name="332-unwrap-value"></a>3.3.2 - unwrap _value_

Unwraps the given _value_. If the _value_ is an error object it will panic.
Otherwise it will just return the given value. If the _value_ is an optional
value, it will return the value that is wrapped in the optional value.
If it is an empty optional, it will also panic.

Here an demonstration of the unwrap panic:

```wlambda
match (std:eval $code { unwrap $e XXX })
    ($e err) => {
        std:assert ~ std:str:find "Variable 'XXX' undefined" $\.err;
    }
    { std:assert $false };
```

And here how to unwrap optionals:

```wlambda
std:assert_eq (unwrap $o(123))  123;

match (std:eval $code { unwrap $o() })
    ($e err) => {
        std:assert ~ std:str:find "unwrap empty option" $\.err;
    }
    { std:assert $false };
```

#### <a name="333-unwraperr-error-value"></a>3.3.3 - unwrap\_err _error-value_

Unwraps an error value. Does panic if _error-value_ is not an error value.
If it is an error value, the inner wrapped value is returned.

```wlambda
!v = unwrap_err $e "Some Error";

std:assert_eq v "Some Error";
```

#### <a name="334-onerror-handler-maybe-error-value"></a>3.3.4 - on\_error _handler_ _maybe-error-value_

The first parameter to `on_error` should be a _handler_ function,
which will be called with four parameters.
The first of these parameters is the error text,
followed by the line number, column number and file name
from which the error originates.

The given _handler_ is called when an error value is encountered
as second argument, the _maybe-error-value_.

An example to demonstrate the handler arguments:

```wlambda
on_error {!(func, line, col, filename) = @;
    # ...
} ($e "test");
```

A usage example:

```wlambda
!func = {
    (_ == 13) {
        $e "this failed!"
    } {
        "all ok!"
    }
};

!x = $n;

# The first function of on_error will be called with the unwrapped
# error if an error occured.
on_error {|4| .x = _; } ~ func 13;
std:assert_eq x "this failed!";

!ret = on_error {|4| .x = _; } ~ func 1;
std:assert_eq ret "all ok!";
```

#### <a name="335-iserr-value"></a>3.3.5 - is\_err _value_

Returns `$true` if _value_ is an error value.

```wlambda
std:assert ~ is_err $e "foo";
std:assert ~ not ~ is_err $none;
std:assert ~ not ~ is_err 10;
```

#### <a name="336-stderrortostr-value"></a>3.3.6 - std:error\_to\_str _value_

This function accepts an error value in contrast to `str`, but does
not panic but transform the error value into its string representation.

```wlambda
!r = std:error_to_str $e "TEST";

std:assert_eq r "$e \"TEST\" [@ <wlambda::eval>:1:26 Err]";
```

WARNING: The string representation might change between wlambda versions.
Please use `on_error` to access the individual parts
(line, column, filename, error value) of the error.

### <a name="34-booleans"></a>3.4 - Booleans

True and false are represented by `$t` and `$f` or `$true` and `$false`,
whatever suits your coding style better.

You can either use a boolean value with one or two arguments, where `$true`
will call the first argument, and `$false` the second argument. If a second argument
isn't provided and the value is `$false`, `$none` is returned. So to
check for truthness you can just do:

```wlambda
!x = 10;
!some_num =
    (x == 10) { "it is ten" } { "it is not ten" };

std:assert_eq some_num "it is ten";

.x = 20;
.some_num =
    (x == 10) { "it is ten" } { "it is not ten" };
std:assert_eq some_num "it is not ten";
```

#### <a name="341-isbool-any-value"></a>3.4.1 - is\_bool _any-value_

You can check if something is a boolean with `is_bool`:

```wlambda
std:assert ~ is_bool $true;
std:assert ~ is_bool $false;
std:assert ~ not[is_bool $n];
std:assert ~ not[is_bool ""];
std:assert ~ not[is_bool 0];
```

#### <a name="342-bool-any-value"></a>3.4.2 - bool _any-value_

You can cast _any-value_ into a boolean with the `bool` function:

```wlambda
std:assert_eq (bool 1)          $true;
std:assert_eq (bool 0)          $false;
std:assert_eq (bool $e :x)      $false;
std:assert_eq (bool $n)         $false;
std:assert_eq (bool "")         $false;
std:assert_eq (bool "0")        $false;
std:assert_eq (bool "1")        $true;
std:assert_eq (bool :0)         $false;
std:assert_eq (bool :1)         $true;
std:assert_eq (bool 0.0)        $false;
std:assert_eq (bool 0.1)        $false;
std:assert_eq (bool 1.0)        $true;
std:assert_eq (bool {})         $true;
std:assert_eq (bool $b"")       $false;
std:assert_eq (bool $b"\x00")   $false;
std:assert_eq (bool $b"\x01")   $true;
```

#### <a name="343-not-value"></a>3.4.3 - not _value_

This function negates the boolean _value_. If it is not a boolean, it will
be casted into one before negating.

```wlambda
std:assert ~ not $false;
std:assert ~ not 0;
std:assert ~ not $none;
```

#### <a name="344-boolean-list-indexing"></a>3.4.4 - Boolean List Indexing

Booleans can also be used to pick a value from a list
by calling the boolean with a list as first argument:

```wlambda
std:assert_eq ($true  $[:a, :b]) :b;
std:assert_eq ($false $[:a, :b]) :a;
```

### <a name="35-64-bit-integers"></a>3.5 - 64-Bit Integers

WLambda's most basic numeric data type is the 64-Bit integer, aka _i64_ in Rust.
Like with other numbers multiple radix literal forms are supported:

```wlambda
# Decimal:
std:assert_eq 10r99         99;

# Hexadecimal:
std:assert_eq 0xFF01        65281;

# Binary:
std:assert_eq  0b1011       11;
std:assert_eq -0b1011      -11;

# Radix 4:
std:assert_eq 4r31          13;
```

#### <a name="351-int-value"></a>3.5.1 - int _value_

Returns the integer casted version of _value_.
Mostly interesting for converting a string to an integer (in radix 10)
or for getting the truncated value of a float.

```wlambda
std:assert_eq (int 4.2)         4;
std:assert_eq (int "402")       402;
std:assert_eq (int "a3")        0;

std:assert_eq (int $b"@")       0x40;   # Returns the byte value of the first char

std:assert_eq (int $[4,4,4])    3; # Same as `len`
std:assert_eq (int ${a=4,b=4})  2; # Same as `len`
```

#### <a name="352-isint-value"></a>3.5.2 - is\_int _value_

Returns `$true` if _value_ is of data type integer. Otherwise it returns `$false`.

#### <a name="353-stdnegi64-integer"></a>3.5.3 - std:neg\_i64 _integer_

Negates the _integer_, which makes a negative from a positive and positive
from a negative number.

```wlambda
std:assert_eq (std:neg_i64 -1)      1;
std:assert_eq (std:neg_i64 1)      -1;

std:assert_eq (std:neg_i64 0xFF)  -255;
```

#### <a name="354-stdnoti64-integer"></a>3.5.4 - std:not\_i64 _integer_

Flips the bits of the signed 64-Bit _integer_.

```wlambda
std:assert_eq (std:not_i64 -1)      0;
std:assert_eq (std:not_i64 1)      -2;

std:assert_eq (std:not_i64 0xFF)  -256;
```

#### <a name="355-stdnegu32-integer"></a>3.5.5 - std:neg\_u32 _integer_

Negates the _integer_ as if it was an unsigned 32-Bit integer.

```wlambda
std:assert_eq (std:neg_u32 0xFF)   4294967041;
std:assert_eq (std:neg_u32 0x1)    4294967295;
std:assert_eq (std:neg_u32 0x0)    0;
```

#### <a name="356-stdnotu32-integer"></a>3.5.6 - std:not\_u32 _integer_

Flips the bits of the _integer_ as if it was an unsigned 32-Bit integer.

```wlambda
std:assert_eq (std:not_u32 0xFF)   4294967040;
std:assert_eq (std:not_u32 0x1)    4294967294;
std:assert_eq (std:not_u32 0x0)    4294967295;
```

### <a name="36-64-bit-floats"></a>3.6 - 64-Bit Floats

WLambda supports 64-Bit floating point numbers, aka _f64_ in Rust.
Like with other numbers multiple radix literal forms are supported:

```wlambda
# Decimal:
std:assert_eq 10r9.92       9.92;

# Hexadecimal:
std:assert_eq 0xFF.1        255.0625;

# Binary:
std:assert_eq 0b1011.101    11.625;

# Radix 4:
std:assert_eq 4r3.3         3.75;
```

#### <a name="361-float-value"></a>3.6.1 - float _value_

This function casts _value_ into a float:

```wlambda

std:assert_eq (float 10)       10.0;
std:assert_eq (float $t)        1.0;
std:assert_eq (float $f)        0.0;
std:assert_eq (float :"32.2")  32.2;
std:assert_eq (float "5.42")   5.42;
std:assert_eq (float "5.42")   5.42;
std:assert_eq (float $b"\xFF") 255.0;

```

#### <a name="362-isfloat-value"></a>3.6.2 - is\_float _value_

Returns `$true` if _value_ is a float, otherwise `$false` is returned.

```wlambda
std:assert ~ is_float 4.4;
std:assert ~ is_float 1.0 + 1;
std:assert ~ not ~ is_float 1 + 1.0;
std:assert ~ not ~ is_float 4;
std:assert ~ not ~ is_float $true;
```

#### <a name="363-stdnumacos-float"></a>3.6.3 - std:num:acos _float_

Computes the arccosine of a number. Return value is in radians in the range [0,
pi] or NaN if the number is outside the range [-1, 1].

#### <a name="364-stdnumacosh-float"></a>3.6.4 - std:num:acosh _float_

Inverse hyperbolic cosine function.

#### <a name="365-stdnumasin-float"></a>3.6.5 - std:num:asin _float_

Computes the arcsine of a number. Return value is in radians in the range
[-pi/2, pi/2] or NaN if the number is outside the range [-1, 1].

#### <a name="366-stdnumasinh-float"></a>3.6.6 - std:num:asinh _float_

Inverse hyperbolic sine function.

#### <a name="367-stdnumatan-float"></a>3.6.7 - std:num:atan _float_

Computes the arctangent of a number. Return value is in radians in the range
[-pi/2, pi/2].

#### <a name="368-stdnumatan2-y-x"></a>3.6.8 - std:num:atan2 _y_ _x_

Computes the four quadrant arctangent of _y_ and other _x_ in radians.

- x = 0, y = 0: 0
- x >= 0: arctan(y/x) -> [-pi/2, pi/2]
- y >= 0: arctan(y/x) + pi -> (pi/2, pi]
- y < 0: arctan(y/x) - pi -> (-pi, -pi/2)

#### <a name="369-stdnumatanh-float"></a>3.6.9 - std:num:atanh _float_

Inverse hyperbolic tangent function.

#### <a name="3610-stdnumcbrt-float"></a>3.6.10 - std:num:cbrt _float_

Takes the cubic root of a number.

#### <a name="3611-stdnumceil-float"></a>3.6.11 - std:num:ceil _float_

Returns the smallest integer (still a float) greater than or equal to a number.

#### <a name="3612-stdnumcos-float"></a>3.6.12 - std:num:cos _float_

Computes the cosine of a number (in radians).

#### <a name="3613-stdnumcosh-float"></a>3.6.13 - std:num:cosh _float_

Hyperbolic cosine function.

#### <a name="3614-stdnumexp-float"></a>3.6.14 - std:num:exp _float_

Returns e ^ _float_, (the exponential function).

#### <a name="3615-stdnumexp2-float"></a>3.6.15 - std:num:exp2 _float_

Returns 2 ^ _float_.

#### <a name="3616-stdnumexpm1-float"></a>3.6.16 - std:num:exp\_m1 _float_

Returns (e ^ _float_ - 1) in a way that is accurate even if the number is close
to zero.

#### <a name="3617-stdnumfloor-float"></a>3.6.17 - std:num:floor _float_

Returns the largest integer (still as float) less than or equal to a number.

#### <a name="3618-stdnumhypot-y-x"></a>3.6.18 - std:num:hypot _y_ _x_

Calculates the length of the hypotenuse of a right-angle triangle given legs of
length _x_ and _y_.

#### <a name="3619-stdnumln-float"></a>3.6.19 - std:num:ln _float_

Returns the natural logarithm of the number.

#### <a name="3620-stdnumlog-float"></a>3.6.20 - std:num:log _float_

Returns the logarithm of the number with respect to an arbitrary base.

The result may not be correctly rounded owing to implementation details;
`std:log2` can produce more accurate results for base 2, and `std:log10` can
produce more accurate results for base 10.

#### <a name="3621-stdnumlog10-float"></a>3.6.21 - std:num:log10 _float_

Returns the base 10 logarithm of the number.

#### <a name="3622-stdnumlog2-float"></a>3.6.22 - std:num:log2 _float_

Returns the base 2 logarithm of the number.

#### <a name="3623-stdnumpow-float"></a>3.6.23 - std:num:pow _float_

Raises a number to a floating point power.
You may also use the `^` operator, which also works for integers.

#### <a name="3624-stdnumrecip-float"></a>3.6.24 - std:num:recip _float_

Takes the reciprocal (inverse) of a number, 1/x.

#### <a name="3625-stdnumround-float"></a>3.6.25 - std:num:round _float_

Returns the nearest integer (still a float) to a number. Round half-way cases
away from 0.0.

#### <a name="3626-stdnumsin-float"></a>3.6.26 - std:num:sin _float_

Computes the sine of a number (in radians).

#### <a name="3627-stdnumsinh-float"></a>3.6.27 - std:num:sinh _float_

Hyperbolic sine function.

#### <a name="3628-stdnumsqrt-float"></a>3.6.28 - std:num:sqrt _float_

Takes the square root of a number.

#### <a name="3629-stdnumtan-float"></a>3.6.29 - std:num:tan _float_

Computes the tangent of a number (in radians).

#### <a name="3630-stdnumtanh-float"></a>3.6.30 - std:num:tanh _float_

Hyperbolic tangent function.

#### <a name="3631-stdnumtodegrees-float"></a>3.6.31 - std:num:to\_degrees _float_

Converts radians to degrees.

#### <a name="3632-stdnumtoradians-float"></a>3.6.32 - std:num:to\_radians _float_

Converts degrees to radians.

#### <a name="3633-stdnumtrunc-float"></a>3.6.33 - std:num:trunc _float_

Returns the integer part of a number.

#### <a name="3634-stdnumlerp-a-b-x"></a>3.6.34 - std:num:lerp _a_ _b_ _x_

Linear interpolation between _a_ and _b_ by _x_. Where _x_ is
in the range of `[0.0, 1.0]`.

```wlambda
!res = int ~ std:num:lerp 0.0 100.0 0.5;

std:assert_eq res 50;
```

#### <a name="3635-stdnumsmoothstep-a-b-x"></a>3.6.35 - std:num:smoothstep _a_ _b_ _x_

Interpolates smoothly from 0.0 to 1.0 where _x_ is in the range of `[a, b]`.

```wlambda
!res = int ~ 1000.0 * (std:num:smoothstep 0.0 100.0 10.0);

std:assert_eq res 28;
```

#### <a name="3636-stdnumfract-float"></a>3.6.36 - std:num:fract _float_

Returns the fractional part of the floating point number _float_.

```wlambda
std:assert ((std:num:fract 4.25) - 0.25) < 0.00001
```

### <a name="37-numeric-functions"></a>3.7 - Numeric Functions

These functions work for all types of numbers.

#### <a name="371-stdnumabs-number"></a>3.7.1 - std:num:abs _number_

Takes the absolute value of _number_. If _number_ is not a number
it will be converted into an integer.

```wlambda
std:assert_eq (std:num:abs -10)     10;
std:assert_eq (std:num:abs -13.3)   13.3;
```

#### <a name="372-stdnumsignum-number"></a>3.7.2 - std:num:signum _number_

Returns either 1 or -1, depending on the sign of the given _number_.

```wlambda
std:assert_eq (std:num:signum -4)  -1;
std:assert_eq (std:num:signum  4)   1;

std:assert_eq (std:num:signum -4.0)  -1.0;
std:assert_eq (std:num:signum  4.0)   1.0;
```

#### <a name="373-stdnuminttoclosedopen01-integer"></a>3.7.3 - std:num:int\_to\_closed\_open01 _integer_

Transforms the given 64-Bit _integer_ into a number in the range `0.0` to `1.0`.
Inclusive `0.0`, exclusive `1.0`. This function is mainly useful if you generated
the integer from a random number generator.

```wlambda
std:assert_rel_eq (std:num:int_to_closed_open01 0)  0.0         0.00000001;
std:assert_rel_eq (std:num:int_to_closed_open01 -1) 0.999999999 0.00000001;
```

#### <a name="374-stdnuminttoopen01-integer"></a>3.7.4 - std:num:int\_to\_open01 _integer_

Transforms the given 64-Bit _integer_ into a number in the range `0.0` to `1.0`.
Exclusive `0.0`, exclusive `1.0`. This function is mainly useful if you generated
the integer from a random number generator.

```wlambda
std:assert (std:num:int_to_open01 0)  > 0.0;
std:assert (std:num:int_to_open01 -1) < 1.0;
```

#### <a name="375-stdnuminttoopenclosed01-integer"></a>3.7.5 - std:num:int\_to\_open\_closed01 _integer_

Transforms the given 64-Bit _integer_ into a number in the range `0.0` to `1.0`.
Inclusive `0.0`, inclusive `1.0`. This function is mainly useful if you generated
the integer from a random number generator.

```wlambda
std:assert (std:num:int_to_open_closed01 0)  > 0.0;
std:assert (std:num:int_to_open_closed01 -1) == 1.0;
```

### <a name="38-numerical-mathematical-vectors"></a>3.8 - Numerical Mathematical Vectors

In order to aid in the development of GUIs, games, and other physics/geometry adjacent software,
WLambda comes with a built in datatype for mathematical vectors, which can contain floats and integers
and have between two and four dimensions.

```wlambda
# integer vectors
std:assert ~ $i(-1, 2).y                == 2;
std:assert ~ (ivec ${z=3})              == $i(0,0,3);
std:assert ~ (ivec4 $[])                == $i(0,0,0,0);
std:assert ~ $i(1.49, -2.72)            == $i(1,-2);
# float vectors
std:assert ~ $f(1.00, -33).x            == $f(1, 200).first;
std:assert ~ $f(-0, 2.4).y              == $f(1.6, 2.4).second;
std:assert ~ (fvec3 ${w=0.1})           == $f(0,0,0);
# conversion
std:assert ~ (fvec3 $i(1, 2))/10        == $f(0.1, 0.2, 0);
std:assert ~ (ivec2 $f(1.3, 2.7, -5.8)) == $i(1, 2);
std:assert ~ (ivec $f(1.3, 2.7, -5.8))  == $i(1, 2, -5);
```

#### <a name="381-vector-conversions"></a>3.8.1 - Vector Conversions

There are eight functions for converting other values into vectors
and vectors of integers into vectors of floats:

- `ivec` 
- `ivec2`
- `ivec3`
- `ivec4`
- `fvec`
- `fvec2`
- `fvec3`
- `fvec4`

The functions without a dimension suffix fill in as many dimensions
as are present in the object being converted.
The functions with dimension suffixes fill in any missing dimensions
with `0`s and ignore dimensions as necessary.

NOTE: `ivec` will always truncate (i.e. round down) floats into integers when converting,
just like when converting floats into integers implicitly elsewhere in WLambda.

#### <a name="382-vector-component-access"></a>3.8.2 - Vector Component Access

There are 12 functions for accessing the components of vectors,
but only four have unique behavior (the rest are aliases).

- `x`/`r`/`h`/`0`/`first`,
- `y`/`g`/`s`/`1`/`second`,
- `z`/`b`/`v`/`2`/`third`,
- `w`/`3`/`fourth`

```wlambda
!my_vec = $f(39.3, 404.504, 333.8);
std:assert_eq my_vec.x my_vec.0;
std:assert_eq my_vec.x my_vec.first;

std:assert_eq my_vec.y my_vec.1;
std:assert_eq my_vec.y my_vec.second;

std:assert_eq my_vec.z my_vec.2;
std:assert_eq my_vec.z my_vec.third;

std:assert_eq my_vec.w my_vec.3;
std:assert_eq my_vec.w my_vec.fourth;
```

#### <a name="383-named-field-access-and-swizzling"></a>3.8.3 - Named Field Access and Swizzling

You can access the fields of numeric vectors with different keys:

```wlambda
std:assert_eq $i(2,3,4,5).x     2;
std:assert_eq $i(2,3,4,5).y     3;
std:assert_eq $i(2,3,4,5).z     4;
std:assert_eq $i(2,3,4,5).w     5;

std:assert_eq $i(5,6,7,8).r     5;
std:assert_eq $i(5,6,7,8).g     6;
std:assert_eq $i(5,6,7,8).b     7;
std:assert_eq $i(5,6,7,8).a     8;

std:assert_eq $i(5,6,7,8).h     5;
std:assert_eq $i(5,6,7,8).s     6;
std:assert_eq $i(5,6,7,8).v     7;
std:assert_eq $i(5,6,7,8).a     8;

std:assert_eq $i(5,6,7,8).0     5;
std:assert_eq $i(5,6,7,8).1     6;
std:assert_eq $i(5,6,7,8).2     7;
std:assert_eq $i(5,6,7,8).3     8;
```

You can also use **swizzling** to quickly make a new vector:

```wlambda
std:assert_eq $i(2,3,4).xx      $i(2,2);
std:assert_eq $i(2,3,4).xyxz    $i(2,3,2,4);
std:assert_eq $i(2,3,4).bgr     $i(4,3,2);
std:assert_eq $i(2,3).xyrg      $i(2,3,2,3);
std:assert_eq $i(2,3,4,5).zw    $i(4,5);
```


#### <a name="384-euler-additionsubtraction"></a>3.8.4 - Euler Addition/Subtraction

You can add vectors to each other and subtract them from each other.

The type of the resulting vector will be the same as the vector on the left.

The number of dimensions in the resulting vector will be the same as the vector
with the highest number of dimensions that was involved in the operation.

If the value on the right isn't a vector, it will be converted into one,
just as if it were passed through `ivec` or `fvec`, meaning that as many
dimensions are kept as are present.

```wlambda
std:assert_eq[ $i(0.1, 0.9) + $i(1, 0) , $i(1, 0) ];
std:assert_eq[ $f(0.1, 0.9) + $i(1, 0) , $f(1.1, 0.9) ];
std:assert_eq[ $f(0.1, 0.9) + ${ w=7 } , $f(0.1, 0.9, 0, 7) ];
std:assert_eq[ std:v:mag2 $i(-1, 5) + $i(1, -5) , 0.0 ];
```

#### <a name="385-scalar-multiplicationdivision"></a>3.8.5 - Scalar Multiplication/Division

You can multiply and divide integer and float vectors by single numbers.
This copies the vector, multiplies or divides each component of the vector by the single number,
and returns the result.

NOTE: Dividing `ivec`s will always truncate (i.e. round down) floats into integers.

```wlambda
std:assert ~ $i(3, 6)/2       == $i(1, 3);
std:assert ~ $f(3, 6)/2       == $f(1.5, 3);
std:assert ~ $f(0.5, 0) * 1.3 == $f(0.65,0);
std:assert ~ (std:v:mag (std:v:norm $[40.19, 0.399]) * 10) == 10.0;
```

#### <a name="386-unary-vector-operations"></a>3.8.6 - Unary Vector Operations

Calling `-` on a vector returns a new vector with all of its fields negated.
This is equivalent to multiplying the vector by `-1`.

Calling `+` on a vector returns a copy of the exact same vector.
This is equivalent to multiplying the vector by `1`.

```wlambda
!my_vec = $f(1.2, 2.3, 3.4);
std:assert_eq (ivec (-my_vec)) $i(-1, -2, -3);
std:assert_eq (+my_vec) my_vec;
# adding something to its inverse yields all 0s
std:assert_eq[ my_vec + (-my_vec), my_vec * 0 ];
```

#### <a name="387-isfvec-value"></a>3.8.7 - is\_fvec _value_

Returns `$true` if _value_ is a float vector.

```wlambda
std:assert_eq   (is_fvec $f(1,2))       $true;
std:assert_eq   (is_fvec $f(1,2,3))     $true;
std:assert_eq   (is_fvec $f(1,2,3,4))   $true;
std:assert_eq   (is_fvec $none)         $false;
std:assert_eq   (is_fvec $i(1,2))       $false;
std:assert_eq   (is_fvec $[3.4, 4.5])   $false;

std:assert_eq   (is_fvec fvec <& $[3.4, 4.5])   $true;

# References are not dereferenced:
std:assert_eq   (is_fvec $&&$f(3,4))    $false;
std:assert_eq   (is_fvec $*$&&$f(3,4))  $true;
```

#### <a name="388-isivec-value"></a>3.8.8 - is\_ivec _value_

Returns `$true` if _value_ is an integer vector.

```wlambda
std:assert_eq   (is_ivec $i(1,2))       $true;
std:assert_eq   (is_ivec $i(1,2,3))     $true;
std:assert_eq   (is_ivec $i(1,2,3,4))   $true;
std:assert_eq   (is_ivec $none)         $false;
std:assert_eq   (is_ivec $[3, 4])       $false;

std:assert_eq   (is_ivec ivec <& $[3.4, 4.5])   $true;

# References are not dereferenced:
std:assert_eq   (is_ivec    $&& $i(3,4))  $false;
std:assert_eq   (is_ivec $* $&& $i(3,4))  $true;
```

#### <a name="389-isnvec-value"></a>3.8.9 - is\_nvec _value_

Returns `$true` if _value_ is either a numerical float or integer vector.

```wlambda
std:assert_eq   (is_nvec $i(1,2))       $true;
std:assert_eq   (is_nvec $i(1,2,3))     $true;
std:assert_eq   (is_nvec $i(1,2,3,4))   $true;
std:assert_eq   (is_nvec $f(1,2))       $true;
std:assert_eq   (is_nvec $f(1,2,3))     $true;
std:assert_eq   (is_nvec $f(1,2,3,4))   $true;
std:assert_eq   (is_nvec $none)         $false;
std:assert_eq   (is_nvec $[3, 4])       $false;

std:assert_eq   (is_nvec fvec <& $[3.4, 4.5])   $true;
std:assert_eq   (is_nvec ivec <& $[3.4, 4.5])   $true;
```

#### <a name="3810-nveclen-value"></a>3.8.10 - nvec\_len _value_

Returns the length of a numerical vector, commonly known as the dimension.
Either 2, 3 or 4.

```wlambda
std:assert_eq (nvec_len $i(1, 2))       2;
std:assert_eq (nvec_len $i(1, 2, 3))    3;
std:assert_eq (nvec_len $i(1, 2, 3, 4)) 4;

std:assert_eq (nvec_len $f(1.1, 2.2))           2;
std:assert_eq (nvec_len $f(1.1, 2.2, 3.3))      3;
std:assert_eq (nvec_len $f(1.1, 2.2, 3.3, 4.4)) 4;
```

#### <a name="3811-fvec-value"></a>3.8.11 - fvec _value_

Will cast _value_ into a float vector. You can cast a multitude of data types
into a float vector:

```wlambda
std:assert_eq   (fvec  $[1,2,3,4])      $f(1,2,3,4);
std:assert_eq   (fvec  $[1,2,3])        $f(1,2,3);
std:assert_eq   (fvec  $[1,2])          $f(1,2);

std:assert_eq   (fvec $i(1,2))          $f(1,2);
std:assert_eq   (fvec $i(1,2,3))        $f(1,2,3);
std:assert_eq   (fvec $i(1,2,3,4))      $f(1,2,3,4);

std:assert_eq   (fvec $p("2", "3.4"))   $f(2,3.4);

!i = $iter $[] +> $p(3,4) +> $[5,6];
std:assert_eq   (fvec i)    $f(3,4);
std:assert_eq   (fvec i)    $f(5,6);

std:assert_eq   (fvec ${x = 1, y = 2})                 $f(1,2);
std:assert_eq   (fvec ${x = 1, y = 2, z = 3})          $f(1,2,3);
std:assert_eq   (fvec ${x = 1, y = 2, z = 3, w = 4})   $f(1,2,3,4);
```

#### <a name="3812-fvec2-value"></a>3.8.12 - fvec2 _value_

Like `fvec` but always returns a 2 dimensional vector.

```wlambda
std:assert_eq  (fvec2 $i(3,4,5))    $f(3,4);
std:assert_eq  (fvec2 $[4,5,6,7,8]) $f(4,5);

std:assert_eq  (fvec2 ${x = 1, y = 2, z = 3, w = 4})   $f(1,2);
```

#### <a name="3813-fvec3-value"></a>3.8.13 - fvec3 _value_

Like `fvec` but always returns a 3 dimensional vector.

```wlambda
std:assert_eq  (fvec3 $i(3,4,5))    $f(3,4,5);
std:assert_eq  (fvec3 $[4,5,6,7,8]) $f(4,5,6);

std:assert_eq  (fvec3 ${x = 1, y = 2, z = 3, w = 4})   $f(1,2,3);
```

#### <a name="3814-fvec4-value"></a>3.8.14 - fvec4 _value_

Like `fvec` but always returns a 4 dimensional vector.

```wlambda
std:assert_eq  (fvec4 $i(3,4,5))    $f(3,4,5,0);
std:assert_eq  (fvec4 $[4,5,6,7,8]) $f(4,5,6,7);

std:assert_eq  (fvec4 ${x = 1, y = 2, z = 3, w = 4})   $f(1,2,3,4);
```

#### <a name="3815-ivec-value"></a>3.8.15 - ivec _value_

Will cast _value_ into a float vector. You can cast a multitude of data types
into a float vector:

```wlambda
std:assert_eq   (ivec  $[1,2,3,4])      $i(1,2,3,4);
std:assert_eq   (ivec  $[1,2,3])        $i(1,2,3);
std:assert_eq   (ivec  $[1,2])          $i(1,2);

std:assert_eq   (ivec $f(1.1,2.1))          $i(1,2);
std:assert_eq   (ivec $f(1.1,2.1,3.2))      $i(1,2,3);
std:assert_eq   (ivec $f(1.1,2.1,3.2,4))    $i(1,2,3,4);

std:assert_eq   (ivec $p("2", "3"))   $i(2,3);

!i = $iter $[] +> $p(3,4) +> $[5,6];
std:assert_eq   (ivec i)    $i(3,4);
std:assert_eq   (ivec i)    $i(5,6);

std:assert_eq   (ivec ${x = 1, y = 2})                 $i(1,2);
std:assert_eq   (ivec ${x = 1, y = 2, z = 3})          $i(1,2,3);
std:assert_eq   (ivec ${x = 1, y = 2, z = 3, w = 4})   $i(1,2,3,4);
```

#### <a name="3816-ivec2-value"></a>3.8.16 - ivec2 _value_

Like `ivec` but always returns a 2 dimensional vector.

```wlambda
std:assert_eq  (ivec2 $f(3,4,5))    $i(3,4);
std:assert_eq  (ivec2 $[4,5,6,7,8]) $i(4,5);

std:assert_eq  (ivec2 ${x = 1, y = 2, z = 3, w = 4})   $i(1,2);
```

#### <a name="3817-ivec3-value"></a>3.8.17 - ivec3 _value_

Like `ivec` but always returns a 3 dimensional vector.

```wlambda
std:assert_eq  (ivec3 $f(3,4,5))    $i(3,4,5);
std:assert_eq  (ivec3 $[4,5,6,7,8]) $i(4,5,6);

std:assert_eq  (ivec3 ${x = 1, y = 2, z = 3, w = 4})   $i(1,2,3);
```

#### <a name="3818-ivec4-value"></a>3.8.18 - ivec4 _value_

Like `ivec` but always returns a 4 dimensional vector.

```wlambda
std:assert_eq  (ivec4 $f(3,4,5))    $i(3,4,5,0);
std:assert_eq  (ivec4 $[4,5,6,7,8]) $i(4,5,6,7);

std:assert_eq  (ivec4 ${x = 1, y = 2, z = 3, w = 4})   $i(1,2,3,4);
```

#### <a name="3819-stdvdims-vec"></a>3.8.19 - std:v:dims _vec_

You can use this function to retrieve the number of dimensions in _vec_.

Like most other std:v functions,
it will coerce whatever value is passed into it into a `ivec`,
if that value is not a `fvec`.

This function always returns an integer, regardless of whether an `ivec` or `fvec` is passed in.

```wlambda
# the least number of dimensions a vector can have is 2.
std:assert_eq (std:v:dims $[]) 2;
# while the most is 4.
std:assert_eq (std:v:dims ${w=0}) 4;
std:assert_eq (std:v:dims $f(1,2)) (std:v:dims $i(1,2));
```

#### <a name="3820-stdvmag2-vec"></a>3.8.20 - std:v:mag2 _vec_

Returns the magnitude of _vec_, squared.

Calculating the squared magnitude is a little bit faster,
so you should prefer this method where performance is paramount.

The magnitude is always a float, regardless of whether the parameter is an `ivec` or `fvec`.

```wlambda
std:assert_eq (std:v:mag2 ${w=4}) 16.0;
```

#### <a name="3821-stdvmag-vec"></a>3.8.21 - std:v:mag _vec_

Returns the magnitude (also known as the length) of _vec_.

The magnitude is always a float, regardless of whether the parameter is an `ivec` or `fvec`.

```wlambda
std:assert_eq (std:v:mag ${w=4}) 4.0;
```

#### <a name="3822-stdvnorm-vec"></a>3.8.22 - std:v:norm _vec_

Returns a new vector which has a magnitude of `1`, but points in the same direction as _vec_.
Vectors with a length of one are also known as unit vectors.

Note that this still returns an `ivec` when used on `ivec`s,
meaning that when used on an `ivec2` only four values are possible:
- `$i(1, 0)`
- `$i(-1, 0)`
- `$i(0, 1)`
- `$i(0, -1)`

These are the only `ivec2`s that have a length of `1`.

```wlambda
!p1 = fvec ${ x = 20, y = 30.5 };
!p2 = fvec ${ x = -10, y = 0.5 };

# get the delta representing how far you'd have to travel to get from p1 to p2
!delta = p2 - p1;
# the normalized delta represents a single 1 sized step you could take to get to p2 from p1.
!n = std:v:norm delta;

# the length of this step is reflected in the magnitude of the vectors
std:assert_eq[ (std:v:mag delta) - 1, std:v:mag (p1 + n) - p2 ];
```

#### <a name="3823-stdvdot-vec1-vec2"></a>3.8.23 - std:v:dot _vec1_ _vec2_

Returns the sum of all components after multiplying each component
in _vec1_ with the corresponding component of _vec2_.

This can be used to represent the "sameness" of two vectors (especially unit vectors):
the degree to which they are pointing in the same direction.

Returns an integer when used on an `ivec`, and a float when used on an `fvec`.

If _vec1_ is an `fvec`, then _vec2_ will also be coerced into one.
If _vec1_ isn't an `fvec`, then it's coerced into an `ivec`, just like the other `std:v` functions.

```wlambda
!at      = fvec ${ x = 20 , y = 30.5 };           # where you're at
!goal    = fvec ${ x = -10, y = 0.5  };           # where you want to look
!looking = std:v:rad2vec (std:num:to_radians 90); # direction you're looking in

# do you need to turn left or right to look at `goal`,
# if you're standing at `at` looking in `looking`?

# find the unit vector representing the space between where you want to look and where you're at.
!delta = std:v:norm goal - at;

# the direction you need to turn in can be found by checking the sign of
# the dot product of where you're currently looking and where you're at.
!dir = std:v:dot delta looking;

std:assert_eq[ (dir < 0) "left" "right", "left" ];
```

#### <a name="3824-stdvcross-vec1-vec2"></a>3.8.24 - std:v:cross _vec1_ _vec2_

Returns a vector perpendicular to _vec1_ and _vec2_.

Similar to the dot product, but instead of returning a single value it returns another vector,
and is only useful in three (and seven, but WLambda's vectors don't support so many) dimensions.

Regardless of the number of dimensions in the input vectors, this function will return a 3d vector.

```wlambda
!x = fvec ${x=1};
!y = fvec ${y=1};

# the cross product of these two values will represent the third axis, z, and will be
# perpendicular to both other vectors.

!z = std:v:cross x y;

std:assert_eq z (fvec ${z=1});

# because all three vectors are perpindicular, they'll all have the same dot product from each other.
std:assert_eq[(std:v:dot x y), (std:v:dot y z)];
std:assert_eq[(std:v:dot y z), (std:v:dot z x)];
```

#### <a name="3825-stdvlerp-vec1-vec2-t"></a>3.8.25 - std:v:lerp _vec1_ _vec2_ _t_

`lerp` stands for linear interpolation.
This function is useful when animating positions, whereas slerp is useful for animating rotations.

Creates a new vector in a new position relative to _vec1_ and _vec2_.
Aside from the two reference vectors, this function also takes a variable, _t_,
which represents how far relative to the first and second vector the new vector should be.

If _t_ is `0`, _vec1_ is returned. If _t_ is `1`, then _vec2_ is returned.
If _t_ is `0.5`, the resulting vector will be halfway in between the first and second vector.

```wlambda
std:assert_eq[ std:v:lerp $f(1,0) $f(0,1) 0.5 , $f(0.5, 0.5) ];
std:assert_eq[ std:v:lerp $f(5,10) ${y=10} 0.75 , $f(1.25, 10) ];
std:assert_eq[ std:v:lerp $[-2,5] $[2,-5] 0.5 , $i(0, 0) ];
!a = $f(83, -49.5);
std:assert_eq[ (std:v:mag a) / 2 , std:v:mag (std:v:lerp a $[] 0.5) ];
std:assert_eq[ (std:v:mag a) * 2 , std:v:mag (std:v:lerp $f(0,0) a 2.0) ];
!b = $f(-484.58, -19);
std:assert_eq[ std:v:lerp b a 1.5 , std:v:lerp a b -0.5 ];
```

#### <a name="3826-stdvslerp-vec1-vec2-t"></a>3.8.26 - std:v:slerp _vec1_ _vec2_ _t_

`slerp` stands for spherical linear interpolation.
This function is useful when animating rotations, whereas lerp is useful for animating positions.

In most cases, you'll want to pass in unit vectors representing rotations to slerp.
You should get back unit vectors in the vast majority of cases,
but if perfect accuracy is required normalizing the output of this function is suggested.

Creates a new vector in a new position relative to _vec1_ and _vec2_.
Aside from the two reference vectors, this function also takes a variable, _t_,
which represents how far relative to the first and second vector the new vector should be.

If _t_ is `0`, _vec1_ is returned. If _t_ is `1`, then _vec2_ is returned.
If _t_ is `0.5`, the resulting vector will be halfway in between _vec1_ and _vec2_.

```wlambda
# compare this to the one for std:v:lerp! note that the length of this one is almost 1.
# this is definitely not the case for std:v:lerp's output with the same input.
!v = std:v:slerp $f(1,0) $f(0,1) 0.5;
# the values may not be exact because of floating point rounding errors,
# but they should be pretty close.
std:assert_rel_eq v.x 0.7071067811865476 0.000001;
std:assert_rel_eq v.y 0.7071067811865476 0.000001;

# The values are interpolated around a circle, so if you raise t high enough you'll start
# getting the same values as you get with a lower t, although not quite because of float rounding.
!half = (std:v:slerp $f(1,0) $f(0,1) 0.5);
!four = (std:v:slerp $f(1,0) $f(0,1) 4.5);
std:assert_rel_eq half.x four.x 0.000001;
std:assert_rel_eq half.y four.y 0.000001;
```

#### <a name="3827-stdvvec2rad-vec"></a>3.8.27 - std:v:vec2rad _vec_

Creates a rotation in radians from the x and y components of _vec_.

Always returns a float.

Coerces the argument into an `ivec` unless it's a `fvec`.

```wlambda
std:assert_eq[ std:num:to_degrees (std:v:vec2rad ${x=1}) , 0.0 ];
std:assert_eq[ std:num:to_degrees (std:v:vec2rad ${y=1}) , 90.0 ];

# halfway in between 0.0 and 90.0 should be 45.
# note that lerp would work here as well
!h = std:v:slerp $f(1, 0) $f(0, 1) 0.5;
std:assert_eq[ std:num:to_degrees (std:v:vec2rad h) , 45.0 ];
```

#### <a name="3828-stdvrad2vec-radians"></a>3.8.28 - std:v:rad2vec _radians_

Creates a unit vector from _radians_.

Always returns an `fvec`.

```wlambda
std:assert_eq[ std:v:rad2vec (std:num:to_radians 0.0) , $f(1, 0)];
std:assert_eq[ ivec (std:v:rad2vec (std:num:to_radians 90.0)), $i(0, 1)];

# halfway in between 0.0 and 90.0 should be 45.
# note that lerp would NOT work here as well, rad2vec returns a unit vector.
!h = std:v:slerp $f(1, 0) $f(0, 1) 0.5; # slerp because rotations
!r = std:v:rad2vec (std:num:to_radians 45.0);
std:assert_rel_eq r.x h.x 0.0001;
std:assert_rel_eq r.y h.y 0.0001;
```

### <a name="39-characters-and-bytes"></a>3.9 - Characters and Bytes

WLambda has a data type for single characters and bytes. The lexical syntax is
a character or escape sequence delimited by `'`:

```wlambda
std:assert_eq (type 'a')   "char";
std:assert_eq (type $b'a') "byte";

std:assert_eq (type '\u{40}') "char";
std:assert_eq (type $b'\x40') "byte";

# You can use the unicode escapes up to the first 256 code points in bytes too:
std:assert_eq (char $b'\u{40}') '\u{40}';

# Beyond that, you will get the byte '?':
std:assert_eq (char $b'\u{3131}') '?';
```

The can be used interchangeably almost everywhere. They can often also be used
instead of a string, because they are handled like a single character long string.

They are useful because they do not require an extra allocation in the background.
They are not boxed like strings:

```wlambda
std:assert_eq ("foo" $p(0, 1))  "f"; # requires allocation
std:assert_eq ("foo".0)         'f'; # requires NO allocation
```

#### <a name="391-byte-value"></a>3.9.1 - byte _value_

Converts the _value_ to a byte. If _value_ is a number, it must be
below or equal to 255, otherwise it will result in the byte `'?'`.

```wlambda
std:assert_eq (byte 64)           $b'@';
std:assert_eq (byte 300)          $b'?';
std:assert_eq (byte "ABC")        $b'A';
std:assert_eq (byte $b"\xFF\xF0") $b'\xFF';
std:assert_eq (byte "\xFF\xF0")   $b'\xC3'; # first byte of an utf-8 sequence!
```

#### <a name="392-char-value"></a>3.9.2 - char _value_

Converts the _value_ to a Unicode character.

```wlambda
std:assert_eq (char $b'\xFF') 'ÿ';
std:assert_eq (char 0x262F)   '☯';
std:assert_eq (char "☯xyz")   '☯';
```

#### <a name="393-isbyte-value"></a>3.9.3 - is\_byte _value_

Checks if _value_ is of the byte data type.

```wlambda
std:assert (is_byte $b'X');
std:assert not[is_byte 'X'];
std:assert not[is_byte 123];
std:assert (is_byte $b"abc".0);
std:assert not[is_byte "abc".0];
std:assert not[is_byte $b"abc"];
```

#### <a name="394-ischar-value"></a>3.9.4 - is\_char _value_

Check if _value_ is of the Unicode character data type.

```wlambda
std:assert (is_char 'X');
std:assert not[is_char $b'X'];
std:assert not[is_char 123];
std:assert (is_char "abc".0);
std:assert not[is_char $b"abc".0];
std:assert not[is_char $b"abc"];
std:assert not[is_char "abc"];
```

#### <a name="395-stdchartolowercase-value"></a>3.9.5 - std:char:to\_lowercase _value_

Turns the _value_ into a lower case Unicode character.

```wlambda
std:assert_eq (std:char:to_lowercase 'A') 'a';
std:assert_eq (std:char:to_lowercase 65)  'a';
```

#### <a name="396-stdchartouppercase-value"></a>3.9.6 - std:char:to\_uppercase _value_

Turns the _value_ into an upper case Unicode character.

```wlambda
std:assert_eq (std:char:to_uppercase 'a') 'A';
std:assert_eq (std:char:to_uppercase 97)  'A';
```

### <a name="310-strings"></a>3.10 - Strings

Strings in WLambda are like Rust UTF-8 encoded immutable Unicode strings.
There are two types of literal forms for strings:

```wlambda
"abc def \"foo\"";
std:assert_eq $q/any delimiter may be used instead of/
    "any delimiter may be used instead of";
# Unicode escapes are also working:
std:assert_eq "\u{2211}" "∑";
```

#### <a name="3101-string-literal-syntaxes"></a>3.10.1 - String Literal Syntaxes

There are multiple kinds of syntax constructs you can use to
notate string (and byte vector) literals:

- Regular strings
```wlambda
!s = "a b c";

std:assert_eq s "a b c";
```
- Byte vectors `$b"\x02FOO\x03"`
- Quoted strings `$q(123433)`
- Quoted byte vectors `$Q(XZY)`
- WLambda code strings
```wlambda
# Short form $c works too.
!code = $code {
    !this = is a block;
    It just needs to be in valid WLambda[:Syntax];
    .x = But it does not need to pass the compiler
        phase.x;
};

# Primary use case is `eval` and `std:thread:spawn`:
!v = (std:thread:spawn $code {
    !@import std std;
    !res = "x" "y" "z";
    std:str:cat res 33;
}).join[];

std:assert_eq v "xyz33";
```

#### <a name="3102-str-value"></a>3.10.2 - str _value_

Casts _value_ to a string and returns it.
Also dereferences a value.

```wlambda
std:assert_eq (str "\xFF")     "ÿ";
std:assert_eq (str "\x0A")     "\n";
std:assert_eq (str 1)          "1";
std:assert_eq (str $n)         "";
std:assert_eq (str $t)         "$true";
std:assert_eq (str $f)         "$false";
std:assert_eq (str $&10)       "10";
std:assert_eq (str $&&10)      "10";
std:assert_eq (str ${a=10})    "${a=10}";
std:assert_eq (str $[1,2,3])   "$[1,2,3]";
std:assert_eq (str $o(42))     "42";
std:assert_eq (str $o())       "";

!x = $&&10;
std:assert_eq (str ~ std:ref:weaken x)   "10";
```

#### <a name="3103-stdwritestr-value"></a>3.10.3 - std:write\_str _value_

Writes a WLambda syntax representation of the given _value_ to a string.
This is useful for debugging purposes or in combination with `std:eval`.


```wlambda
std:assert_eq (std:write_str "foo")         "\"foo\"";
std:assert_eq (std:write_str $&&10)         "$&&10";
std:assert_eq (std:write_str $[1, 2, 3])    "$[1,2,3]"
```

Here an example in combination with `std:eval`:

```wlambda
!code =
    std:str:cat
        "$@i iter i "
        (std:write_str $[1, 2, 3, 4])
        " { $+ i }";

std:assert_eq (std:eval code) 10;
```

#### <a name="3104-isstr-value"></a>3.10.4 - is\_str _value_

Returns `$true` if _value_ is a string.

```wlambda
std:assert ~ is_str "foo";

std:assert ~ not ~ is_str $b"foo";
std:assert ~ not ~ is_str :foo;
std:assert ~ not ~ is_str 324;

std:assert ~ not ~ is_str $&&"foo";
std:assert ~ is_str $*$&&"foo";
```

#### <a name="3105-stdstrcat-a-b-"></a>3.10.5 - std:str:cat _a_ _b_ ...

Stringifies (like with `str`) and concatenates all its arguments.
If an argument is a vector, it's elements will be stringified and concatenated.

```wlambda
std:assert_eq
    (std:str:cat :a 10 23.2 "ab" "cd" $[1, 2, 3])
    "a1023.2abcd123";
```

If a vector argument is given, it's elements are stringified, thats
useful if you prepare substrings to be concatenated in one single action:

```wlambda
!out = $[];
std:push out "abc";
std:push out "123";
std:push out "XXX";

!s = std:str:cat out;
std:assert_eq s "abc123XXX";
```

#### <a name="3106-stdstrjoin-sep-vector"></a>3.10.6 - std:str:join _sep_ _vector_

Join's the stringified elements of _vector_ with the _sep_ string.
Will return an error if _vector_ is not a vector.

```wlambda
std:assert_eq
    (std:str:join "::" $[1,2,3])
    "1::2::3";
```

#### <a name="3107-stdstrlen-value"></a>3.10.7 - std:str:len _value_

Returns the length of the stringified _value_ in unicode characters.
The core function `len` does return the number of bytes in the string
instead.

```wlambda
std:assert_eq (len         "∑") 3;
std:assert_eq (std:str:len "∑") 1;
std:assert_eq (len         "∑ÄÄ") 7;
std:assert_eq (std:str:len "∑ÄÄ") 3;
std:assert_eq (len         "abcd") 4;
std:assert_eq (std:str:len "abcd") 4;
```

#### <a name="3108-stdstrfind-pattern-string-offset"></a>3.10.8 - std:str:find _pattern_ _string_ [_offset_]

Searches for the string _pattern_ in the _string_ and returns the 0 based position
in the string the given _pattern_ starts.
If no pattern was found `$none` is returned.

```wlambda
std:assert_eq (std:str:find "xyz" "abcxyz")         3;
std:assert_eq (std:str:find "xyz" "abcxyzxyz" 6)    6;
std:assert_eq (std:str:find "xyz" "abcxyzfooxyz" 6) 9;
```

#### <a name="3109-stdstrreplace-pattern-replacement-string"></a>3.10.9 - std:str:replace _pattern_ _replacement_ _string_

Replaces every occurence of _pattern_ in _string_ with _replacement_
and returns a new string. All values will be casted to a string if
they aren't.

```wlambda
!s = std:str:replace "dog" "cat"
    "I really like my dog, because when you dog, you can put dog in the dog!";
std:assert_eq s
    "I really like my cat, because when you cat, you can put cat in the cat!";

!s = std:str:replace "9" "1" "9999";
std:assert_eq s "1111";
```

#### <a name="31010-stdstrreplacen-pattern-replacement-count-string"></a>3.10.10 - std:str:replace\_n _pattern_ _replacement_ _count_ _string_

Replaces _count_ occurences of _pattern_ in _string_ with _replacement_
and returns a new string. All values will be casted to a string if
they aren't.

```wlambda
!s = std:str:replace_n "dog" "cat" 2
    "I really like my dog, because when you dog, you can put dog in the dog!";
std:assert_eq s
    "I really like my cat, because when you cat, you can put dog in the dog!";

!s = std:str:replace_n "9" "1" 3 "9999";
std:assert_eq s "1119";
```

#### <a name="31011-stdstrtrim-value"></a>3.10.11 - std:str:trim _value_

Trims off any (unicode) white space from the start and end of the
stringified _value_.

```wlambda
std:assert_eq
    (std:str:trim "\nfooo bar ")
    "fooo bar";
```

#### <a name="31012-stdstrtrimstart-value"></a>3.10.12 - std:str:trim\_start _value_

Trims off any (unicode) white space from the start of the stringified _value_.

```wlambda
std:assert_eq
    (std:str:trim_start "  \nfooo bar \n")
    "fooo bar \n";
```

#### <a name="31013-stdstrtrimend-value"></a>3.10.13 - std:str:trim\_end _value_

Trims off any (unicode) white space from the end of the stringified _value_.

```wlambda
std:assert_eq
    (std:str:trim_end "  \nfooo bar \n")
    "  \nfooo bar";
```

#### <a name="31014-stdstrpadstart-len-pad-str-value"></a>3.10.14 - std:str:pad\_start _len_ _pad-str_ _value_

Pads the stringified _value_ by _pad-str_ up to _len_ characters, inserting
at the start of the string.
The output string is guaranteed to be exactly _len_ unicode characters
long and not longer. If _pad-str_ is empty, nothing is done.

```wlambda
std:assert_eq
    (std:str:pad_start 2 "Ä" "0")
    "Ä0";
std:assert_eq
    (std:str:pad_start 5 "∑∑∑" "∑∑")
    "∑∑∑∑∑";
std:assert_eq
    (std:str:pad_start 8 "Ä∑ßs" "∑∑")
    "ßsÄ∑ßs∑∑";

# Empty _pad-str_ is not an error but a nop:
std:assert_eq
    (std:str:pad_start 8 "" "∑∑")
    "∑∑";

# also works with characters
std:assert_eq
    (std:str:pad_start 3 'x' "0")
    "xx0";
# also works with bytes
std:assert_eq
    (std:str:pad_start 3 $b'x' "0")
    "xx0";
```

#### <a name="31015-stdstrpadend-len-pad-str-value"></a>3.10.15 - std:str:pad\_end _len_ _pad-str_ _value_

Pads the stringified _value_ by _pad-str_ up to _len_ characters,
appending at the end.
The output string is guaranteed to be exactly _len_ unicode characters
long and not longer. If _pad-str_ is empty, nothing is done.

```wlambda
std:assert_eq
    (std:str:pad_end 2 "Ä" "0")
    "0Ä";
std:assert_eq
    (std:str:pad_end 5 "∑∑∑" "∑∑")
    "∑∑∑∑∑";
std:assert_eq
    (std:str:pad_end 8 "Ä∑ßs" "∑∑")
    "∑∑Ä∑ßsÄ∑";

# Empty _pad-str_ is not an error but a nop:
std:assert_eq
    (std:str:pad_end 8 "" "∑∑")
    "∑∑";

# also works with characters
std:assert_eq
    (std:str:pad_end 3 'x' "0")
    "0xx";
# also works with bytes
std:assert_eq
    (std:str:pad_end 3 $b'x' "0")
    "0xx";
```

#### <a name="31016-stdstrtobytes-string"></a>3.10.16 - std:str:to\_bytes _string_

Encodes _string_ in UTF-8 and returns a byte vector containing all it's bytes.

```wlambda
!b = std:str:to_bytes "1234";
std:assert_eq b $b"1234";

!b = std:str:to_bytes "Äß日本人";
std:assert_eq b $b"\xC3\x84\xC3\x9F\xE6\x97\xA5\xE6\x9C\xAC\xE4\xBA\xBA";
```

#### <a name="31017-stdstrtobyteslatin1-string"></a>3.10.17 - std:str:to\_bytes\_latin1 _string_

Encodes _string_ as bytes in Latin1 (ISO-8859-1) encoding and returns
a byte vector containing all it's bytes. If a character is outside the Latin1 Unicode
range, it will be replaced by a "?".

```wlambda
!b = std:str:to_bytes_latin1 "\u{FF}\u{F0}";
std:assert_eq b $b"\xFF\xF0";
!b = std:str:to_bytes_latin1 "\u{FE00}\u{FF}\u{3232}";
std:assert_eq b $b"?\xFF?";
```

#### <a name="31018-stdstrfromlatin1-byte-vector"></a>3.10.18 - std:str:from\_latin1 _byte-vector_

Converts the _byte-vector_ to a Unicode string, assuming Latin 1 (ISO-8859-1) encoding
and returns it.

```wlambda
!s = std:str:from_latin1 $b"Ä";
std:assert_eq s "\u{C3}\u{84}";

!s = std:str:from_latin1 $b"\xFF\xF0";
std:assert_eq s "\u{FF}\u{F0}";
```

#### <a name="31019-stdstrfromutf8-byte-vector"></a>3.10.19 - std:str:from\_utf8 _byte-vector_

Converts the _byte-vector_ to a Unicode string and returns it.
If the _byte-vector_ contains invalid UTF-8 sequences an
error value is returned.

```wlambda
!s = _? ~ std:str:from_utf8 $b"\xC3\x84\xC3\x9F\xE6\x97\xA5\xE6\x9C\xAC\xE4\xBA\xBA";
std:assert_eq s "Äß日本人";

!r = on_error {|| _ } ~ std:str:from_utf8 $b"\xFF\xFF";
std:assert_eq r "str:from_utf8 decoding error: invalid utf-8 sequence of 1 bytes from index 0";
```

#### <a name="31020-stdstrfromutf8lossy-byte-vector"></a>3.10.20 - std:str:from\_utf8\_lossy _byte-vector_

Converts the _byte-vector_ to a Unicode string and returns it.
If the _byte-vector_ contains invalid UTF-8 sequences a `"�"` will be
inserted.

```wlambda
!s = _? ~ std:str:from_utf8_lossy
    $b"\xC3\x84\xFF\xC3\x9F\xE6\x97\xA5\xE6\x9C\xAC\xE4\xBA\xBA\xFF\xFF\x00";
std:assert_eq s "Ä�ß日本人��\0";
```

#### <a name="31021-stdstrtocharvec-string"></a>3.10.21 - std:str:to\_char\_vec _string_

Converts the _string_ into a vector of integers which represent the Unicode
character number.

```wlambda
!v = std:str:to_char_vec "1234";
std:assert_eq (str v) ~ str $[49,50,51,52];

!v = std:str:to_char_vec "Äß日本人";
std:assert_eq (str v) ~ str $[196,223,0x65E5,0x672C,0x4EBA];
```

#### <a name="31022-stdstrfromcharvec-vector"></a>3.10.22 - std:str:from\_char\_vec _vector_

The reverse operation of `std:str:to_char_vec`. It converts
a vector of integers to a unicode string. Any integer that has
no associated Unicode character will be converted to `"?"`.

```wlambda
std:assert_eq (std:str:from_char_vec $[9999999999]) "?";
std:assert_eq
    (std:str:from_char_vec
        $[49,50,196,223,0x65E5,0x672C,0x4EBA])
    "12Äß日本人";
```

#### <a name="31023-stdstrtolowercase-string"></a>3.10.23 - std:str:to\_lowercase _string_

Swaps all (Unicode) characters in _string_ to their lowercase version.

```wlambda
std:assert_eq (std:str:to_lowercase "ZABzabÄßÜÖ") "zabzabäßüö";
```

#### <a name="31024-stdstrtouppercase-string"></a>3.10.24 - std:str:to\_uppercase _string_

Swaps all (Unicode) characters in _string_ to their lowercase version.

```wlambda
std:assert_eq (std:str:to_uppercase "ZABzabäßüö") "ZABZABÄSSÜÖ";
```

#### <a name="31025-stdstreditdistance-str-a-strb"></a>3.10.25 - std:str:edit\_distance _str-a_ _str\_b

Calculates the Levenshtein distance between two (Unicode) strings.

```wlambda
std:assert_eq (std:str:edit_distance "aaa" "aba") 1;
```

### <a name="311-byte-vectors"></a>3.11 - Byte Vectors

Bytes (plural of Byte) are a vector of bytes. Unlike strings they don't have any encoding.
Literal syntax however supports inserting unicode characters:


```wlambda
$b"abc";
$b"\xFF\xFD\x00";
$Q/ABCDEF\xFD/;      # \xFD is not an escape sequence here!
```

#### <a name="3111-call-properties-of-bytes"></a>3.11.1 - Call Properties of Bytes

You can index inside a byte array by calling it with an integer:

```wlambda
std:assert_eq ($b"ABC" 1) $b'B';
```

You can extract a whole range when calling with 2 integers:

```wlambda
std:assert_eq ($b"ABCDEF" 2 3) $b"CDE";
```

If you call a bytes value with a map as argument, the bytes value is
converted to a string internally using `str` and the value from the map
is returned:

```wlambda
!some_map = ${ a = 20, b = 30 };

std:assert_eq ($b"a" some_map) 20;
std:assert_eq ($b"b" some_map) 30;

std:assert_eq some_map.$b"a" 20;   # with method call syntax
```

If you call bytes with a pair as argument, you can do a multitude of
operations, from replacement to finding a byte:

```wlambda
# replacing substrings:
std:assert_eq ($b"a,b,c,d" $p($b',', $b';')) $b"a;b;c;d";
std:assert_eq ($b"a,b,c,d" $p($b"a,", $b"XXX")) $b"XXXb,c,d";
# also works with strings and chars:
std:assert_eq ($b"a,b,c,d" $p("a,", "XXX")) $b"XXXb,c,d";
std:assert_eq ($b"a,b,c,d" $p("a,", 'O')) $b"Ob,c,d";

# finding a character/byte:
std:assert_eq ($b"a,b,c,d" $p(0, $b'c')) 4;
std:assert_eq ($b"a,b,c,d" $p(0,   'c')) 4;

# splitting:
std:assert_str_eq ($b"A\<SOH>B\<SOH>C" $p($b'\<SOH>', 0)) $[$b"A", $b"B", $b"C"];
```

See also the section [Calling Semantics of Data Types](#319-calling-semantics-of-data-types).

#### <a name="3112-byte-conversion-functions"></a>3.11.2 - Byte Conversion Functions

You can convert bytes to strings in a multitude of ways:

- str _bytes_
  ```wlambda
  std:assert_eq (str $b"abc")        "abc";
  std:assert_eq (str $b"abc\xFF")    "abcÿ";
  std:assert_eq (str $Q/ABCDEF\xFD/) "ABCDEF\\xFD";
  ```
- std:bytes:to\_hex _bytes_ \[_group-len_ \[_group-sep_]]
  ```wlambda
  std:assert_eq (std:bytes:to_hex $b"\xFF\x0A\xBE\xEF")
                "FF0ABEEF";
  std:assert_eq (std:bytes:to_hex $b"\xFF\x0A\xBE\xEF" 2)
                "FF 0A BE EF";
  std:assert_eq (std:bytes:to_hex $b"\xFF\x0A\xBE\xEF" 2 ":")
                "FF:0A:BE:EF";
  ```
- std:str:from\_latin1 _bytes_
  ```wlambda
  std:assert_eq (std:str:from_latin1 $b"\xFF\xF0") "\u{FF}\u{F0}";
  ```
- std:str:from\_utf8 _bytes_
  ```wlambda
  std:assert_eq (std:str:from_utf8 $b"\xC3\xA4\xC3\x9F\xC3\xBF") "äßÿ";
  std:assert_eq (std:str:from_utf8 [std:str:to_bytes "äßÿ"])         "äßÿ";
  # broken UTF8 will result in an error:
  std:assert ~ is_err (std:str:from_utf8 $b"\xC3\xC3\xA4\xC3\x9F\xC3\xBF");
  ```
- std:str:from\_utf8\_lossy _bytes_
  ```wlambda
  std:assert_eq (std:str:from_utf8_lossy $b"\xC3\xC3\xA4\xC3\x9F\xC3\xBF") "�äßÿ";
  ```

You can even convert bytes to vectors of integers back and forth:

```wlambda
!v = std:bytes:to_vec $b"ABC";
std:assert_eq (str v) (str $[65, 66, 67]);

std:push v 64;
!b = std:bytes:from_vec v;
std:assert_eq b $b"ABC@";
```

There is also an inverse operation to `bytes:to_hex`:

```wlambda
std:assert_eq (std:bytes:from_hex ~ std:bytes:to_hex $b"ABC") $b"ABC";
```

#### <a name="3113-isbytes-value"></a>3.11.3 - is\_bytes _value_

Returns `$true` if _value_ is a byte vector.

```wlambda
std:assert ~ is_bytes $b"ABC";
std:assert ~ not ~ is_bytes "ABC";
```

#### <a name="3114-stdbytesfind-pattern-string-offset"></a>3.11.4 - std:bytes:find _pattern_ _string_ [_offset_]

Searches for the string _pattern_ in the _string_ and returns the 0 based position
in the string the given _pattern_ starts.
If no pattern was found `$none` is returned.

```wlambda
std:assert_eq (std:bytes:find $b"xyz" $b"abcxyz")         3;
std:assert_eq (std:bytes:find $b"xyz" $b"abcxyzxyz" 6)    6;
std:assert_eq (std:bytes:find $b"xyz" $b"abcxyzfooxyz" 6) 9;
```

#### <a name="3115-stdbytesreplace-byte-vector-pattern-replacement"></a>3.11.5 - std:bytes:replace _byte-vector_ _pattern_ _replacement_

Replaces all occurences of _pattern_ in _byte-vector_ with _replacement_.

```wlambda
std:assert_eq
    (std:bytes:replace $b"XXX\x01\x02\x03OOO" $b"\x01\x02\x03" $b"---")
    $b"XXX---OOO";

std:assert_eq
    (std:bytes:replace $b"XXX\x01\x02\x03OOO" $b"\x01\x02\x03" $b"")
    $b"XXXOOO";

std:assert_eq
    (std:bytes:replace $b"XXX\x01\x02\x03OOO" $b"\x01\x02\x03" $b"\xFF\xFF\xFF\xFF")
    $b"XXX\xFF\xFF\xFF\xFFOOO";
```

#### <a name="3116-stdbytesfromhex-string-with-hex-chars"></a>3.11.6 - std:bytes:from\_hex _string-with-hex-chars_

This function decodes a string of hex characters into a byte vector.

```wlambda
!bv = std:bytes:from_hex "62797465";
std:assert_eq bv $b"byte";
```

#### <a name="3117-stdbytesfromvec-vector-of-ints"></a>3.11.7 - std:bytes:from\_vec _vector-of-ints_

Decodes a vector of integers in the range 0-255 into a byte vector. If an
integer is larger than 255 don't expect a sensible result. But it will most
likely just wrap around.

```wlambda
std:assert_eq
    (std:bytes:from_vec $[1,2,3,0x62,0x79,0x74,0x65])
    $b"\x01\x02\x03byte";
```

#### <a name="3118-stdbytestohex-byte-vector"></a>3.11.8 - std:bytes:to\_hex _byte-vector_

Converts the given byte vector to a string of hex encoded bytes.

```wlambda
std:assert_eq
    (std:bytes:to_hex $b"byte")
    "62797465";
```

#### <a name="3119-stdbytestobase64-byte-vector-config"></a>3.11.9 - std:bytes:to\_base64 _byte-vector_ [_config_]

Converts the given byte vector to a Base64 encoded string. With _config_ you can
define the encoding style:

- `:std`
- `:std_no_pad`
- `:url`
- `:url_no_pad`

```wlambda
std:assert_eq
    (std:bytes:to_base64 $b"\x00\xFF")
    "AP8=";
std:assert_eq
    (std:bytes:to_base64 "test")
    "dGVzdA==";
std:assert_eq
    (std:bytes:to_base64 "test" :std_no_pad)
    "dGVzdA";
std:assert_eq
    (std:bytes:from_base64 (std:bytes:to_base64 "test"))
    $b"test";
std:assert_eq
    (std:bytes:from_base64 (std:bytes:to_base64 "test" :url) :url)
    $b"test";
```

#### <a name="31110-stdbytesfrombase64-byte-vector-config"></a>3.11.10 - std:bytes:from\_base64 _byte-vector_ [_config_]

Converts the given byte vector to a Base64 encoded string. With _config_ you can
define the encoding style, see also `to_base64` for a list of possible values.


```wlambda
std:assert_eq
    (std:bytes:from_base64 "AP8=")
    $b"\x00\xFF";
std:assert_eq
    (std:bytes:from_base64 "dGVzdA")
    $b"test";
```

#### <a name="31111-stdbytestovec-byte-vector"></a>3.11.11 - std:bytes:to\_vec _byte-vector_

Converts the given byte vector to a vector of integers in the range 0-255.

```wlambda
std:assert_str_eq
    (std:bytes:to_vec $b"byte")
    $[98, 121, 116, 101];
```

#### <a name="31112-stdbytespack-pack-format-string-list-of-values"></a>3.11.12 - std:bytes:pack _pack-format-string_ _list-of-values_

Returns a byte vector containing the values of _list-of-values_
serialized in binary form (packed) according to the given _pack-format-string_.

If the syntax of the _pack-format-string_ has errors, an error value is returned.

See also the section [Format String Syntax](#133-format-string-syntax-for-stdbytespack-and-stdbytesunpack)
for a description of the syntax for _pack-format-string_.

This function is very useful for constructing binary data for file formats and
network protocols.

```wlambda
std:assert_eq
    (std:bytes:pack "> i16 x s8 x f" $[1, "test", 0.5])
    $b"\0\x01\0\x04test\0?\0\0\0";
```

#### <a name="31113-stdbytesunpack-pack-format-string-byte-vector"></a>3.11.13 - std:bytes:unpack _pack-format-string_ _byte-vector_

Decodes the given _byte-vector_ according to the _pack-format-string_ and returns it
as list of values.

If the syntax of the _pack-format-string_ has errors or the given _byte-vector_
is too short, an error value is returned.

See also the section [Format String Syntax](#133-format-string-syntax-for-stdbytespack-and-stdbytesunpack)
for a description of the syntax for _pack-format-string_.

```wlambda
std:assert_str_eq
    (std:bytes:unpack
        "< i16 x c3 s16 x y"
        $b"\x10\x00\x00ABC\x02\x00XY\x00This is the rest")
    $[16, $b"ABC", $b"XY", $b"This is the rest"];
```

### <a name="312-symbols"></a>3.12 - Symbols

Symbols are a special kind of strings that are interned by the runtime.  That
means, comparing two symbols is an O(1) operation and not an O(n) operation on
the length of the string. Symbols are also used as keys for maps.  Use them
however you see fit. They will do a key lookup (on maps, vectors (as indices)
and user values) if they are called with an argument.

```wlambda
std:assert_eq (:1 $[1,2,3]) 2;
std:assert_eq (:a ${a=30}) 30;
```

They are basically the same as string, but strings have
slightly different calling semantics and a different literal syntax.
Often you can use them as shortform literal in places where a string
is expected:

```wlambda
std:assert_eq (std:str:replace :A :a "All AbabA") "all ababa";
```

They can be very useful as sentinel values or custom enums:

```wlambda
!x = :ON;
!y = :OFF;

std:assert_eq ((x == :ON) { 10 }) 10;

# They don't match with strings:
std:assert_eq ((x == "ON") { 10 } { 20 }) 20;

# Work together nicely with `match`:

!state = "";
match x
    :ON  => { .state = "is on" }
    :OFF => { .state = "is off" };
std:assert_eq state "is on";

match y
    :ON  => { .state = "is on" }
    :OFF => { .state = "is off" };
std:assert_eq state "is off";
```

Keep in mind, that all symbols are interned strings. And if you create many
symbols that are not used anymore, you might need to trigger a cleanup
with `std:symbols::collect`.

The collection of dead symbols is also run automatically for every 100th newly
allocated symbol.

#### <a name="3121-sym-value"></a>3.12.1 - sym _value_

Casts the given _value_ into a symbol.

```wlambda
std:assert_eq (sym "a")     :a;
std:assert_eq (sym $b"a")   :a;
std:assert_eq (sym $[])     :"$[]";
std:assert_eq (sym 10)      :10;
```

#### <a name="3122-issym-value"></a>3.12.2 - is\_sym _value_

Returns `$true` if the _value_ is symbol.

```wlambda
std:assert ~ is_sym :a;
std:assert ~ is_sym ~ sym "a";
std:assert ~ is_sym ~ sym "a";
std:assert ~ is_sym ~ sym $b"a";

std:assert ~ not ~ is_sym "a";
std:assert ~ not ~ is_sym $b"a";
std:assert ~ not ~ is_sym $&&:a;
std:assert ~ not ~ is_sym ${};
std:assert ~ not ~ is_sym $none;
std:assert ~ not ~ is_sym $true;
```

#### <a name="3123-stdsymbolscollect"></a>3.12.3 - std:symbols:collect

Collect and remove all interned symbols in the current thread that are no
longer used. Returns the number of freed symbols. Please keep in mind, that
the `std:ref_id` of any collected symbol will be different from a symbol that
is created later with the same characters.

The collection of dead symbols is also run automatically for every 100th newly
allocated symbol.

If you rely on the reference ID of a symbol, you should make sure to keep it
around. Literal symbols are always kept around as long as the code is running
or referenced somewhere (eg. by a function).


```wlambda
std:symbols:collect[];

!probably_unique_sym = sym "onceonly_used";

std:assert_eq
    (std:ref_id ~ sym "onceonly_used")
    (std:ref_id probably_unique_sym);

std:assert_eq std:symbols:collect[] 0;

.probably_unique_sym = $none;

std:assert_eq std:symbols:collect[] 1;
```

### <a name="313-syntax-block"></a>3.13 - Syntax `$%:Block`

A syntax element is an element of an abstract syntax tree as it is returned
by `std:wlambda:parse` for instance. They carry the type of syntax node
and debug information with them.

#### <a name="3131-stdsynpos-syntax"></a>3.13.1 - std:syn:pos _syntax_

Returns the position of the syntax element in the source code.

```wlambda
!ast = std:wlambda:parse "1 + 2";
!add_syntax = ast.1.0;

std:assert_str_eq
    (std:syn:pos add_syntax)
    $["<wlambda:parse:input>", 1, 3];
```

#### <a name="3132-stdsyntype-syntax"></a>3.13.2 - std:syn:type _syntax_

Converts the syntax element to a symbol, so you can determine it's type:

```wlambda
!ast = std:wlambda:parse "1 + 2";
!add_syntax = ast.1.0;

std:assert_str_eq
    (std:syn:type add_syntax)
    :BinOpAdd;
```

### <a name="314-pairs-pa-b"></a>3.14 - Pairs `$p(a, b)`

A pair is an immutable tuple of 2 values. You can use it for returning two
values from a function as it is a slight bit slimmer than a vector with two
values. Unlike a vector, pairs are compared by `==` according to their contents
and not by referencial equality.

There are two ways to form a pair:

- Pair value syntax: `$p(a, b)`
- Pair right associative operator: `a => b`

You can access the pair values by the following keys:

```wlambda
!v = $p(11, 12);

std:assert_eq v.0     11;
std:assert_eq v.1     12;
std:assert_eq (0 v)   11;
std:assert_eq (1 v)   12;

std:assert_eq v.car   11;
std:assert_eq v.cdr   12;

std:assert_eq v.head  11;
std:assert_eq v.tail  12;

std:assert_eq v.first    11;
std:assert_eq v.second   12;

# Pairs are often used to represent map entries,
# so you can use `key` and `value`
# and the short forms `k` and `v` too:
std:assert_eq v.value 11;
std:assert_eq v.key   12;

std:assert_eq v.v     11;
std:assert_eq v.k     12;
```

Comparison does happen by their contents:

```wlambda
std:assert $p(1, 2) == $p(1, 2);
std:assert $p(2, 2) != $p(1, 2);

# In contrast to vectors:
std:assert not ~ $[1, 2] == $[1, 2];
```

The index is wrapping around, that means `$p(a, b).2` is the first element again:

```wlambda
!v = $p(33, 44);
!l = $[];

iter i $i(0, 4)
    ~ std:push l v.(i);

std:assert_eq (str l) (str $[33, 44, 33, 44]);
```

A pair is a referencial data type, that means you can use `std:ref_id` on it:

```wlambda
!a = $p(1, 2);
!b = $p(2, 3);
!id_a = std:ref_id a;
!id_b = std:ref_id b;

std:assert (id_a != id_b);
std:assert std:ref_id[a] == id_a;

!v = $[a];
std:assert std:ref_id[v.0] == id_a;
```

#### <a name="3141-pair-operator-a--b"></a>3.14.1 - Pair Operator `a => b`

Writing `a => b` operator is the same as writing `$p(a, b)`.  However, the
precedence of the `=>` operator is the lowest and right associative, so writing
this is possible:

```wlambda
!p = 1 + 2 => 3 + 4;

std:assert_eq p $p(3, 7);
```

The following example shows off the associativity of the operator:

```wlambda
!a = 1 => 2;
!b = 2 => 3 => 4;

std:assert_eq a $p(1, 2);
std:assert_eq b $p(2, $p(3, 4));
std:assert_eq b 2 => 3 => 4;
```

#### <a name="3142-cons-a-b"></a>3.14.2 - cons _a_ _b_

Creates a new pair from the values _a_ and _b_.

```wlambda
!p = cons 3 4;

std:assert_eq p $p(3, 4);
```

#### <a name="3143-pair-stringbyte-vector-operations"></a>3.14.3 - Pair string/byte vector operations

If you call a pair with a string or byte vector as argument, there are some
operations that can be done:

##### <a name="31431-p-from--count--string-or-byte-vec"></a>3.14.3.1 - $p( _from_ , _count_ ) _string-or-byte-vec_

Returns a substring starting at _from_ with the length _count_.

```wlambda
std:assert_eq ($p(2, 4) "abcdefgh") "cdef";
```

The same works for byte vectors:

```wlambda
std:assert_eq ($p(2, 4) $b"abcdefgh") $b"cdef";
```

##### <a name="31432-p-pattern--replacement--string-or-byte-vec"></a>3.14.3.2 - $p( _pattern_ , _replacement_ ) _string-or-byte-vec_

Replaces all _pattern_ occurences in _string_ by _replacement_.

```wlambda
std:assert_eq ($p(";", "_") "A;B;D;EFG;HI") "A_B_D_EFG_HI";
```

The same works for byte vectors:

```wlambda
std:assert_eq ($p($b";", $b"_") $b"A;B;D;EFG;HI") $b"A_B_D_EFG_HI";
```

##### <a name="31433-p-split-pattern--max--string-or-byte-vec"></a>3.14.3.3 - $p( _split-pattern_ , _max_ ) _string-or-byte-vec_

Splits _string_ at _split-pattern_ a _max_ number of times.
If _max_ is 0, it is split completely.

```wlambda
std:assert_eq str[$p(";", 3) "A;B;D;EFG;HI"] ~ str $["A", "B", "D;EFG;HI"];

std:assert_eq str[$p(";", 0) "A;B;D;EFG;HI"] ~ str $["A", "B", "D", "EFG", "HI"];
```

The same works for byte vectors:

```wlambda
std:assert_eq str[$p($b";", 0) $b"A;B;D;EFG;HI"] ~ str $[$b"A", $b"B", $b"D", $b"EFG", $b"HI"];
```

#### <a name="3144-pair-to-iterator"></a>3.14.4 - Pair to Iterator

Pairs play a special role if you make an iterator from it.
It can be used to create a specialized iterator that only
iterates over keys or values of a map. Or that enumerates
a vector or map.

##### <a name="31441-iter---range"></a>3.14.4.1 - Iter - Range

`$iter $p(0, 10)` is the same as `$iter $i(0, 10)` and will construct an
iterator that iterates from `0` to `9` (inclusive).
Because of the pair operator `a => b` we can nicely write a counting loop like this:

```wlambda
!sum = $@i
    iter i 0 => 10 {
        $+ i;
    };
std:assert_eq sum 45;
```

##### <a name="31442-iter---enumerate"></a>3.14.4.2 - Iter - Enumerate

If the first value of the pair is `:enumerate`
it will enumerate entries in a map or values in a vector.

```wlambda
!v = $[];

# $iter is only explicit here for demonstration
# purposes! `iter` will make an iter from the pair
# if you don't pass one!
iter i ($iter $p(:enumerate, $[:a, :b, :c]))
    ~ std:push v i;

std:assert_eq (str v) (str $[0, 1, 2]);
```

For maps:

```wlambda
!v = $[];
iter i $p(:enumerate, ${a = 10, b = 20})
    ~ std:push v i;

std:assert_eq (str v) (str $[0, 1]);
```

##### <a name="31443-iter---values"></a>3.14.4.3 - Iter - Values

This is useful for iterating over the values in a map in an undefined order:

```wlambda
!m = ${ a = 10, b = 20, c = 33 };

!sum = $@i iter v $p(:values, m) ~ $+ v;

std:assert_eq sum 63;
```

##### <a name="31444-iter---keys"></a>3.14.4.4 - Iter - Keys

You can also iterate over map keys in an undefined order:

```wlambda
!m = ${ :10 = :c, :20 = :b, :30 = :a };

!sum = $@i iter v $p(:keys, m) ~ $+ v;

std:assert_eq sum 60;
```

#### <a name="3145-ispair-value"></a>3.14.5 - is\_pair _value_

Checks if _value_ is a pair.

```wlambda
std:assert ~ is_pair $p(1, 2);
std:assert not ~ is_pair $[1, 2];
std:assert not ~ is_pair $i(1, 2);
```

### <a name="315-vectors-or-lists"></a>3.15 - Vectors (or Lists)

The literal syntax for vectors (or sometimes also called lists in WLambda)
is `$[...]`. You may write any kind of expression in it and you will get
a vector from it.

For iteration over a vector please refer to [5.2 Collection Iteration](#52-collection-iteration).

To access the elements of a vector you have to call a number with a vector
as first argument. The field syntax is a more convenient shorthand syntax.
The following example demonstrates it:

```wlambda
!add20 = { _ + 20 };

!some_vec = $[1, 2 * 10, add20 10]; 

# Index calling:
std:assert_eq (0 some_vec) 1;
std:assert_eq (1 some_vec) 20;
std:assert_eq (2 some_vec) 30;

# Field syntax:
std:assert_eq some_vec.0 1;
std:assert_eq some_vec.1 20;
std:assert_eq some_vec.2 30;
```

To add elements to a vector, you can use the prepend and append operators `+>`
and `<+` too:

```wlambda
!v = $[1];

0 <+ v;
v +> 2;

std:assert_str_eq v $[0,1,2];
```

#### <a name="3151-stdpush-vector-item"></a>3.15.1 - std:push _vector_ _item_

Pushes _item_ to the end of _vector_. Returns _item_.
Be aware, that there is also the `+>` operator, that will append elements
to a vector.

```wlambda
!v = $[1,2];

std:push v 3;

std:assert_eq (str v) (str $[1,2,3]);
```

#### <a name="3152-stdpop-vector"></a>3.15.2 - std:pop _vector_

Pops off the last element of _vector_. Returns `$none` if the vector is empty
or if _vector_ is not a vector.

```wlambda
!v = $[1,2,3];

std:assert_eq (std:pop v) 3;
std:assert_eq (str v) (str $[1,2]);
```

#### <a name="3153-stdunshift-vector-item"></a>3.15.3 - std:unshift _vector_ _item_

Inserts _item_ at the front of _vector_. Returns _item_ and mutates _vector_
inplace. Be aware that this operation is of O(n) complexity.
Be aware, that there is also the `<+` operator, that will prepend elements
to a vector (with O(n) complexity however).

```wlambda
!v = $[1,2];

std:unshift v 3;

std:assert_eq (str v) (str $[3,1,2]);
```

#### <a name="3154-isvec-value"></a>3.15.4 - is\_vec _value_

Returns `$true` if _value_ is a vector.

```wlambda
std:assert ~ is_vec $[];
std:assert ~ is_vec $[1,2,3];

std:assert ~ not ~ is_vec 0;
std:assert ~ not ~ is_vec $none;
std:assert ~ not ~ is_vec $true;
std:assert ~ not ~ is_vec $p(1,2);
std:assert ~ not ~ is_vec $i(1,2);
std:assert ~ not ~ is_vec $f(1,2);
std:assert ~ not ~ is_vec ${a = 10};
```

#### <a name="3155-vector-splicing"></a>3.15.5 - Vector Splicing

You can splice vectors directly into their literal form with the `$[..., * vec_expr, ...]`
syntax. Here is an example:

```wlambda
!make_some = { $[_ + 1, _ + 2] };

!some_vec = $[ 0, *make_some 1 ];

std:assert_eq some_vec.1 2;
std:assert_eq some_vec.2 3;

# There can be any expression after the `.` if you wrap it into `(...)`:
std:assert_eq some_vec.(1 + 1) 3;

# A more direct example:
std:assert_eq (str $[1,2,*$[3,4]]) "$[1,2,3,4]";
```

#### <a name="3156-stdappend-vec-a-value-or-vec-"></a>3.15.6 - std:append _vec-a_ _value-or-vec_ ...

Appends _value-or-vec_ and all following items to _vec-a_.
If _value-or-vec_ is a vector, all its items will be appended to _vec-a_.

```wlambda
!v = std:append $[1,2,3] :a :b $[:c, :d];

std:assert_eq (str v) "$[1,2,3,:a,:b,:c,:d]";
```

If _vec-a_ is not a vector, a vector containing it will be created:

```wlambda
!v = std:append 1 :a :b $[:c, :d];

std:assert_eq (str v) "$[1,:a,:b,:c,:d]";
```

#### <a name="3157-stdprepend-vec-a-value-or-vec-"></a>3.15.7 - std:prepend _vec-a_ _value-or-vec_ ...

Prepends _value-or-vec_ and all following items to the front of _vec-a_.
If _value-or-vec_ is a vector, all its items will be prepended to _vec-a_.

```wlambda
!v = std:prepend $[1,2,3] :a :b $[:c, :d];

std:assert_eq (str v) (str $[:d, :c, :b, :a, 1, 2, 3]);
```

If _vec-a_ is not a vector, a vector containing it will be created:

```wlambda
!v = std:prepend 1 :a :b $[:c, :d];

std:assert_eq (str v) (str $[:d, :c, :b, :a, 1]);
```

#### <a name="3158-stdtake-count-vector"></a>3.15.8 - std:take _count_ _vector_

Takes and returns the first _count_ elements of _vector_. Does not
mutate _vector_.

```wlambda
!v = $[1,2,3,4,5,6];

!t = std:take 4 v;

std:assert_eq (str v) "$[1,2,3,4,5,6]";
std:assert_eq (str t) "$[1,2,3,4]";
```

#### <a name="3159-stddrop-count-vector"></a>3.15.9 - std:drop _count_ _vector_

Drops _count_ elements from _vector_ and returns them as new vector.
Does not mutate _vector_.

```wlambda
!v = $[1,2,3,4,5,6];

!t = std:drop 4 v;

std:assert_eq (str v) "$[1,2,3,4,5,6]";
std:assert_eq (str t) "$[5,6]";
```

### <a name="316-associative-maps-or-string-to-value-mappings"></a>3.16 - Associative Maps (or String to Value mappings)

Aside from vectors there are associative maps in WLambda. Their syntax is
`${ key = expr, ... }`. The keys of these maps have to be symbols (or strings),
the values in the literals can be any expression. Keys for maps are interned strings,
so keep that in mind if you fill a map with garbage keys.

For iteration over a map please refer to [5.2 Collection Iteration](#52-collection-iteration).

You can call a symbol or a string with an associative map to get the value in
the map with the string value as key. There is also, like vectors, the field
calling syntax. Here are some examples:

```wlambda
!some_map = ${ a = 1, b = 2 };

# Symbol calling:
std:assert_eq (:a some_map) 1;
std:assert_eq (:b some_map) 2;
std:assert_eq ("a" some_map) 1;
std:assert_eq ("b" some_map) 2;

# Field syntax:
std:assert_eq some_map.a 1;
std:assert_eq some_map.b 2;

# There can be any expression after the `.` if you wrap it into `(...)`,
# also strings:
std:assert_eq some_map.("a") 1;
std:assert_eq some_map.("b") 2;
```

Keys can also be computed at runtime in the literal form:

```wlambda
!some_map = ${ (std:str:cat "a" "b") = 10 };

std:assert_eq (str some_map) "${ab=10}";
```

If you call a field that is being accessed directly using
the field accessing syntax `some_map.a`, the function is passed the map `some_map`
via the special value `$self`. There is another special variable `$data`
that allows you to access the `$self._data` field.

#### <a name="3161-map-splicing"></a>3.16.1 - Map Splicing

Like vectors you can splice map values directly into map literals:

```wlambda
!map_gen = { ${ (std:str:cat "_" _) = _ } };

!some_map = ${ a = 10, *map_gen "x" };

std:assert_eq some_map.a 10;
std:assert_eq some_map._x "x";

std:assert_eq (str ${*${a=10}}) "${a=10}";

# As a reminder, a full expression can come after the '*':

std:assert_eq (str ${*map_gen "y"}) $q/${_y="y"}/;
```

#### <a name="3162-ismap-value"></a>3.16.2 - is\_map _value_

Returns `$true` if _value_ is a map.

```wlambda
std:assert ~ is_map ${};
std:assert ~ is_map ${a = 10};

std:assert ~ not ~ is_map $&&${};
std:assert ~ not ~ is_map $&${};
std:assert ~ not ~ is_map $[:a, 10];
std:assert ~ not ~ is_map $p(:a, 10);
std:assert ~ not ~ is_map $none;
std:assert ~ not ~ is_map $true;
```

### <a name="317-references"></a>3.17 - References

TODO
    - 3 types: strong, hidden, weak
        - strong:
            - `$&&`
            - mention DWIM'ery
        - hidden:
            - `$&`
            - mention usage for closures
            - how to "Unhide" a reference using `$:`
        - weak:
            - std:ref:weaken and `$w&`
            - how to break reference cycles
            - how weak references are also caught weakly
              by closures and not strongly.
            - how to get a strong reference using `$:`

Some data structures already have reference characteristics, such as strings,
vectors and maps. But you can also wrap other values like integers, floats, ...
into a reference. There are 3 types of references in WLambda that have
different usecases and semantics. These referential types are neccessary to
mutate lexical variables from a parent scope. To give a rather natural example:

```wlambda
!x = 10;
{ .x = 20; }[];
std:assert_eq x 20;
```

The example works rather intuitively. There is however lots of implicit
referential stuff going on. Once `x` is captured by a closure its contents is implicitly
changed in to a _hidden_ `$&` reference. The closure then stores this hidden
reference too. You have to be aware of this, because in some use cases this can lead
to cyclic reference structures, which are not automatically freed. Please use
weak references `$w&` for mitigating this.

Hidden references and weak references captured by a closure are dereferenced
implicitly if you access the variables. Weak references in the local scope are
not implicitly dereferenced. However, sometimes it's desirable to have a more
explicit reference data types. For this the strong references `$&&` are
available. Use `$*` for accessing the value of a strong reference or a weak reference
in the local scope.

TODO

These types of references exist:

- `$&` - A _hidden_ reference, that is captured by closures or constructed using `$&`.
- `$w&` - A _weak_ reference, can't be constructed literally, only indirectly
as upvalue of a closure or by `std:ref:weaken`.
- `$&&` - A _strong_ reference, that is captured strongly by closures.
Inside closures they are also implicitly dereferenced by assignment
and access by variable name.

```wlambda
!x = $& 10;

{ .x = 20; }[]; # Closures implicitly handle weak references

std:assert_eq x 20;
```

And the same with strong references:

```wlambda
!x = $&& 10;

.*x = 11;

{ .*x = 20; }[]; # Closures need explicit handling of strong references

std:assert_eq $*x 20;
```

Strong references can also be created using the `std:to_ref` function and
the `$:` operation.

#### <a name="3171-stdtoref-value"></a>3.17.1 - std:to\_ref _value_

Creates a new strong reference that refers to a cell that stores _value_.

```wlambda
!x = std:to_ref 10;

std:assert_eq (std:ser:wlambda x) "$&&10";

std:assert_eq $*x 10;
```

#### <a name="3172-stdrefweaken-ref"></a>3.17.2 - std:ref:weaken _ref_

You can weaken any of those two types of references manually using the
`std:ref:weaken` function.

```wlambda
!drop_check = $& $f;

# Set `drop_check` to $true when all (non weak) references to it are gone.
!x = $&& (std:to_drop {|| .drop_check = $true });

# Create a weakened reference to the value referred to by x:
!y = std:ref:weaken x;

# The reference to the drop function is removed and this means
# that the weak reference in y is invalidated and returns $n in future.
.x = $n;

# Deref y now gives you $n:
std:assert_eq $*y $n;

std:assert drop_check;
```

Please note that you can use `$w&`/`$weak&` as a shortcut to calling the library function:

```wlambda
!x      = $&& 10;
!x_weak = $w& x;

std:assert_eq x      &> type "ref_strong";
std:assert_eq x_weak &> type "ref_weak";
```

#### <a name="3173-stdrefhide-value"></a>3.17.3 - std:ref:hide _value_

Creates a hidden reference from a given value or reference.

```wlambda
!r = $&& 10;            # strong ref to value 10

# hide the reference for direct access via local variables
!h = std:ref:hide r;

.h += 11;

std:assert_eq $*r       21;
std:assert_eq h         21;
std:assert_eq (std:write_str $:h) "$&&21";

std:assert_eq (std:write_str $[r, $:h]) "$[$<1=>$&&21,$<1>]";
```

#### <a name="3174-isref-value"></a>3.17.4 - is\_ref _value_

Returns `$true` if _value_ is a reference (strong, hidden or weak).

```wlambda
!x = $&&10;
std:assert ~ is_ref ~ std:ref:weaken x;
std:assert ~ is_ref $&10;
std:assert ~ is_ref $&&10;

std:assert ~ not ~ is_ref $[1,2,3];
std:assert ~ not ~ is_ref ${a=10};
std:assert ~ not ~ is_ref $true;
std:assert ~ not ~ is_ref $none;
```

#### <a name="3175-iswref-value"></a>3.17.5 - is\_wref _value_

Returns `$true` if _value_ is a weak reference.

```wlambda
!x = $&& 10;
!y = std:ref:weaken x;
std:assert ~ is_wref y;
std:assert ~ not ~ is_wref x;
```

#### <a name="3176-stdrefstrengthen-ref"></a>3.17.6 - std:ref:strengthen _ref_

You can convert a weak reference (weakened by `std:ref:weaken`) or a captured weak
reference `$&` to strong with `std:ref:strengthen

```wlambda
!x = $&&10;
!y = std:ref:weaken x;

.x = $none;
std:assert ~ is_none $*y;

.x = $&&10;
.y = std:ref:weaken x;
!y2 = std:ref:strengthen y; # Here we take a second strong reference from a weak one

.x = $none;
std:assert ~ is_some $*y;
std:assert ~ is_some $*y2;

.y2 = $none;
std:assert ~ is_none $*y;
```

#### <a name="3177-stdrefset-ref-value"></a>3.17.7 - std:ref:set _ref_ _value_

Sets the value of the reference _ref_ to _value_.
If _ref_ is not a strong, hidden or weak reference nothing happens.

Returns _value_ or `$none`.

```wlambda
!r1 = $&&1;
std:ref:set r1 10;
std:assert_eq $*r1 10;

# Note that $& references in local variables are
# automatically dereferenced. Because of that we need to wrap it into
# an extra reference.
!r2 = $& $& 1;
std:ref:set r2 11;
std:assert_eq $*r2 11;

!r3 = $& $& 1;
!w3 = std:ref:weaken r3;
std:ref:set w3 14;      # Set reference via the weak reference in w3 to r3.
std:assert_eq $*r3 14;
```

### <a name="318-iterators-iter-expression"></a>3.18 - Iterators $iter _expression_

As a companion to the `iter` operation there are the iterator values.
These are a special kind of values that generate a value when they are called.
It supports to make an iterator from the same values as the `iter` operation.

You can create an iterator from vectors and maps, but also specialized
iterators that return a range of numbers or only keys of a map.
About this see the section _Iterator Kinds_ below.

The `$iter` syntax takes a complete expression as argument, that means
you can directly write `$iter function arg1 arg2 ...` without
delimiting the function call.

Here is an example how to make an iterator over a vector:

```wlambda
!it = $iter $[1,2,3,4];

!first  = it[];     # returns an optional value $o(1)
!second = it[];     # returns an optional value $o(2)

std:assert_eq first    $o(1);
std:assert_eq second   $o(2);
```

You can also directly cast an iterator, which will also
make it return a value:

```wlambda
!it = $iter $[1,2,3,4];

std:assert_eq (int it)  1;
std:assert_eq (int it)  2;
```

You can pass an iterator also to the `iter` operation:

```wlambda
!it = $iter $[1,2,3];

!sum = 0;

iter i it {
    .sum = sum + i;
};

std:assert_eq sum 6;
```

#### <a name="3181-iterator-kinds"></a>3.18.1 - Iterator Kinds

Here is a table of the behaviour of iterators created from WLambda data.

| Data      | Iterator return values |
|-----------|-----------|
| vector  | Each element of the vector. |
| map  | Each key/value pair of the map in undefined order. |
| `$none`   | Returns nothing  |
| optional | Returns the optional value on first invocation. |
| `$o()` | Returns nothing. |
| int  | Returns the integer value on first invocation. |
| float  | Returns the integer value on first invocation. |
| string | Returns the individual characters as string. |
| symbol | Returns the individual characters as string. |
| byte vector | Returns the individual bytes as byte vector. |
| `$error`  | Returns the error value on first invocation. |
| `$i(a, b)`  | The integers in the range of _a_ to _b_, not including _b_. |
| `$i(a, b, step)`  | The integers in the range of _a_ to _b_ advanced by _step_, not including _b_. |
| `$f(a, b)`  | The floats in the range of _a_ to _b_ advanced by `1.0`, not including _b_. |
| `$f(a, b, step)`  | The floats in the range of _a_ to _b_ advanced by _step_, not including _b_. |
| `$p(:enumerate, map)`  | Returns integers in the range of `0` to `len map`. |
| `$p(:enumerate, vector)`  | Returns integers in the range of `0` to `len vector`. |
| `$p(:values, map)`  | Returns the values of the _map_ in undefined order. |
| `$p(:keys, map)`  | Returns the keys of the _map_ in undefined order. |
| `$p(int_a, int_b)` | The same as `$i(a, b)`. This makes it possible to write `$iter 0 => 10`. |
| `$p(iterator_a, iterator_b)` | Returns a zip operation of the elements returned by the iterator_a and iterator_b until one of both returns `$o()`. |
| `$p(iterator, x)` | Returns a zip operation of the elements returned by the iterator and the newly created iterator`$iter x`. |

#### <a name="3182-iterators-on-mutated-data"></a>3.18.2 - Iterators on mutated data

Iterators hold a reference to the collection values. That means, if you mutate
a vector while you iterate over it, it will not crash but it might produce
weird effects.

```wlambda
!v = $[1,2,3];
!it = $iter v;

iter i v {
    if i <= 3 {
        std:push v i + 10;  # This is not recommended however...
    };
};

std:assert_eq (str v) (str $[1, 2, 3, 11, 12, 13]);
```

This will also work for maps, but as the order of the map entries
is undefined it will produce very indeterministic effects and it's really
not recommended.

#### <a name="3183-splicing-an-iterator"></a>3.18.3 - Splicing an Iterator

You can directly insert the values produced by an iterator into a vector or map:

```wlambda
!it = $iter $[1,2,3,4];

!v = $[10, 20, *it, 99];

std:assert_eq (str v) (str $[10, 20, 1, 2, 3, 4, 99]);
```

Same goes for maps:

```wlambda
!it = $iter ${a = 10, b = 20};

!m = ${ x = 99, *it };

std:assert_eq m.a 10;
std:assert_eq m.b 20;
std:assert_eq m.x 99;
```

#### <a name="3184-calling-an-iterator-with-a-function"></a>3.18.4 - Calling an Iterator with a Function

When an iterator gets called with a function as first argument
it will repeatedly call that function until no more values are
available:

```wlambda
!it = $iter $[1,2,3];

!sum = 0;

it { .sum = sum + _ };

std:assert_eq sum 6;
```

#### <a name="3185-zip-iterators"></a>3.18.5 - Zip Iterators

To highlight this feature from the table above: You can zip two iterators if
you pass an iterator as first part of a pair `$p(a, b)`:

```wlambda
!v = $["a", "b", "c"];

!elems = $@vec
    iter i $p($iter v, $iter $i(0, 10)) {
        $+ i;
    };

std:assert_eq
    (str elems)
    (str $[$p("a", 0), $p("b", 1), $p("c", 2)]);
```

#### <a name="3186-isiter-value"></a>3.18.6 - is\_iter _value_

Returns `$true` if _value_ is an iterator.

```wlambda
std:assert   (is_iter $iter $n);
std:assert   (is_iter $iter 0 => 30);
std:assert   not <& (is_iter $[1,2,3]);
std:assert   (is_iter $iter $[1,2,3]);

std:assert   (not <& is_iter <& $true);
std:assert   (not <& is_iter <& $false);
std:assert   (not <& is_iter <& 4);
std:assert   (not <& is_iter <& $p(1, 2));
```

### <a name="319-calling-semantics-of-data-types"></a>3.19 - Calling Semantics of Data Types

You can call almost all basic data types of WLambda.
Here is an overview of the data type calling semantics:

| Type                         | Args                         | Semantics |
|------------------------------|------------------------------|-----------|
| `$none`                      | -                            | Any call to `$none` will result in a panic. |
| `$error`                     | -                            | Any call to `$error` will result in a panic. |
| function                     | *                            | Will call the function with the specified arguments. |
| `$true`                      | `f1, f2`                     | Will call `f1`.          |
| `$false`                     | `f1, f2`                     | Will call `f2` or return `$n` if `f2` is not provided.          |
| `$true`                      | `$[1,2]`                     | Will return the second element `2` of the list. |
| `$false`                     | `$[1,2]`                     | Will return the first element `1` of the list. |
| integer                      | vector, string, byte_vec, iterator | Will return the element at the given integer index. |
| symbol                       | map, userval                 | Will retrieve the value in the map at the key equal to the symbol. |
| map                          | anything                     | Will call `anything` for each value and key in the map and return a list with the return values. |
| string                       | string, byte_vec, char or byte | Append operation, works with multiple arguments. |
| byte_vec                     | string, byte_vec, char or byte | Append operation, works with multiple arguments. |
| string                       | `$p(int_offs, string/byte_vec/char/byte)` | Find operation, search from int_offs for the given string, byte_vec, char or byte. See also `std:str:find` and `std:bytes:find`. |
| byte_vec                     | `$p(int_offs, string/byte_vec/char/byte)` | Find operation, search from int_offs for the given string, byte_vec, char or byte. See also `std:str:find` and `std:bytes:find`. |
| `$p(char or byte, int_count)`| -                            | Create a string or byte_vec containing int_count of copies. |
| `$p(int_offs, string/byte_vec/char/byte)` | string          | Find operation, search from int_offs for the given string, byte_vec, char or byte. |
| `$p(int_offs, string/byte_vec/char/byte)` | byte_vec        | Find operation, search from int_offs for the given string, byte_vec, char or byte. |
| `$p(int_from, int_count)`     | vector                      | Vector slice operation. |
| `$i(int_from, int_count)`     | vector                      | Vector slice operation. |
| `$p(int_from, int_count)`     | numeric vector              | Creates a vector slice from a numeric vector. |
| `$i(int_from, int_count)`     | numeric vector              | Creates a vector slice from a numeric vector. |
| `$p(int_from, int_count)`     | iterator                    | Iterator result list slice operation. |
| `$i(int_from, int_count)`     | iterator                    | Iterator result list slice operation. |
| `$p(int_from, int_count)`     | string                      | Substring operation. (See also section about pairs) |
| `$i(int_from, int_count, ...)`| string                      | Substring operation. |
| `$p(int_from, int_count)`     | byte_vec                    | Substring operation. (See also section about pairs) |
| `$i(int_from, int_count, ...)`| byte_vec                    | Substring operation on the byte vector. |
| string                       |`$i(int_from, int_count, ...)`| Substring operation. |
| byte_vec                     |`$i(int_from, int_count, ...)`| Substring operation on the byte vector. |
|`$p(string, int)`             | string                       | Split operation. (See also section about pairs) |
|`$p(byte_vec, int)`           | byte_vec                     | Split operation. (See also section about pairs) |
| string                       |`$p(string, int)`             | Split operation. |
| byte_vec                     |`$p(byte_vec, int)`           | Split operation. |
| string                       |`$p(string, string)`          | Replace all operation. |
| byte_vec                     |`$p(byte_vec, byte_vec)`      | Replace all operation. |
| `$p(string, string)`         | string                       | Replace all operation. (See also section about pairs) |
| `$p(byte_vec, byte_vec)`     | byte_vec                     | Replace all operation. (See also section about pairs) |
| `$p(pat_char, repl_char)`    | string or byte_vec           | Replace all pat_char in string or byte_vec with repl_char. |
| `$p(pat_byte, repl_byte)`    | string or byte_vec           | Replace all pat_char in string or byte_vec with repl_char. |
| `$p(char, char)`             | char or byte                 | Range check operation, whether char or byte is inside to/from range. |
| `$p(byte, byte)`             | char or byte                 | Range check operation, whether char or byte is inside to/from range. |
| `$p(int_a, int_b)`           | char or byte                 | Range check operation, whether char or byte is inside to/from range. |
| `$i(int_a, int_b)`           | char or byte                 | Range check operation, whether char or byte is inside to/from range. |
| char or byte                 |`$p(char, char)`              | Range check operation, whether char or byte is inside to/from range. |
| char or byte                 |`$p(byte, byte)`              | Range check operation, whether char or byte is inside to/from range. |
| char or byte                 |`$p(int_a, int_b)`            | Range check operation, whether char or byte is inside to/from range. |
| char or byte                 |`$i(int_a, int_b)`            | Range check operation, whether char or byte is inside to/from range. |
| `$o()`                       | -                            | Returns $none. |
| `$o(x)`                      | -                            | Returns _x_. |
| `$o()`                       | *                            | Calls $none with arguments, leading to a panic. |
| `$o(x)`                      | *                            | Calls _x_ with the given arguments. |
|                              |                              | |

## <a name="4-conditional-execution---if--then--else"></a>4 - Conditional Execution - if / then / else

### <a name="41-if-condition-then-expr-else-expr"></a>4.1 - if/? _condition_ _then-expr_ [_else-expr_]

The keyword for conditional execution is either `if` or just the question mark `?`.
It takes 3 arguments: The first is an expression that will be evaluated
and cast to a boolean. If the boolean is `$true`, the second argument is
evaluated. If the boolean is `$false` the thrid argument is evaluated.
The third argument is optional.

```wlambda
!x = 10;

!msg = "x is ";
if x > 4 {
    .msg = std:str:cat msg "bigger than 4";
} {
    .msg = std:str:cat msg "smaller than or equal to 4";
};

std:assert_eq msg "x is bigger than 4";

# You may also use `if` in case it suits your coding style better:
if x == 10 {
    std:assert $true;
} {
    std:assert $false;
};
```

The _condition_ can also be a function block, which will be evaluated:

```wlambda
!res =
    if { !x = 2; x > 1 } "x > 1";

std:assert_eq res "x > 1";
```

### <a name="42-using-booleans-for-conditional-execution"></a>4.2 - Using Booleans for Conditional Execution

Conditional execution is also provided by the bool data type. As in WLambda
everything can be called like a function, you can just pass other functions as
arguments to `$true` and `$false`.  If you pass a function as first argument to
`$true`, it will be executed. If you pass a function as second argument to
`$false` then that will be executed.

```wlambda
(10 == 10) { std:displayln "10 is 10" };         #=> prints "10 is 10"
(10 != 10) { std:displayln "10 is not 10" };     #=> doesn't print anything

!x = 20;

(x == 20) {
    std:displayln "x is 20";
} {
    std:displayln "x is 20";
}; # Do not forget the ";"!
```

Actually, as the values `$true` and `$false` can be called like any other
function you may write it also like this, which is not the recommended
syntax, but still works:

```wlambda
(10 == 10)[{ std:displayln "10 is 10" }];

!x = 21;
(x == 20)[{ std:displayln "x is 20" }, { std:displayln "x isn't 20" }]; #=> print "x isn't 20"
```

#### <a name="421-pick-bool-a--b-"></a>4.2.1 - pick _bool_ _a_ -b-

Often, you may want to choose one variable (_a_) or another (_b_) based on some predicate (_bool_).
For these situations, the `pick` function is available.
For example, perhaps you want to make a function which can take any number of parameters,
or a single list parameter.

```wlambda
!sum = \|| std:fold 0 { _ + _1 } ~ pick (is_vec _) _ @;
```

#### <a name="422-indexing-by-booleans"></a>4.2.2 - Indexing by Booleans

Booleans can also be used to index into lists.
When this is done, `$t` represents `1` and `$f` represents `0`.
This means that we can also express our `sum` function as:

```wlambda
!sum = \|| std:fold 0 { _ + _1 } $[@, _].(is_vec _);
```

Furthermore, as `a.b` is equivalent to `b[a]`, one can also write this `sum` function
by simply invoking `(is_vec _)` and passing in the list of options as a parameter.

```wlambda
!sum = \|| std:fold 0 { _ + _1 } ~ (is_vec _) $[@, _];
```

When comparing the `pick` and indexing approaches it is important to note
that the two possible return values are inverted:

```wlambda
!x = 20;
!res = pick (x == 20) "x is 20" "x isn't 20";
std:assert_eq res "x is 20";

.res = $["x isn't 20", "x is 20"].(x == 20);
std:assert_eq res "x is 20";
```

With `pick`, the value to return in the `$t` case comes first, followed by the `$f` case's value,
whereas with indexing approach, the opposite is true.

### <a name="43-value-matching-with---match-value-expr-"></a>4.3 - Value matching with - match _value-expr_ ...

See also [8.1.1](#811-match-value-expr-match-pair1--default-expr) for a more
comprehensive discussion of `match` and structure matchers.

`match` allows for easily select from a set of values:

```wlambda
!check_fun = {
    match _
        20 =>   "It's 20"
        30 =>   "It's 20"
        "No idea?"
};

std:assert_eq check_fun[20] "It's 20";
std:assert_eq check_fun[34] "No idea?";
```

Also works for deeper data structures:

```wlambda
!val = $[1, ${a = 10}, ${a = 10}, ${a = 10}, ${a = 10}, 2, 2, 2, 10];

!res =
    match val
        $[1, _*, 3, 10] =>  :a
        $[1, a ~ _* ${ a = y }, b ~ _+ 2, 10] => {
            ${
                a_elems = $\.a,
                a_value = $\.y,
                b_vals  = $\.b,
            }
        };

std:assert_str_eq res.a_elems $[${ a = 10 }, ${ a = 10 }, ${ a = 10 }, ${ a = 10 }];
std:assert_str_eq res.a_value 10;
std:assert_str_eq res.b_vals  $[2,2,2];
```

## <a name="5-loops-and-iteration"></a>5 - Loops And Iteration

WLambda has many ways to loop and iterate:

- Counting loop with `range`
- While some condition is `$true` with the `while` special form.
- Over the items in a vector or map with the `iter` special form.
- Calling an `$iter` iterator value with a function as first argument.
- Over the items in a vector with either `for` or by calling the vector
with a function as first argument.
- Over the items in a map with either `for` or by calling the map
with a function as first argument.
- Over the characters in a string with either `for` or by calling it
with a function.
- Over the bytes in a byte vector with either `for` or by calling it
with a function.

`for` just iterates through the value and provides the individual items as first argument to the
iteration function. But if you call the value with a function as first argument a mapping iteration
is done. That means, the return value of the operation is a list with the return values of the
iteration function. If you don't need that list you should use `for`.

### <a name="51-control-flow"></a>5.1 - Control Flow

#### <a name="511-while-predicate-body"></a>5.1.1 - while _predicate_ _body_

`while` will evaluate _body_ until the evaluation of _predicate_ function returns `$false`.
Or `break` is used to end the loop. The loop can be restarted using `next`.
This is the most basic loop for iteration:

```wlambda
!i   = 0;
!out = $[];

while i < 10 {
    std:push out i;
    .i = i + 1;
};

std:assert_eq (str out) "$[0,1,2,3,4,5,6,7,8,9]";
```

If you need an endless loop you can pass `$true` as predicate:

```wlambda
!i = 0;

while $true {
    (i >= 4) break;
    .i = i + 1;
};

std:assert_eq i 4;
```

The first 

#### <a name="512-iter-var-iterable-body"></a>5.1.2 - iter _var_ _iterable_ _body_

This is the primary syntax of WLambda to iterate over collections,
numeric ranges and generally everything you can create an iterator from
using the `$iter` syntax.

The _var_ will be defined inside the _body_ and be filled with the
value that was generated for the current iteration.
And _iterable_ is everything that `$iter` can make an iterator from.
Please refer to the section `Iterator Kinds` for a listing of this.

Like usual, the control flow manipulators `next` and `break` also work
for this kind of loop.

##### <a name="5121-counting-loop-with-iter"></a>5.1.2.1 - Counting loop with _iter_

Here is an example how to iterate over a range from 1 to 9 and
collect the sum of those integers using an accumulator:

```wlambda
!sum = $@int iter i $i(1,10) ~ $+ i;

std:assert_eq sum 45;
```

Because `$iter $p(1, 10)` is the same as `$iter $i(1, 10)` and because
there is the pair constructor operator `a => b`, the above can also be written as:

```wlambda
!sum = $@int iter i 1 => 10 ~ $+ i;

std:assert_eq sum 45;
```

##### <a name="5122-vector-iteration-with-iter"></a>5.1.2.2 - Vector iteration with _iter_

Here is a simple example of how to iterate over all items of a vector
in order:

```wlambda
!sum = 0;

iter i $[1,2,3,4,5,6] {
    .sum = sum + i;
};

std:assert_eq sum 21;
```

Even if you pass the syntax for constructing a function to `iter` it will
create a block of statements from it. So this will work too (also for `while` above):

```wlambda
!sum = 0;

iter i $[1,2,3,4,5,6] \.sum = sum + i;

std:assert_eq sum 21;
```

However _body_ does not have to be a function definition or block, it can also
be just a regular call argument:

```wlambda
!sum = 0;

!inc = { .sum = sum + _; };

iter i $[1,2,3,4] inc[i];

std:assert_eq sum 10;
```

To iterate over a vector by index you can use this:

```wlambda
!v = $[1,2,3,4,5];
!sum = 0;

iter i $i(0, len v) {
    .sum = sum + v.(i);
};

std:assert_eq sum 15;
```

##### <a name="5123-map-iteration-with-iter"></a>5.1.2.3 - Map iteration with _iter_

Iteration over a map is also easy and concise. The map entry
will be represented using a pair value `$p(value, key)`.
You can access the first and second element of a pair using the `v`/`value`
and `k`/`key` keys of a pair (but also all other pair accessors defined
in the section for pairs):

```wlambda
!sum = 0;

iter i ${ a = 10, b = 20 } {
    .sum = sum + i.v;
};

std:assert_eq sum 30;
```

Very useful for iterating just over the keys or values of a map can also be the
special iterator values you get from the pair constructors:

```wlambda
!m = ${ a = 10, b = 20 };
!sum = 0;

iter v $p(:values, m) {
    .sum = sum + v;
};

std:assert_eq sum 30;
```

Or if you need the keys:

```wlambda
!m = ${ a = 10, b = 20 };
!sum = 0;

iter k $p(:keys, m) {
    std:displayln "FOO" k;
    .sum = sum + m.(k);
};

std:assert_eq sum 30;
```

##### <a name="5124-closures-and-iter-iter-i-"></a>5.1.2.4 - Closures and _iter_ `iter i ...`

If you need a new variable for capturing it in a closure on each
iteration you need to make a new variable binding for each iteration:

```wlambda
!closures = $[];

# Without the rebinding of the variable `i`, `i` would be captured as hidden
# reference and each iteration would update the contents of that reference.
iter i $i(0, 10) {
    !i = i;
    std:push closures { i * 10 };
};

std:assert_eq ($@i closures \$+ _[]) 450;
```

#### <a name="513-range-start-end-step-fun"></a>5.1.3 - range _start_ _end_ _step_ _fun_

`range` counts from _start_ to _end_ by increments of _step_ and calls _fun_
with the counter. The iteration is inclusive, this means if _start_ == _end_
the function _fun_ will be called once.

In contrast to `iter` this is not a special syntax, but just a regular function
that calls another function repeatedly. You can control it using the `break` and
`next` functions however.

```wlambda
!out = $[];
range 0 9 1 {!(i) = @;
    std:push out i;
};

std:assert_eq (str out) "$[0,1,2,3,4,5,6,7,8,9]";
```

The construct also works for floating point numbers,
but be aware of the inherent floating point errors:

```wlambda
!out = $[];
range 0.3 0.4 0.01 {
    std:push out ~ std:num:round 100.0 * _;
};

# 40 is not in the set because the accumulation of 0.01 results
# in a value slightly above 0.4 and ends the range iteration:
std:assert_eq (str out) "$[30,31,32,33,34,35,36,37,38,39]";
```

#### <a name="514-break-value"></a>5.1.4 - break _value_

`break` stops the inner most iterative construct, which then will return _value_.
This should work for all repeatedly calling operations, such as
`for`, `while`, `iter` and when calling lists directly. Also most library functions
that iteratively call you react to it, like `std:re:map` and `std:re:replace_all`.
Be aware, that returning a value might not be supported by all iterative constructs.

```wlambda
!ret = range 0 9 1 {!(i) = @;
    (i > 4) { break :DONE };
};

std:assert_eq ret :DONE;
```

An example where the list iteration is stopped:

```wlambda
!val = $[1,2,3,4] { (_ > 3) { break :XX }; _ };

std:assert_eq val :XX;
```

#### <a name="515-next"></a>5.1.5 - next

`next` stops execution of the current function or statement block and continues
with the next iteration of the inner most iteration.

```wlambda
!sum = $@i $[1,2,3,4] {
    (_ == 3) next;
    $+ _;
};
std:assert_eq sum 7;
```

```wlambda
!sum = $@i range 1 10 1 {
    (_ % 2 == 0) next;
    $+ _;
};
std:assert_eq sum 25;
```

#### <a name="516-jump-index-val-branch1--last-branch"></a>5.1.6 - jump _index-val_ _branch1_ ... _last-branch_

This is a jump table operation, it's a building block for the more
sophisticated `match` operation. The first argument is an index into the table.
If the index is outside the table the _last-branch_ is jumped to.  The branches
are compiled like the bodies of `while`, `iter`, `match` and `if` into a runtime
evaluated block.

```wlambda
!x   = 10;
!idx = 2;

!res =
    jump idx
        { x + 3 }
        { x + 4 }
        { x + 5 };

std:assert_eq res 15;
```

The arms don't have to be in `{ ... }` because they are blocks
and the above could be written like this:

```wlambda
!x   = 10;
!idx = 2;

!res =
    jump idx
        x + 3
        x + 4
        x + 5;
std:assert_eq res 15;

# or even this:
!res = x + (jump idx 3 4 5);
std:assert_eq res 15;
```

### <a name="52-collection-iteration"></a>5.2 - Collection Iteration

#### <a name="521-iteration-over-vectors"></a>5.2.1 - Iteration over vectors

Iterating over a vector is the most basic iteration supported by WLambda.
You just call the vector with a function as first argument:

```wlambda
!sum = 0;
$[1, 2, 3] {
    .sum = sum + _;
};

std:assert_eq sum 6;
```

You can also use `for` if you like.

#### <a name="522-iteration-over-maps"></a>5.2.2 - Iteration over maps

Iterating over a map is as simple as iterating over a vector.
The map can be called with a function as first argument and it starts
iterating over its key/value pairs. The first argument of the
function is the value, the second argument is the key.

```wlambda
!sum  = 0;
!keys = $[];

${a = 10, b = 20, c = 30} {
    !(v, k) = @;
    .sum = sum + v;
    std:push keys k;
};

std:assert_eq sum 60;
std:assert_eq (std:str:join "," ~ std:sort keys) "a,b,c";
```

You can also use `for` if you like.

#### <a name="523-for-iteratable-value-function"></a>5.2.3 - for _iteratable-value_ _function_

Calls _function_ for every element of _iteratable-value_.
Iteratable values are:

- Vectors
```wlambda
!product = 1;

for $[3,4,5] {
    .product = product * _;
};

std:assert_eq product 60;
```
- Maps
```wlambda
!product = 1;
!keys    = $[];

for ${a = 10, b = 20, c = 30} {
    !(v, k) = @;
    .product = product * v;
    std:push keys k;
};

std:assert_eq (std:str:join "," ~ std:sort keys) "a,b,c";

std:assert_eq product 6000;
```
- Byte Vectors
```wlambda
!byte_sum = 0;

for $b"abc" {
    .byte_sum = byte_sum + (int _);
};

std:assert_eq byte_sum 294;
```
- Strings
```wlambda
!str_chars = $[];

for "abc" {
    std:push str_chars _;
};

std:assert_eq (str str_chars) (str $['a', 'b', 'c']);
```
- Symbols
```wlambda
!str_chars = $[];

for :abc {
    std:push str_chars _;
};

std:assert_eq (str str_chars) (str $['a', 'b', 'c']);
```

#### <a name="524-map-function-iterable"></a>5.2.4 - map _function_ _iterable_

Maps anything that is _iterable_ by calling _function_ with each item as
first argument and collecting the return values in a vector.

If a map is passed as _iterable_ then _function_ is called with two arguments,
the first being the map entry value and the second the key.
Note: When iterating over maps, don't assume any order.

It is very similar to `$@vec iter i <iterable> { $+ ... }`.

```wlambda
# Lists:

std:assert_str_eq
    (map { float[_] / 2.0 } $[1,2,3,4,5])
    $[0.5, 1, 1.5, 2, 2.5];

std:assert_str_eq
    (map { _ * 10 } $[$b'a', $b'b', $b'c', 10, 20])
    ($@vec
        iter i $[$b'a', $b'b', $b'c', 10, 20] {
            $+ i * 10
        });

# Great for working with strings too:

std:assert_str_eq
    (map std:str:to_uppercase
        $["abc", "bcbc", "aaad", "afoo", "foo"])
    $["ABC", "BCBC", "AAAD", "AFOO", "FOO"];

# Maps:

std:assert_str_eq
    (std:sort ~ map { @ } ${a = 10, b = 20})
    $[$[10, "a"], $[20, "b"]];

# Generally anything that you can pass into `$iter`:

std:assert_str_eq
    (map { _ * 2 } 0 => 10)
    $[0,2,4,6,8,10,12,14,16,18];

```

#### <a name="525-filter-function-iterable"></a>5.2.5 - filter _function_ _iterable_

Filters anything that is _iterable_ by the given _function_.
The _function_ is called with each item and if it returns a `$true` value,
the item will be collected into a vector that is returned later.

If a map is passed as _iterable_ then _function_ is called with two arguments,
the first being the map entry value and the second the key.

It is very similar to `$@vec iter i <iterable> { if some_function[_] { $+ ... } }`.

```wlambda
# Lists:

std:assert_str_eq
    (filter { (_ 0 1) == "a" } $["abc", "bcbc", "aaad", "afoo", "foo"])
    $["abc","aaad","afoo"];

# Good in combination with `map` too:

std:assert_str_eq
    (map std:str:to_uppercase
        ~ filter { (_ 0 1) == "a" }
            $["abc", "bcbc", "aaad", "afoo", "foo"])
    $["ABC","AAAD","AFOO"];

# Also like `map` works fine with maps, but the function
# needs to take two arguments and returns a pair:

std:assert_str_eq
    (std:sort
        ~ filter { @.0 % 2 == 0 }
            ${a = 2, b = 43, c = 16, d = 13 })
    $[16 => "c", 2 => "a"];

# Generally anything that you can pass into `$iter`:

std:assert_str_eq
    (filter { _ % 2 == 0 } 0 => 10)
    $[0,2,4,6,8];

```


### <a name="53-accumulation-and-collection"></a>5.3 - Accumulation and Collection

WLambda provides special syntax and semantics for accumulating or collecting
values while iterating through lists. There are following special syntax
constructs:

| Syntax            | Semantics |
|-------------------|-----------|
| $@v _expr_        | Setup collection of values in a vector, evaluates _expr_ and returns the vector. |
| $@vec _expr_      | Same as $@v |
| $@m _expr_        | Setup collection of key/value pairs in a map, evaluates _expr_ and returns the vector. |
| $@map _expr_      | Same as $@m |
| $@s _expr_        | Setup appending of values to a string, evaluates _expr_ and returns the string. |
| $@string _expr_   | Same as $@s |
| $@b _expr_        | Setup collection of values in a byte vector, evaluates _expr_ and returns byte vector. |
| $@bytes _expr_    | Same as $@b |
| $@i _expr_        | Setup accumulation in an integer, evaluates _expr_ and returns the integer sum. |
| $@int _expr_      | Same as $@i |
| $@f _expr_        | Setup accumulation in a float, evaluates _expr_ and returns the float sum. |
| $@flt _expr_      | Same as $@f |
| $+                | Evaluated to a function that can be called to add/append a new value to the current collection/accumulation. |
| $@@               | Access the current accumulation value. |

These syntaxes are not lexically scoped. That means `$+` and `$@@` can be used
in other functions:

```wlambda
!out_mul = { $+ _ * 20 };

!v = $@vec iter i $i(1,5) ~ out_mul i;

std:assert_eq (str v) (str $[20, 40, 60, 80]);
```

However, due to issues with coupling your functions to the usage
of accumulators this style is recommended:

```wlambda
!mul = { _ * 20 };

!v = $@vec iter i $i(1,5) ~ $+ mul[i];

std:assert_eq (str v) (str $[20, 40, 60, 80]);
```

#### <a name="531-transforming-a-vector"></a>5.3.1 - Transforming a vector

If you just want to do something with items in a vector and
construct a new one from the results:

```wlambda
!result = $@vec $[1,2,3,4] \$+ _ * 2;   # multiply each item by 2

std:assert_eq (str result)  "$[2,4,6,8]";
```

#### <a name="532-example-of-"></a>5.3.2 - Example of `$@@`

Here is an interesting example how $@@ might be used:

```wlambda

!list_of_lists = $[];
!result = $@vec $[1,2,3,4] {
    $+ 2 * _;               # put the value into the list
    std:push list_of_lists
        ~ std:copy $@@; # construct a list of intermediate results
};

std:assert_eq (str result) "$[2,4,6,8]";

std:assert_eq (str list_of_lists)
    "$[$[2],$[2,4],$[2,4,6],$[2,4,6,8]]";
```

#### <a name="533-transforming-a-vector-to-a-map"></a>5.3.3 - Transforming a vector to a map

For constructing maps the `$@map` construct is available.
In the following example we transform a vector of pairs into a map:

```wlambda

!result = $@map $[ $[:a, 10], $[:b, 33], $[:c, 99] ] {
    !(key, value) = _;
    $+ key value;
};

std:assert_eq result.a 10;
std:assert_eq result.b 33;
std:assert_eq result.c 99;
```

#### <a name="534-iteratively-concatenating-strings"></a>5.3.4 - Iteratively concatenating strings

In case you need to construct a longer text the `$@string` construct allows
you to efficiently create a long string. For demonstration purposes
we compare the following inefficient code with the usage of `$@string`:

```wlambda
# Inefficient example:

!accum = "";
$["abc", "def", "ghi", "XXX"] {
    .accum = accum _;   # allocates a new string each iteration
};

std:assert_eq accum "abcdefghiXXX";
```

In theory for this constructed example the quickest way would
be to use `std:str:join`:

```wlambda
!accum = std:str:join "" $["abc", "def", "ghi", "XXX"];

std:assert_eq accum "abcdefghiXXX";
```

But maybe you need to transform or construct the strings before joining:

```wlambda
!transform = { ">" _ };

!accum = $@string $["abc", "def", "ghi", "XXX"] {
    $+[transform _] # appends the string to the accumulation string
};

std:assert_eq accum ">abc>def>ghi>XXX";
```

#### <a name="535-accumulating-sums"></a>5.3.5 - Accumulating sums

The following examples show how accumulation of values with `$@int` and `$@float` work.

```wlambda
!sum = $@int $[1,2,3,4] {
    $+ _
};

std:assert_eq sum 10;
```

And with floats:

```wlambda
!sum = $@float $[1.2,1.3,2.2,3.4] {
    $+ _
};

std:assert_eq (std:num:round 10.0 * sum) 81.0;
```


### <a name="54-utilities"></a>5.4 - Utilities

#### <a name="541-stdaccum-collection-a-b-"></a>5.4.1 - std:accum _collection_ _a_ _b_ ...

This function accumulates all its arguments in the _collection_.
It does the same form of accumulation as `$+` does.

```wlambda
std:assert_eq (str ~ std:accum $[] 1 2 3)   "$[1,2,3]";
std:assert_eq (std:accum "" 1 2 3)          "123";
std:assert_eq (str ~ std:accum $b"" 1 2 3)  "\x01\x02\x03";
std:assert_eq (str ~ std:accum 10 1 2 3)    "16";
```

#### <a name="542-stdzip-vector-map-fn"></a>5.4.2 - std:zip _vector_ _map-fn_

Creates a generator that calls _map_fn_ with the consecutive elements of _vector_
as the last argument of _map-fn_. All arguments passed to std:zip
are appended to the argument list.

This is useful for combining the iteration over two vectors or collections.

```wlambda
!l = $@v $[13, 42, 97] ~ std:zip $["Foo", "Bar", "Baz"] { $+ @ };
std:assert_eq (str l) (str $[$[13, "Foo"], $[42, "Bar"], $[97, "Baz"]]);
```

#### <a name="543-stdfold-accumulator-func-iteratable"></a>5.4.3 - std:fold _accumulator_ _func_ _iteratable_

This function iterates over _iteratable_ while providing the current element
from _iteratable_ as first and the _accumulator_ variable to _func_ as second
argument.
The _accumulator_ for the next iteration is always the return value of the
previous execution of _func_.

This is a convenience function in cases where the accumulator syntax `$@`
does not fit the use-case.

Returns the most recently returned value from _func_.

Calculate the product of the first 5 integers.

```wlambda
!v = std:fold 1 {!(x, acc) = @;
    x * acc
} $[1,2,3,4,5];

std:assert_eq v 120;
```

Another contrived example:

```wlambda
!v = std:fold $[] {!(x, acc) = @;
    std:displayln @;
    ((std:cmp:str:asc "c" x) > 0) {
        std:push acc x;
    };
    acc
} "abcdef";

std:assert_eq (str v) (str $['d', 'e', 'f']);
```

#### <a name="544-stdenumerate-map-fn"></a>5.4.4 - std:enumerate _map-fn_

Creates a generator that calls _map-fn_ with a counter that is incremented
after each call, starting with 0. The counter is appended to the
argument list after the regular arguments.

```wlambda
!l = $@v $["lo", "mid", "hi"] ~ std:enumerate { $+ $[_1, _] };
std:assert_eq (str l) (str $[$[0, "lo"], $[1, "mid"], $[2, "hi"]]);
```

## <a name="6-operators"></a>6 - Operators

### <a name="61-operator-assignment"></a>6.1 - Operator Assignment

Please note, that you can use all these operators, as well as special operators
like `=>`, `&>` and `<&` with assignment operations:

```wlambda
!x = 10;
.x += 3;
std:assert_eq x 13;

# also comparison operators work
!y = 10;
.y < = 10;
std:assert_eq y $false;

# function argument pipelining also works in this context
!f = \_ * 10;
.f <&= 10;
std:assert_eq f 100;

!x = 10;
.x &>= \_ * 10;
std:assert_eq f 100;
```

### <a name="62-arithmetic"></a>6.2 - Arithmetic

The output type (float vs. integer) of the numerical arithmetic operators is defined
by the _first_ operand of the operation. Use the casting functions `float` or
`int` if you are unsure.

Please note that not all operators are available as plain identifiers and need
to be quoted when used in their prefix form or as functions, some of them are
`*`, `/`, `%` and some others.

#### <a name="621--operand-1-operand-2-"></a>6.2.1 - + _operand-1_ _operand-2_ ...

This function implements arithmetic addition.  If the first operand is a
float number, the substraction will return a float result. If it is an integer
or anything else (like a string), an integer result is returned.

```wlambda
std:assert_eq (+ 5.5 0.5) 6.0;
std:assert_eq (5.5 + 0.5) 6.0;
std:assert_eq (+ 5 2) 7;
std:assert_eq (+ "5" 2) 7;
std:assert_eq (+ :5 2) 7;
```

#### <a name="622---operand-1-operand-2-"></a>6.2.2 - - _operand-1_ _operand-2_ ...

This function implements arithmetic substraction.  If the first operand is a
float number, the substraction will return a float result. If it is an integer
or anything else (like a string), an integer result is returned.

```wlambda
std:assert_eq (- 5.5 0.5) 5.0;
std:assert_eq (5.5 - 0.5) 5.0;
std:assert_eq (- 5 2) 3;
std:assert_eq (- "5" 2) 3;
std:assert_eq (- :5 2) 3;
```

#### <a name="623--op-a-op-b"></a>6.2.3 - * _op-a_ _op-b_

Returns the multiplication of the two operands.

```wlambda
std:assert 10   * 4 == 40;
std:assert 10.1 * 4 == 40.4;
std:assert "10" * 4 == 40;

std:assert (`*` 10 4) == 40;

std:assert (float "10.1") * 4 == 40.4;
```

#### <a name="624--op-a-op-b"></a>6.2.4 - / _op-a_ _op-b_

Returns the division of the two operands.

```wlambda
std:assert 10   / 4 == 2;
std:assert 10.0 / 4 == 2.5;
std:assert "10" / 2 == 5;

std:assert (`/` 10 4) == 2;

std:assert (float "10.1") * 4 == 40.4;
```

#### <a name="625--op-a-op-b"></a>6.2.5 - % _op-a_ _op-b_

Returns the remainder of the division of _op-a_ by _op-b_.

```wlambda
std:assert     5 % 4 == 1;
std:assert (`%` 5 4) == 1;
```

#### <a name="626--op-a-op-b"></a>6.2.6 - ^ _op-a_ _op-b_

Returns _op-a_ raised by the power of _op-b_.
Supports float and integers.

```wlambda
std:assert_eq 2 ^ 4     16;
std:assert_eq std:num:round[(2.0 ^ 2.1) * 1000] 4287.0;
std:assert_eq 2 ^ 2.1   4; # first arg type matters!
```

### <a name="63-comparison"></a>6.3 - Comparison

#### <a name="631--op-a-op-b"></a>6.3.1 - == _op-a_ _op-b_

Checks whether the two operands are equal to each other. Data types like
booleans, integers, floats, symbols and strings are compared by their contents.
Other types like vectors, maps, functions, errors or references are compared
by referential equality.

```wlambda
std:assert              $none == $none;
std:assert                  1 == 2 - 1;
std:assert               "aa" == ("a" "a");
std:assert               :xxy == :xxy;
std:assert       not ~ $[1,2] == $[1,2];
std:assert            $p(1,2) == $p(1,2);
std:assert            $i(1,2) == $i(1,2);
std:assert          $i(1,2,3) == $i(1,2,3);
std:assert    not ~ $i(1,2,3) == $f(1.0,2.0,3.0);
std:assert    $f(1.0,2.0,3.0) == $f(1.0,2.0,3.0);

std:assert ~ `==` 1 (2 - 1); # prefix form
```

#### <a name="632--op-a-op-b"></a>6.3.2 - != _op-a_ _op-b_

Checks whether the two operands are distinct from each other.  Data types like
booleans, integers, floats, symbols and strings are compared by their contents.
Other types like vectors, maps, functions, errors or references are compared
by referential equality.

It's generally the opposite of `==`.

```wlambda
std:assert         1 != 2;
std:assert     not[2 != 2];
std:assert     "foo" != "bar";
std:assert not["foo" != "foo"];

std:assert ~ `!=` 1 2;

!r1 = $[1,2];
!r2 = $[1,2];
std:assert r1 != r2;
```

#### <a name="633--op-a-op-b"></a>6.3.3 - < _op-a_ _op-b_

Numerical comparison operator that checks whether _op-a_ is less than _op-b_

```wlambda
std:assert   10   < 11;
std:assert   10.1 < 10.2;
std:assert not[10 < 10.1];  # the type of the first argument decides return type!
```

#### <a name="634--op-a-op-b"></a>6.3.4 - <= _op-a_ _op-b_

Numerical comparison operator that checks whether _op-a_ is less or equal to _op-b_

```wlambda
std:assert 10   <= 11;
std:assert 10.1 <= 10.2;
std:assert 10   <= 10.1;  # integer <=, the type of the first argument decides return type!
```

#### <a name="635--op-a-op-b"></a>6.3.5 - > _op-a_ _op-b_

Numerical comparison operator that checks whether _op-a_ is greater than _op-b_

```wlambda
std:assert   11.1 > 11;
std:assert   11.1 > 11.0;
std:assert not[10 > 10.1];  # the type of the first argument decides return type!
```

#### <a name="636--op-a-op-b"></a>6.3.6 - >= _op-a_ _op-b_

Numerical comparison operator that checks whether _op-a_ is greater or equal to _op-b_

```wlambda
std:assert 11   >= 11;
std:assert 10.2 >= 10.1;
std:assert 10 >= 10.1;  # integer >=, the type of the first argument decides return type!
```

### <a name="64-bit-operations"></a>6.4 - Bit Operations

#### <a name="641--op-a-op-b"></a>6.4.1 - & _op-a_ _op-b_

Binary `and` operation between two integers.

```wlambda
std:assert (0b0011 & 0b1011) == 0b011;
std:assert (3      &     11) == 3;
```

#### <a name="642--op-a-op-b"></a>6.4.2 - &^ _op-a_ _op-b_

Binary `xor` operation between two integers.

```wlambda
std:assert (0b0011 &^ 0b1011) == 0b1000;
std:assert (3      &^     11) == 8;
```

#### <a name="643--op-a-op-b"></a>6.4.3 - &| _op-a_ _op-b_

Binary `or` operation between two integers.

```wlambda
std:assert (0b0011 &| 0b1000) == 0b1011;
std:assert (3      &|      8) == 11;
```

#### <a name="644--op-a-op-b"></a>6.4.4 - << _op-a_ _op-b_

Binary `left shift` operation of _op-a_ by _op-b_ bits.

```wlambda
std:assert (0b0011 << 3)   == 0b11000;
std:assert (`<<` 0b1011 2) == 0b101100
```

#### <a name="645--op-a-op-b"></a>6.4.5 - >> _op-a_ _op-b_

Binary `right shift` operation of _op-a_ by _op-b_ bits.

```wlambda
std:assert (0b0011 >> 2)      == 0b0;
std:assert (0b1100 >> 2)      == 0b11;
std:assert (`>>` 0b1011000 3) == 0b1011
```

### <a name="65-collection-addition-operators--and-"></a>6.5 - Collection Addition Operators +> and <+

`+>` and `<+` are special operators for convenient and quick collection creation.
You can use them also to call a function with multiple arguments.

```wlambda
!vec = $[] +> 1 +> 2 +> 3;

std:assert_str_eq vec $[1, 2, 3];

!map = ${}
    +> (:a => 1)
    +> (:b => 2);

map +> (:c => 3);

std:assert_str_eq map ${a=1,b=2,c=3};
```

Usually these operators just append (`+>`) or prepend (`<+`) the right/left hand
side to the collection. But there are some special values which do special things.

First and foremost the iterator data type. If you pass an iterator to this
operator, the iterator will be iterated and all returned elements are added
to the collection in the order of the operator:

```wlambda
!v = $[] +> ($iter 0 => 4) +> ($iter "abc");

std:assert_str_eq v $[0,1,2,3,'a','b','c'];
```

As the `<+` operator prepends the individual elements, the
same is happening with the iterated elements. Which means
that their order is reversed:

```wlambda
!v = ($iter 0 => 4) <+ ($iter "abc") <+ $[];

std:assert_str_eq v $[3,2,1,0,'c','b','a'];
```

The following data types can be used as collection for
these operators:

- Vectors `$[]`
- Maps `${}`
- Strings `""`
- Byte vectors `$b""`
- Functions

The most special cases are maps and functions, which are described
in more detail in the next sections.

#### Collection Addition with Maps

If you add to a map, there is some special behavior for some data types.

Adding a key value pair is done with pairs:

```wlambda
!m = ${}
    +> $p(:a, 10)
    +> :b => 20;

std:assert_str_eq m ${a=10,b=20};
```

If you add an iterator, the iterator is walked and the given keys are
added if present:

```wlambda
!m = ${}
    +> ($iter $[1, 2, 3])
    +> ($iter ${ a = 10, b = 20 });

std:assert_str_eq m ${1=1,2=2,3=3,a=10,b=20};
```

If you add a list to a map, the first element of that list is used
as key, and the list as value:

```wlambda
!m = ${}
    +> $[:a, 1, 2]
    +> $[:b, 3, 4];

std:assert_str_eq m ${a=$[:a,1,2],b=$[:b,3,4]};
```

#### Collection Addition with Function

If you pass a function as collection to either `+>` or `<+` the function
is called for each added element. The return value of the expression
is the return value of the most recent function call.

```wlambda
!v = $[];

!v2 = { std:push v _; v } +> 1 +> 2 +> ${ a = 3, b = 4 };

std:assert_str_eq v  $[1,2,${a=3,b=4}];
std:assert_str_eq v2 $[1,2,${a=3,b=4}];
```

#### <a name="651--collection-a-"></a>6.5.1 - +> _collection_ _a_ ...

Append to collection operator.

```wlambda
!v  = $[] +> 1 +> "x" +> $b"y" +> ($iter 0 => 3);

!v2 = `+>` $[] 1 "x" $b"y" ($iter 0 => 3);

std:assert_str_eq v v2;
```

#### <a name="652--collection-a-"></a>6.5.2 - <+ _collection_ _a_ ...

Prepend to collection operator. Please note that the arguments are
reversed to the order in an operator expression.

```wlambda
!v  = ($iter 0 => 3) <+ 1 <+ "x" <+ $b"y" <+ $[];

!v2 = `<+` $[] $b"y" "x" 1 ($iter 0 => 3);

std:assert_str_eq v v2;
```

## <a name="7-string-and-byte-vector-formatting"></a>7 - String and Byte Vector Formatting

WLambda comes with a built in functionality for string (and byte vector)
formatting.  It works by creating a specialized formatting function from a
given string literal at compile time with the `$F"..."` syntax, or a string at
runtime with the `std:formatter _str_` function.

The formatter syntax is documented in detail at [12.2 String Formatting
Syntax](#132-string-formatting-syntax). It is basically the Rust `std::fmt`
Syntax with a few extensions for WLambda data types and the dynamically typed
nature of WLambda.

The WLambda syntax for `$F` is: `$F string-literal`. This means, you can
use any WLambda string literal after `$F`:

```wlambda
$F"...";        # normal string
$F$b"...";      # byte vector
$F$q/.../;      # normal string, quote syntax
$F$Q"...";      # byte vector quote syntax
$F$code{ };     # code block string
```

(Please note, that `$code{ ... }` is not as useful in this context, because
the formatter placeholders usually are not valid WLambda syntax.)

This is a very simple example:

```wlambda
!x = "abc";
!s = $F"x = {}" x;

std:assert_eq s "x = abc";
```

You can also use string formatting to generate byte vectors:

```wlambda
!bv = $F$b"x={}" $b"\xFF";

std:assert_eq bv $b"x=\xFF";
```

If you want to generate the WLambda written representation of a piece of
data like `std:write_str` would return it, you have to specify the
special formatting syntax `{:...!w}`:

```wlambda
std:assert_eq ($F"x={:!w}" $&&$[1, 2, 3, 4]) "x=$&&$[1,2,3,4]";

# Without the `!w` the reference would just
# be auto dereferenced like `str` would do it:
std:assert_eq ($F"x={}"   $&&$[1, 2, 3, 4]) "x=$[1,2,3,4]";
```

#### <a name="701-stdformatter-format-string"></a>7.0.1 - std:formatter _format-string_

Returns a formatting function that takes exactly the arguments specified
in the _format-string_. If the format syntax is wrong, an error is returned.

This is useful, if you need to build a format string at runtime,
because `$F` only allows string/byte vector literals.

```wlambda
!fmt = ">6.2";
!fmt_fun = (std:formatter (std:str:cat "{1} [{0:" fmt "}]"));

std:assert_eq (fmt_fun 3.43554 1.2323) "1.2323 [  3.44]";
```

### <a name="71-formatting-numbers"></a>7.1 - Formatting Numbers

Number formatting, that is integers, float and numerical vectors, require an
extension of the formatting syntax. You need to specify whether an integer
`"{:...!i}"` or a float `{:...!f}` is formatted. Otherwise WLambda will cast
everything to a string for formatting.

Here are some examples:

```wlambda
std:assert_eq ($F "{:8!i}"  123)   "     123";
std:assert_eq ($F "{:08!i}" 123)   "00000123";
std:assert_eq ($F "{:<8!i}" 123)   "123     ";
std:assert_eq ($F "{:^8!i}" 123)   "  123   ";
std:assert_eq ($F "{:>8!i}" 123)   "     123";

std:assert_eq ($F "{:8.2!f}"  123.567)   "  123.57";
std:assert_eq ($F "{:08.2!f}" 123.567)   "00123.57";
std:assert_eq ($F "{:<8.2!f}" 123.567)   "123.57  ";
std:assert_eq ($F "{:^8.2!f}" 123.567)   " 123.57 ";
std:assert_eq ($F "{:>8.2!f}" 123.567)   "  123.57";

# Note: For floats, the "!f" is implicit if you specify a precision:
std:assert_eq ($F "{:8.2}"  123.567)   "  123.57";
std:assert_eq ($F "{:08.2}" 123.567)   "00123.57";
std:assert_eq ($F "{:<8.2}" 123.567)   "123.57  ";
std:assert_eq ($F "{:^8.2}" 123.567)   " 123.57 ";
std:assert_eq ($F "{:>8.2}" 123.567)   "  123.57";
```

You can even format numbers in numerical vectors, data vector, pairs or maps:

```wlambda
std:assert_eq ($F "{:8.2}" $f(1.2, 3.456, 8.232)) "(    1.20,    3.46,    8.23)";
std:assert_eq ($F "{:8.2}" $[1.2, 3.456, 8.232])  "[    1.20,    3.46,    8.23]";
std:assert_eq ($F "{:8.2}" $p(1.2, 3.456))        "(    1.20,    3.46)";
std:assert_eq ($F "{:8.2}" ${x = 1.2, y = 3.456, z = 8.232})
              "{x:    1.20, y:    3.46, z:    8.23}";

std:assert_eq
    ($F "{:>8!i}" $i(1.2, 3.456, 8.232))
    "(       1,       3,       8)";
```

Also hexadecimal, octal and binary are supported for integers, they come after the `!i`:

```wlambda
std:assert_eq ($F "{:5!ix}" 321)    "  141";
std:assert_eq ($F "{:5!io}" 321)    "  501";
std:assert_eq ($F "{:<11!ib}" 321)  "101000001  ";
std:assert_eq ($F "{:011!ib}" 321)  "00101000001";
```

## <a name="8-data-structure-matchers-selectors-and-string-patternsregex"></a>8 - Data Structure Matchers, Selectors and String Patterns/Regex

WLambda comes with a builtin DSL (domain specific language) for
shallow data structure matches and deep data structure selection and regular expression (regex) pattern
matching on strings. A _selector_ (structure selection) gives you the
ability to search deep into WLambda data structures like
[CSS Selectors](https://www.w3.org/TR/selectors-3/) into HTML DOM trees
or [XPath](https://www.w3.org/TR/xpath-31/) into XML.
While a _structure matcher_, as used by the `match` operation,
allows you to directly match a certain WLambda piece of data.

A subset of the _selectors_ are the _patterns_, which are able to
match strings like regular expressions. The syntax of _patterns_
is a bit different from normal regular expressions like Perl,
Python or JavaScript has. This is partly due to the fact that
these patterns aim to be easily used to match parts of a specific
string like filename globs `photo_???_*.jpg`.

For an in depth description of the _selector_ and _pattern_ syntax
please refer to the [Pattern and Selector Syntax](#821-selector-and-wlambda-regex-syntax).

### <a name="81-data-structure-matcher"></a>8.1 - Data Structure Matcher

This is probably one of the most convenient matching features of WLambda.
While selectors (`$S[a / * / b]`) allow searching deep into data structures,
the matches allow to efficient precise shallow selection and matching.
The `match` operation allows to match a value against multiple matchers,
while the `$M ...` syntax allows to define a matcher function for a single
match (commonly used in an if expression).

For a reference of the matcher syntax see below.

#### <a name="811-match-value-expr-match-pair1--default-expr"></a>8.1.1 - match _value-expr_ _match-pair1_ ... [_default-expr_]

The match operation is a very versatile control flow operation.

#### <a name="812-m-expr"></a>8.1.2 - $M _expr_

This is a structure matcher expression. It will compile _expr_ into a structure
matcher function. The reslting function will match it's first argument agianst
the match and return a map containing the capture variables (or just an empty map).

It will also bind the result map to `$\`. This makes it possible to easily match
a data structure in an if statement:

```wlambda
!some_struct = $[:TEST, ${ a = 10, b = 1442 }];

if some_struct &> ($M $[sym, ${ a = 10, b = x }]) {
    std:assert_eq $\.sym :TEST;
    std:assert_eq $\.x   1442;
} {
    panic "It should've matched!";
};
```

#### <a name="813-data-structure-matcher-syntax"></a>8.1.3 - Data Structure Matcher Syntax

This the the compiletime syntax that is understood by the
structure matchers that are used by `$M ...` and `match`.

- `$M`, `$M1`, `$M2`, ... in the following table stands for a structure matcher expression.
- All other tokens or values stand for themself.

| WLambda Value | Semantics |
|-|-|
| `x`                    | Matches any value and assigns it to the variable `x`. |
| `?`                    | Matches any value, but does not assign it. |
| `x $M $M1 ... $Mn`     | Assign the value that matched $M, $M1 or $Mn to the variable `x`. |
| `? $M $M1 ... $Mn`     | Matches if $M, $M1 or $Mn matches. |
| `_*`                   | Placeholder for 0 or N items that match any items in the vector. |
| `_+`                   | Placeholder for 1 or N items that match any items in the vector. |
| `_?`                   | Placeholder for 0 or 1 items that match any items in the vector. |
| `_* $M`                | Placeholder for 0 or N items that match $M in the vector. |
| `_+ $M`                | Placeholder for 1 or N items that match $M in the vector. |
| `_? $M`                | Placeholder for 0 or 1 items that match $M in the vector. |
| `_type? :integer ...`  | Matches an element of one of the given types.  Symbol names should have the same name as the type names returned by the `type` function. |
| `$r/.../`              | Matches any element, where it's string contents matches the given pattern. |
| `$rg/.../`             | Matches any element, where it's string contents matches the given pattern. Returns a list with all global matches. |
| `$M1 &or $M2`          | Matches if $M1 or $M2 matches. |
| `$M1 &and $M2`         | Matches if $M1 and $M2 matches. |
| `$[$M1, $M2, ...]`     | Matches a vector. |
| `${ $Mkey1 = $Mval1, ...}`| Matches a map. $Mkey1 can also be a $M match, but keep in mind that maps can only have symbols as keys. You can however match symbols using regex patterns for instance. If you only use symbols as keys in this match, the map access is optimized a bit, because there is no need to iterate over all keys then. |
| `$p($M1, $M2)`         | Matches a pair. |
| `$i($M1, ...)`         | Matches an integer vector. |
| `$f($M1, ...)`         | Matches a float vector. |
| `$o($M)`               | Matches an optional where the value matches $M. |
| `$e $M`                | Matches an error value that matches $M. |
| `$n`                   | Matches $none. |
| literal values         | Literal values like booleans, strings, symbols and numbers match their value. |

### <a name="82-data-structure-selectors-s"></a>8.2 - Data Structure Selectors `$S(...)`

This section shows how data structure selectors can be used.

TODO

#### <a name="821-selector-and-wlambda-regex-syntax"></a>8.2.1 - Selector and WLambda Regex Syntax:

```ebnf
    (* NOTE: Whitespace is not part of a pattern in most places. This means
             if you want to match whitespace, you will have to escape
             it either with a '\', with a [ ] character class or match
             one whitespace char with $s. *)

    class_char  = { ?any character except "]"? }
                  (* special sequence: "\^" => "^" and "\\" => "\"
                     and "\]" => "]" *)
                ;

    ident_char_in_selector =
                  (* if regex is used inside a selector: *)
                  { ?any character except whitespace,
                    "!", "?", "/", "\", "|", "^", ",",
                    "'", "&", ":", ";", "$", "(", ")",
                    "{", "}", "[", "]", "*" and "="? }
                  (* allows the usual backslash escaping from strings! *)
                ;

    ident_char_in_direct_pattern =
                | (* if regex is used as pattern directly: *)
                  { ?any character except whitespace,
                    "?", "|", "$", "(", ")", "[", "]" and "*"? }
                  (* allows the usual backslash escaping from strings! *)
                ;
    ident_char  = ident_char_in_direct_pattern
                | ident_char_in_selector
                ;

    ident       = ident_char, { ident_char }
                ;

    index       = digit, { digit }
                ;

    rx_atom     = pat_glob
                | ident_char
                ;

    glob_atom   = pat_glob
                | ident
                ;

    rx_match_mod = "L"             (* transforms the input string from the match
                                      position on to lower case. *)
                 | "U"             (* transforms the input string from the match
                                      position on to upper case. *)
                 ;

    pat_regex   = "*", rx_atom     (* matches sub pattern 0 or N times *)
                | "+", rx_atom     (* matches sub pattern 1 or N times *)
                | "<", [ ("*" | "+" | "?") ], rx_atom
                                   (* non greedy version of the above *)
                | "?", rx_atom     (* matches sub pattern 0 or 1 times *)
                | "!", rx_atom     (* matches (zero width) if next pattern does not match *)
                | "=", rx_atom     (* matches (zero width) if next pattern does match *)
                | "^"              (* matches (zero width) start of string *)
                | "$"              (* matches (zero width) end of string *)
                | "s"              (* matches one whitespace character *)
                | "S"              (* matches one non-whitespace character *)
                | "&", rx_match_mod
                ;

    glob_group  = "(", "^", pattern, ")"    (* capturing sub group *)
                | "(", pattern, ")"         (* sub group *)
                ;

    class_range = class_char, "-", class_char (* contains a range of chars, eg. [a-z] *)
                ;

    glob_cclass = "[",  { class_char | class_range }, "]" (* character class match for 1 char *)
                | "[^", { class_char | class_range }, "]" (* negated character class match for 1 char *)
                ;

    pat_glob    = "*"                       (* 0 or N any characters *)
                | "?"                       (* any character *)
                | "$", pat_regex
                | glob_cclass
                | glob_group
                ;

    pat_branch  = { glob_atom }
                ;

    pattern     = pat_branch, [ "|", pattern ]
                ;

    key         = index | pattern
                ;

    kv          = key, "=", pattern
                ;

    kv_item     = "{", kv, { ",", kv }, "}"
                ;

    node_match  = ":", ["!"], "(", selector, ")"
                | ":", ["!"], kv_item
                | ":", ["!"], "type", "=", pattern
                  (* pattern is matched against
                     vval type as returned by `type` *)
                | ":", ["!"], "str",  "=", pattern
                  (* pattern is matched against
                     the string contents or stringified
                     representation of the value *)
                ;

    node_cond   = node_match
                | node_match, "&", node_cond
                | node_match, "|", node_cond
                ;

    reckey_cond = "!", "key", "=", pattern
                  (* recurse only into values if they are not referred
                     to by a key matching the given pattern. *)
                ;
    recval_cond = "=", node_cond
                  (* recurse only into values if they match the given
                     condition *)
                ;

    node        = key, { node_cond }
                  (* marks it for referencing it in the result set *)
                | "**", [ reckey_cond ], [ recval_cond ], { node_cond }
                  (* deep expensive recursion *)
                | "^", node
                ;

    selector    = node, { "/", node }
                ;
```

#### <a name="822-stdselector-string"></a>8.2.2 - std:selector _string_

Parses the given _string_ as WLambda data structure selector and returns
a function that takes a data structure as first argument. That function will
then query the data structure according to the given selector.
That function will also set the global variable `$\` to the result.

The main usage of this function is, when you want to define the selector
at runtime. Otherwise WLambda provides the handy `$S(...)` syntax for
generating the structure pattern function at compile time.

```wlambda
!runtime_name = "foo";
!sel = std:selector (" * / " runtime_name);

if sel <& $[${foo = 1}, ${foo = 2}, ${foo = 3}] {
    std:assert_str_eq $\ $[1,2,3];
} {
    std:assert $false
};
```


### <a name="83-string-patterns-regex-r"></a>8.3 - String Patterns (Regex) `$r/.../`

This section shows how to use the builtin pattern regex engine
in WLambda. You can embed patterns directly in your WLambda source
with `$rQ...Q`. Where `Q` stands for the usual string quoting mechanism
in WLambda (like `$q/foo/`, `$q(foo bar)`, ...). This has the advantage
that the pattern syntax is checked on compile time of your WLambda program.

The result of the expression `$r/foo/` is a function, which takes as first
arguments a string and returns a vector of substrings of that input
string. First element of that vector is always the matched sub string
of the input string. All elements after that correspond to a pattern
capture `(^...)` like in `$r/foo(^bar)/`.
The function returns `$none` if the pattern could not be found in the input string.

Lets start off with a simple example:

```wlambda
# Please note: Whitespace inside the pattern is allowed and will not be matched!

!res = $r/a (^*) b/ "fooaxxxxbber";

std:assert_eq res.0 "axxxxbb";
std:assert_eq res.1 "xxxxb";
```

To match a whole string you can anchor using `$^` and `$$`:

```wlambda
!res = $r/$^ a (^*) b $$/ "axxxxbb";

std:assert_eq res.0 "axxxxbb";
std:assert_eq res.1 "xxxxb";
```

To match special the characters `$` you can use the backslash escaping `\$`:

```wlambda
std:assert_eq ($r/$+ \$/ "FF$$$FF").0   "$$$";
```

To access captured groups you can either use the return value of the
matcher function, or use the global variable `$\` which will contain
the results of the latest match that was executed:

```wlambda
# Notice the usage of the `<&` function call operator:
!res =
    if "foo//\\/foo" &> $r| $<*? (^$+[\\/]) * | {
        std:assert_eq $\.0 "foo//\\/foo";

        $\.1
    };

std:assert_eq res "//\\/";
```

#### <a name="831-global-patterns-rg"></a>8.3.1 - Global Patterns `$rg/.../`

With the `g` modifier the regex can be modified and will match the input
string with the given pattern repeatedly and call a given function
for each match.

The match function will receive the input string as first argument
and a function that will be called for each match as second argument.

Inside the match function, you can use the control flow functions `break`
and `next` to skip ahead.

The match function receives the contents of `$\` as first argument,
the offset of the match in the input string as second argument
and the length of the match as third argument:

```wlambda
!found = $@vec $rg/x(^?)y/ "aax9yaaxcy" {!(match, offs, len) = @;
    $+ $[match.1, offs, len]
};

std:assert_str_eq found $[$["9", 2, 3], $["c", 7, 3]];
```

#### <a name="832-pattern-substitutions-rs"></a>8.3.2 - Pattern Substitutions `$rs/.../`

The `s` modifier creates a substitution that will substitute each match
of the pattern in the given input string with the return value of the
match function. The match function is called with the same values as `$rg`
does.

```wlambda
!digits =
    $["zero", "one", "two", "three", "four",
      "five", "six", "seven", "eight", "nine"];

!ret = $rs/[0-9]/ "on 1 at 0 of 8" {!(match, offs, len) = @;
    digits.(int match.0)
};

std:assert_eq ret "on one at zero of eight";
```

Inside the match function, you can use the control flow functions `break`
and `next`. You can use that to control which occurence within the string to
replace:

```wlambda
!res = $rs/xxx/ "fxxxfxxxfxxxf" { break "O" };

std:assert_eq res "fOfxxxfxxxf";
```

#### <a name="833-pattern-syntax-overview"></a>8.3.3 - Pattern Syntax Overview

While
[Selector and WLambda Regex Syntax](#821-selector-and-wlambda-regex-syntax)
describes the pattern syntax in detail,
here is the WLambda pattern regex syntax in a nutshell:

| Pattern Syntax | Semantics |
|-|-|
| `?|$()[]*`    | Many special chars are reserved in WLambda patterns. Be aware that more characters are reserved if you use the patterns in a data structure selector, instead of a single pattern. Please escape then using backslash like `\\/` or `[/]`.|
| _whitespace_  | Please note, that whitespace to be matched must be escaped using '\' or inside a character calss `[ ]`. |
| `\.`          | Backslash escapes work the same as in regular WLambda strings. `\` escapes the following character to have no special syntactic meaning in a pattern except matching itself. While escape sequences like `\x41` match the character `A` or `\u{2211}` matches `∑`. These also work inside of character classes. |
| `*`           | Match 0 to N occurences of any character. |
| `?`           | Match 1 occurences of any character. |
| `(...)`       | A match group (does not capture). |
| `(^...)`      | A capturing match group. |
| `[abcA-Z]`    | A character class, matching the listed characters or ranges. |
| `[^abcA-Z]`   | A negative character class, matching all character except the listed characters or ranges. |
| `$^`          | String start anchor. Matches only the start of the string. Useful for specifying patterns that match the complete string (in combination with `$$`). |
| `$$`          | String end anchor. Matches only the end of the string. Useful for specifying patterns that must match the complete string. |
| `$*X`         | Greedly matches the pattern part `X` 0 or N times. For grouping pattern parts use `(...)` like in `$*(abc)`. |
| `$<*X`        | Non-greedly matches the pattern part `X` 0 or N times. |
| `$+X`         | Greedly matches the pattern part `X` 1 or N times. For grouping pattern parts use `(...)` like in `$+(abc)`. |
| `$<+X`        | Non-greedly matches the pattern part `X` 1 or N times. |
| `$?X`         | Greedly matches 0 or 1 occurences of the pattern part `X`. Like usual, you can group using `(...)`. |
| `$<?X`        | Non-greedly matches 0 or 1 occurences of the pattern part `X`. |
| `$!X`         | Zero-width negative look-ahead. `($^$!a*)` matches any string not starting with an `a`.  |
| `$=X`         | Zero-width positive look-ahead. `($^$=a*)` matches any string starting with an `a`. |
| `$s`          | Matches one (Unicode) whitespace character. |
| `$S`          | Matches one (Unicode) non-whitespace character. |
| `$&L`         | Transforms the input string for the following pattern matching parts to lowercase (attention: O(n) operation on the complete rest of the string!). Useful for matching case-insensitively. |
| `$&U`         | Transforms the input string for the following pattern matching parts to uppercase (attention: O(n) operation on the complete rest of the string!). Useful for matching case-insensitively. |

#### <a name="834-standard-regular-expressions"></a>8.3.4 - Standard Regular Expressions

Please note that WLambda can optionally be compiled with the `regex` crate,
which implements a more common syntax for regular expressions.
Please refer to the functions `std:re:match` in the WLambda standard library
for this.

#### <a name="835-stdpattern-string-mode"></a>8.3.5 - std:pattern _string_ [_mode_]

Compiles the regex pattern _string_ to a function just like `$r/.../` would do.
The _mode_ can either be `:g` (global match like `$rg...`), `:s` (substitution
like `$rs...`) or `$none`.  Useful for composing WLambda patterns at runtime:

```wlambda
!rx = std:pattern ~ std:str:cat "(^" "$+" "[a-z]" ")";

std:assert_eq (rx "foo").1 "foo";
```

Returns an error if the syntax failes to parse as pattern:

```wlambda
!err = unwrap_err ~ std:pattern "($+[a-z]";

std:assert_eq $i(0, 11)[err] "bad pattern";
```

Here an example of substitution:

```wlambda
!subs = std:pattern "$+x" :s;
std:assert_eq subs["fooxxxoxx", \"a"] "fooaoa";
```

## <a name="9-modules"></a>9 - Modules

### <a name="91-export"></a>9.1 - export

```wlambda

!expr = { _ + 30 };

!@export symbol = expr; # exports symbol with value of expr (a function)

```

**Warning:** Do not expect the declared variables in the module to exist beyond
execution time. Weak caught values will vanish like usual once the module scope
is exited. This means, if you declare helper functions in local variables, do
this with the `:global` modifier:

```wlambda
!:global helper = { _ * 2 };

!@export doit = { helper 10 };
```

Alternatively make the helper a strong reference:

```wlambda
!helper = $&& { _ * 2 };

!@export doit = { helper 10 };
```

### <a name="92-import"></a>9.2 - import

```wlambda

!@import x = tests:test_mod; # prefixes everything from modixes with x:

std:assert ~ (x:symbol 10) == 40;

```

You can also skip the prefix:

```wlambda
!@import std;

!v = $[];

std:push v 10;
std:push v 20;

std:assert_eq (str v) "$[10,20]";
```

## <a name="10-core-library"></a>10 - Core Library

This library contains all the core functions which belong to the
core of the WLambda Programming Language. These functions can be seen
as keywords of WLambda. Some functions are also available as operators.

#### <a name="1001-type-value"></a>10.0.1 - type _value_

Returns the name of the data type of _value_ as string.

```wlambda
std:assert_eq (type 10)         "integer";
std:assert_eq (type 10.0)       "float";
std:assert_eq (type {})         "function";
!y = $&&std:to_drop { };
std:assert_eq (type y)          "drop_function";
std:assert_eq (type :s)         "symbol";
std:assert_eq (type "s")        "string";
std:assert_eq (type $[])        "vector";
std:assert_eq (type ${})        "map";
std:assert_eq (type $b"")       "bytes";
std:assert_eq (type $n)         "none";
std:assert_eq (type $t)         "bool";
std:assert_eq (type $e $n)      "error";
std:assert_eq (type $&&10)      "ref_strong";
std:assert_eq (type $&10)       "ref_hidden";
!x = $&&10;
std:assert_eq (type ~ $w&x)     "ref_weak";
```

#### <a name="1002-len-value"></a>10.0.2 - len _value_

Returns the length of _value_. Depending on the data type you will get
different semantics.

```wlambda
# Always zero for scalar non sequential/collection values:
std:assert_eq (len 10)              0;
std:assert_eq (len 10.1)            0;
std:assert_eq (len $t)              0;
std:assert_eq (len $f)              0;
std:assert_eq (len $n)              0;

std:assert_eq (len "\xFF")          2; # byte length of the UTF-8 string
std:assert_eq (len $b"\xFF")        1;
std:assert_eq (len $[1,2,3,4,5])    5;
std:assert_eq (len ${a=1, b=2})     2;
std:assert_eq (len ${a=1, b=2})     2;
```

#### <a name="1003-panic-message"></a>10.0.3 - panic _message_

If your program runs into something that deserves a slap on the fingers
of the developer you can use `panic` to do that.

## <a name="11-standard-library"></a>11 - Standard Library

#### <a name="1101-stdshuffle-randfunc-vec"></a>11.0.1 - std:shuffle _rand\_func_ _vec_

Shuffles the _vec_ in place. The function _rand_func_ needs to return
a random 64 bit integer on each call. Here is an example:

```wlambda
std:srand 1234;
!vec = $[1,2,3,4,5,6,7,8];
std:shuffle { std:rand :i64 } vec;

std:assert_eq (str vec) "$[2,1,7,4,8,5,3,6]";
```

An Example with std:rand:split\_mix64\_next:

```wlambda
!sm  = std:rand:split_mix64_new_from 1234;
!vec = $[1,2,3,4,5,6,7,8];
std:shuffle { std:rand:split_mix64_next sm } vec;

std:assert_eq (str vec) "$[2,1,7,4,8,5,3,6]";
```

#### <a name="1102-stddelete-vector-or-map-index-or-key"></a>11.0.2 - std:delete _vector-or-map_ _index-or-key_

This removes the designated element from the collection (either vector or map).
This works for:

- Vectors:
```wlambda
!v = $[1,2,3];

std:assert_eq (std:delete v 1) 2;
std:assert_eq (str v) (str $[1,3]);
```
- Maps:
```wlambda
!m = ${a = 10, b = 20};

std:assert_eq (std:delete m :a) 10;
std:assert_eq (str m) (str ${b = 20});
```

Please note that this operation is potentially O(n) on vectors.

#### <a name="1103-stdrefid-value"></a>11.0.3 - std:ref\_id _value_

Returns an integer identifier for a given referential value.
The ID will stay the same as long as the reference is allocated.
This returns a value for all data types that have some form
of internal reference to a value on the heap.

The main usage of this function is to get a pre process unique ID
for an allocated value. But be aware, that once the value is deallocated,
the reference ID does not belong to that value anymore.

```wlambda
!v = $[1,2,3];

!v_id1 = std:ref_id v;
std:push v 4;

!v_id2 = std:ref_id v;

std:assert_eq v_id1 v_id2;
```

#### <a name="1104-stdcopy-vecormap"></a>11.0.4 - std:copy _vec\_or\_map_

Makes a shallow copy of the given vector or map.

```wlambda
!a = $[1,2,3];
!b = std:copy a;
b.0 = 10;

std:assert_eq a.0 1;
std:assert_eq b.0 10;
```

#### <a name="1105-stdvalues-collection-or-iter"></a>11.0.5 - std:values _collection-or-iter_

This function returns all values in the given collection or iterator
as vector. _collection-or-iter_ can have be one of the following data
types:

- vector
- numerical float or integer vector
- map
- iterator `$iter`

```wlambda
std:assert_str_eq (std:values $iter 0 => 5)      $[0,1,2,3,4];
std:assert_str_eq (std:values ${a = 10})         $[10];
std:assert_str_eq (std:values $iter ${a = 10})   $[10];
std:assert_str_eq (std:values $[1,2,3])          $[1,2,3];
std:assert_str_eq (std:values $i(1,2,3))         $[1,2,3];
```

#### <a name="1106-stdkeys-collection-or-iter"></a>11.0.6 - std:keys _collection-or-iter_

This function returns all keys in the given _collection_ or _iterator_.
It's most useful for the map data type, but also returns the indices in
a vector or numerical vector.

```wlambda
std:assert_str_eq (std:keys ${a = 10})           $["a"];
std:assert_str_eq (std:keys $iter ${a = 10})     $["a"];
std:assert_str_eq (std:keys $[3,3,3])            $[0,1,2];
std:assert_str_eq (std:keys $i(4,4,4))           $[0,1,2];
std:assert_str_eq (std:keys $i(4,4))             $[0,1];
```

#### <a name="1107-stdsort-comparefun-vec"></a>11.0.7 - std:sort [_compare\_fun_] _vec_

Sorts the given _vec_ in place. The comparison function _compare_fun_ gets the
two values a and b and needs to return -1 if a < b, 0 if a = b and 1 if a > b.

There are four functions that implement numeric and lexicographic ordering:

- `std:cmp:num:asc`
- `std:cmp:num:desc`
- `std:cmp:str:asc`
- `std:cmp:str:desc`

If no _compare_fun_ is given, the ordering will be ascending and lexicographic
vs. numeric will be chosen by the type of the `a` value (if it is an integer or
float it will be numeric, otherwise lexicographic).

```wlambda
!v = $[$[1], $[-1], $[3]];
std:sort { std:cmp:num:desc _.0 _1.0 } v;

std:assert_eq v.0.0 3;
std:assert_eq v.1.0 1;
std:assert_eq v.2.0 -1;
```

#### <a name="1108-stdcmpnumasc-a-b"></a>11.0.8 - std:cmp:num:asc _a_ _b_

Compares _a_ and _b_ numerically and returns:

| Cases         | Return Value |
|---------------|--------------|
| _a_ > _b_     | -1           |
| _a_ == _b_    | 0            |
| _a_ < _b_     | 1            |

```wlambda
std:assert_eq (std:cmp:num:asc 20 2)        -1;
std:assert_eq (std:cmp:num:asc "20" "20")    0;
std:assert_eq (std:cmp:num:asc 20 21)        1;
```

#### <a name="1109-stdcmpnumdesc-a-b"></a>11.0.9 - std:cmp:num:desc _a_ _b_

Compares _a_ and _b_ numerically descending and returns:

| Cases         | Return Value |
|---------------|--------------|
| _a_ > _b_     | 1            |
| _a_ == _b_    | 0            |
| _a_ < _b_     | -1           |

```wlambda
std:assert_eq (std:cmp:num:desc "20" "2")     1;
std:assert_eq (std:cmp:num:desc "20" "20")    0;
std:assert_eq (std:cmp:num:desc 20 21)       -1;
```

#### <a name="11010-stdcmpstrasc-a-b"></a>11.0.10 - std:cmp:str:asc _a_ _b_

Compares _a_ and _b_ lexicographically by their byte values. This orders
Unicode code points based on their positions in the code charts.

| Cases         | Return Value |
|---------------|--------------|
| _a_ > _b_     | -1           |
| _a_ == _b_    | 0            |
| _a_ < _b_     | 1            |

```wlambda
std:assert_eq (std:cmp:str:asc "abc" "aba") -1;
std:assert_eq (std:cmp:str:asc "abc" "abc")  0;
std:assert_eq (std:cmp:str:asc "abc" "abd")  1;
```

#### <a name="11011-stdcmpstrdesc-a-b"></a>11.0.11 - std:cmp:str:desc _a_ _b_

Compares _a_ and _b_ lexicographically by their byte values. This orders
Unicode code points based on their positions in the code charts.

| Cases         | Return Value |
|---------------|--------------|
| _a_ > _b_     | 1            |
| _a_ == _b_    | 0            |
| _a_ < _b_     | -1           |

```wlambda
std:assert_eq (std:cmp:str:desc "abc" "aba")  1;
std:assert_eq (std:cmp:str:desc "abc" "abc")  0;
std:assert_eq (std:cmp:str:desc "abc" "abd") -1;
```

#### <a name="11012-stdreverse-value"></a>11.0.12 - std:reverse _value_

Reverses the given sequence of values. This works for following data types:

- Strings
- Byte vectors
- Vectors
- Numeric vectors
- Iterators

```wlambda
std:assert_str_eq (std:reverse $[1, 2, 3, 4])       $[4,3,2,1];
std:assert_str_eq (std:reverse "ABC")               "CBA";
std:assert_str_eq (std:reverse $b"ABC")             $b"CBA";
std:assert_str_eq (std:reverse $i(1,2,3,4))         $i(4,3,2,1);
std:assert_str_eq (std:reverse $f(1.1,2.2,3.3,4.4)) $f(4.4,3.3,2.2,1.1);
```

#### <a name="11013-stddisplayln-arg1-"></a>11.0.13 - std:displayln _arg1_ ...

This function writes a humand readable version of all the arguments
(with a space inbetween) to the standard output. This means that:

```text
std:displayln "foo"
```

Will just print `foo` and a newline.

If you need a less ambigous form, use `std:writeln`, which
handles its argument like written via `std:ser:wlambda` instead of `str`.

#### <a name="11014-debug-arg1-"></a>11.0.14 - $DEBUG _arg1_ ...

This is a special value that evaluates to a print function that supplies the
current position in the source code. For example this:

```wlambda
!k = $[1, 2, 3];

$DEBUG "I got values:" k 99;
```

Will print this (assuming it's at line 1 col 3 in file `file_foo.wl`):

```text
[1,3:<file_foo.wl>] DEBUG: "I got values:"(string) $[1,2,3](vector) 99(integer)
```

In case you want to directly write a string or some value, you will have
to prefix the argument with the symbol `:\`:

```wlambda
!k = 30;
$DEBUG :\ "k =" :\ k;
```

Will print like this:

```text
[1,11:<wlambda::eval>] DEBUG: k = 30
```

#### <a name="11015-stdwriteln-arg1-"></a>11.0.15 - std:writeln _arg1_ ...

This function writes the WLambda representation of its arguments
(with a space inbetween) to standard output. This means that:

```text
std:displayln "foo"
```

Will print `"foo"` and a newline.

See also the description of `std:ser:wlambda`.

If you need a more human readable form use `std:displayln`.

#### <a name="11016-stdeval-code-string"></a>11.0.16 - std:eval _code-string_

Evaluates _code-string_ in the current global environment and returns
the generated value. If the code leads to any kind of evaluation error,
an error object is returned.

```wlambda
std:assert_eq (std:eval "1 + 2") 3;
!:global X = 20;
std:assert_eq (std:eval "1 + X") 21;
```

#### <a name="11017-stdassert-bool-message"></a>11.0.17 - std:assert _bool_ \[_message_]

Just a simple assertion function that panics if the first argument is not true.
Returns the passed value if it is a true value.
You can pass an optional message as second parameter.

```norun_wlambda
std:assert $false; #=> Panic
std:assert 120;    #=> 120
```

#### <a name="11018-stdasserteq-actual-expected-message"></a>11.0.18 - std:assert\_eq _actual_ _expected_ \[_message_]

This function checks if the _actual_ value is equal to the
_expected_ value and panics if not. The optional _message_ is
passed in the panic for reference.

```wlambda
!x = 30 * 2;
std:assert_eq x 60 "30 * 2 == 60";
```

#### <a name="11019-stdassertstreq-actual-expected"></a>11.0.19 - std:assert\_str\_eq _actual_ _expected_

This function stringifies _actual_ and _expected_ using the `str` function
and compares the resulting strings.

This is very useful to compare data structures, as map keys are sorted
if the maps are stringified using `str`:

```wlambda
std:assert_str_eq $[1, 2, 3]        $[1, 2, 3];
```

#### <a name="11020-stdassertreleq-l-r-epsilon-message"></a>11.0.20 - std:assert\_rel\_eq _l_ _r_ _epsilon_ \[_message_]

This function checks if `l` is within `epsilon` of `r`.
If the absolute value of the difference between `l` and `r` is greater than `epsilon`,
this function will panic, also displaying the optional message if present.

```wlambda
# these two are within 1 of each other
!x = 10.5;
!y = 11.3;
std:assert_rel_eq x y 1;

# but not within 0.5 of each other, so this line is commented out.
# std:assert_eq x y 0.5;
```

#### <a name="11021-stdmeasuretime-unit-function"></a>11.0.21 - std:measure\_time _unit_ _function_

This function measures the time the given _function_ took to execute.
The _unit_ defines how precisely the time is measured. Following strings are supported
units:

- `s` - seconds
- `ms` - milliseconds
- `us` - microseconds
- `ns` - nanoseconds

The return value is a vector where the first element is the
time it took to execute the function, and the second element is the
return value of that function.

```wlambda
!res = std:measure_time :ns { $@i iter i 0 => 100000 { $+ i } };
std:assert res.0 > 100;
std:assert_eq res.1 4999950000;
```

### <a name="111-io"></a>11.1 - I/O

#### <a name="1111-stdioline"></a>11.1.1 - std:io:line

Reads a line from standard input and returns it. Returns an error if something
went wrong.

```text
!line = unwrap std:io:line[];
std:displayln "you entered: " std:str:trim_end[line];
```

#### <a name="1112-stdiolines-value"></a>11.1.2 - std:io:lines [_value_]

Calls the given _value_ for each line in standard input until EOF and returns
the last returned value from that call.  If _value_ is not given, all lines
will be appended to a new vector and returned.  Returns an error if some IO
error occured.

```text
!lines = std:io:lines[];

!lines = $@v std:io:lines $+;

std:io:lines {!(line) = @;
    std:displayln "You entered: [" std:str:trim[line] "]";
};
```

#### <a name="1113-stdiofilereadtext-filename"></a>11.1.3 - std:io:file:read\_text _filename_

Opens the file _filename_ and returns its contents interpreted as UTF8
text as string.

```wlambda
std:io:file:write_safe "prelude_test.txt" "abcäöü";

!t = std:io:file:read_text "prelude_test.txt";
std:assert_eq t "abcäöü" "reading text from file works";
```

#### <a name="1114-stdiofileread-filename"></a>11.1.4 - std:io:file:read _filename_

Opens the file _filename_ and returns its contents as byte buffer.

```wlambda
std:io:file:write_safe "prelude_test.txt" "abcäöü";

!t = std:io:file:read "prelude_test.txt";
.t = std:str:from_utf8 t;
std:assert_eq t "abcäöü" "reading binary from file works";
```

#### <a name="1115-stdiofilewritesafe-filename-bytes-or-string"></a>11.1.5 - std:io:file:write\_safe _filename_ _bytes-or-string_

Creates a new file with the given filename but with a "~" appended
and writes the contents into it. After successful write, it renames
the file to the given filename.

#### <a name="1116-stdiofileappend-filename-bytes-or-string"></a>11.1.6 - std:io:file:append _filename_ _bytes-or-string_

Opens the given filename in append mode and appends _bytes-or-string_ to the
end of the file.

#### <a name="1117-stdiostdoutnewline"></a>11.1.7 - std:io:stdout:newline

Writes a newline to standard output. Returns an error if an error occured or
`$true` otherwise.

#### <a name="1118-stdiostdoutflush"></a>11.1.8 - std:io:stdout:flush

Flushes the standard output buffer. Returns an error if an error occured or
`$true` otherwise.

#### <a name="1119-stdiostdoutprint-value"></a>11.1.9 - std:io:stdout:print _value_

Writes the given _value_ to standard output in a human readable form like `std:displayln`
does. Returns an error if an error occured. `$true` if everything is fine.

```text
std:io:stdout:write "xxx"; # => Writes `xxx` to standard output
```

#### <a name="11110-stdiostdoutwrite-value"></a>11.1.10 - std:io:stdout:write _value_

Writes a WLambda representation of _value_ to standard output.
Returns an error if an error occured. `$true` if everything is fine.

```text
std:io:stdout:write "xxx"; # => Writes `"xxx"` to standard output
```

#### <a name="11111-stdioflush-handle"></a>11.1.11 - std:io:flush _handle_

Flushes the internal buffers of _handle_. _handle_ can be any kind of IO handle,
like a file handle or networking socket.

```text
!socket = unwrap ~ std:net:tcp:connect "127.0.0.1:80";

std:io:write socket $b"GET / HTTP/1.0\r\n\r\n";
std:io:flush socket;
```

#### <a name="11112-stdioreadsome-handle"></a>11.1.12 - std:io:read\_some _handle_

Reads some amount of data from _handle_. The default maximum amount
of bytes read is 4096. This function returns `$o(bytes)` if something
was read. It returns `$o()` when EOF is encountered. `$none` is
returned when the IO operation was interrupted or did timeout.
An `$error` is returned if some kind of error happened, like loss of
TCP connection.

Here is an example how to read everything from a socket until EOF is
encountered:

```text
!socket = unwrap ~ std:net:tcp:connect "127.0.0.1:80";

std:io:write socket $b"GET / HTTP/1.0\r\n\r\n";
std:io:flush socket;

!buf = $b"";
!done = $f;
while not[done] {
    match std:io:read_some[socket]
        $o(buf) => { .buf = buf +> $\.buf; }
        $o()    => { .done = $t; }
        ($e _)  => { .done = $t; };
};
```

#### <a name="11113-stdiowrite-handle-data-offs"></a>11.1.13 - std:io:write _handle_ _data_ [_offs_]

Write all data as byte vector to the IO _handle_ (socket, file handle, ...),
starting at _offs_ (0 default).
Returns the number of bytes written, an error or `$none` if interrupted.
Note: This function does not respect the underlying write timeout in _handle_ properly.

```text
!socket = unwrap ~ std:net:tcp:connect "127.0.0.1:80";

std:io:write socket $b"GET / HTTP/1.0\r\n\r\n";
```

#### <a name="11114-stdiowritesome-handle-data"></a>11.1.14 - std:io:write\_some _handle_ _data_

Try to write some data as byte vector to the IO _handle_ (socket, file handle,
...), starting at _offs_ (0 default).
Returns the number of bytes written, an error or `$none` if a timeout or interrupt
ended the write operation.

```text
!socket = unwrap ~ std:net:tcp:connect "127.0.0.1:80";

!bytes = $b"GET / HTTP/1.0\r\n\r\n";
!written = 0;

while len[bytes] > written {
    match (std:io:write_some socket bytes written)
        $o(n)  => { .written += n; }
        $none  => {}
        ($e _) => { break[] };
}
```

### <a name="112-networking"></a>11.2 - Networking

#### <a name="1121-stdnettcpconnect-socket-addr-connect-timeout"></a>11.2.1 - std:net:tcp:connect _socket-addr_ [_connect-timeout_]

This tries to connect to _socket-addr_. If a _connect-timeout_ is given, it
will try to connect within that time. Please note that the returned sockets are
thread safe and can be passed to another thread via an _Atom_, _Atom Value
Slot_ or _Channel_ for instance.

_socket-addr_ can be:

- A pair `$p(host, port)`
- A string like "host:port".
- A pair within a pair to specify whether to use IPv4 or IPv6
addresses only:
    - `$p(:v4, "host:port")`
    - `$p(:v4, $p(host, port))`
    - `$p(:v6, "host:port")`
    - `$p(:v6, $p(host, port))`

About _connect-timeout_ see std:thread:sleep.

```test
!socket =
    match (std:net:tcp:connect "127.0.0.1:8328")
        ($e err) => { panic ("Couldn't connect: " + str[$\.err]) }
        socket   => $\.socket;
```

#### <a name="1122-stdnettcplisten-socket-addr-function"></a>11.2.2 - std:net:tcp:listen _socket-addr_ _function_

Tries to bind a local port to _socket-addr_ (see std:net:tcp:connect about
_socket-addr_.  Note: you can't use `$p(:v4 / :v6, ...)`).
Returns an error if something bad happened.

For every new connection _function_ is called with the socket
as first argument:

```text
unwrap ~ std:net:tcp:listen "0.0.0.0:8292" {!(socket) = @;
    std:io:write socket "Hello!\r\n";
};
```

Please note that you can share the socket with other threads, see also `std:net:tcp:connect`.

#### <a name="1123-stdnetudpnew-socket-addr-connect-addr"></a>11.2.3 - std:net:udp:new _socket-addr_ [_connect-addr_]

Creates a new UDP socket and binds it to an endpoint.  The arguments
_socket-addr_ and _connect-addr_ have the same properties as the _socket-addr_
that `std:net:tcp:connect` receives.

If _connect-addr_ is given, a connected UDP port is created and
`std:net:udp:send` does not need to pass a _socket-addr_.

Returns a socket or an error.

The socket can be shared between threads, so you can have a receiving
thread and a sending one.

```wlambda
!socket = std:net:udp:new "0.0.0.0:31889";

std:net:udp:send socket $b"TEST" "127.0.0.1:31888";
```

Here is a more elaborate example using threads:

```wlambda
!hdl = std:thread:spawn $code {
    !socket = std:net:udp:new "0.0.0.0:31889";
    _READY.send :ok;

    !(data, addr) = std:net:udp:recv socket;
    std:displayln "PING" data;
    unwrap ~ std:net:udp:send socket ("Test:" data) addr;
};

hdl.recv_ready[];

!socket = std:net:udp:new "0.0.0.0:31888" "127.0.0.1:31889";
unwrap ~ std:net:udp:send socket $b"XYB123";

!(data, addr) = unwrap ~ std:net:udp:recv socket;

std:displayln "PONG" data;

std:assert_eq data $b"Test:XYB123";

hdl.join[];
```

#### <a name="1124-stdnetudpsend-socket-data-socket-addr"></a>11.2.4 - std:net:udp:send _socket_ _data_ [_socket-addr_]

Sends the _data_ to the given _socket-addr_ or to the connected
address of the _socket_.

Returns the number of bytes sent or an error.

```wlambda
!socket = std:net:udp:new "0.0.0.0:31889";

std:net:udp:send socket $b"TEST" "127.0.0.1:31888";
```

#### <a name="1125-stdnetudprecv-socket-byte-count"></a>11.2.5 - std:net:udp:recv _socket_ [_byte-count_]

Receives _byte-count_ number of bytes from the given _socket_.
If _byte-count_ is omitted 512 is assumed.

Returns the byte vector with the data and the endpoint address
that it was received from. Or an error.

```text
!socket = std:net:udp:new "0.0.0.0:31889";

!(buf, addr) = std:net:udp:recv socket;
```

### <a name="113-processes"></a>11.3 - Processes

This chapter documents how to execute new processes.

#### <a name="1131-stdprocessrun-executable-path-arguments"></a>11.3.1 - std:process:run _executable-path_ [_arguments_]

Starts the given _executable-path_ with the given (but optional) _arguments_.
_arguments_ can be a vector or an iterator. A data structure containing
information about the finished child process or an error is returned if something
went wrong.

This function will block the current thread while the child process
is executed. It collects the output of the child process and returns
it in a data structure of the following form:

```text
{
    status  = 0,        # exit code
    success = $true,    # $true or $false
    stdout  = $b"...",  # data printed to stdout
    stderr  = $b"...",  # data printed to stderr
}
```

Here is an example for Linux:

```text
!ret = unwrap ~ std:process:run "sh" $["-c", "echo \"test\""];

std:assert_eq ret.status  0;
std:assert_eq ret.success $true;
std:assert_eq ret.stdout  $b"test\n";
std:assert_eq ret.stderr  $b"";
```

#### <a name="1132-stdprocessspawn-executable-path-arg-vector-inheritout--inheritall"></a>11.3.2 - std:process:spawn _executable-path_ _arg-vector_ [:inherit\_out | :inherit\_all]

Like `std:process:run` starts a process from the _executable-path_ and _arg-vector_.
But it does not wait until the process finished running, it returns a child process handle
or an error if something went wrong.

The handle can then be used by functions like:

* `std:process:kill_wait` - to kill and wait for the process to exit
* `std:process:try_wait` - to check if the process exited
* `std:process:wait` - to wait until the process exits

The third argument specifies what happens with the standard I/O file handles.
By default the child process gets _null_ handles, so neither output is captured
nor input is passed:

* _default_ - child process gets _null_ handles for stdin, stdout and stderr.
* `:inherit_out` - child process inherits stdout and stderr, but stdin will be _null_.
* `:inherit_all` - child process inherits all (stdout, stderr and stdin) from the
parent and uses them until it exits.

TODO: Implement pipe to/from the child process to be
read/written to via `std:io:read_some` and `std:io:write`.

```wlambda
!hdl = unwrap ~ std:process:spawn "bash" $[
    "-c", "for i in `seq 0 10`; do echo $i; sleep 0.2; done; exit 20"
];

# do something in your program....

!result = unwrap ~ std:process:wait hdl;

std:assert ~ not result.success;
std:assert result.status == 20;
```

#### <a name="1133-stdprocesstrywait-child-handle"></a>11.3.3 - std:process:try\_wait _child-handle_

Checks if the child process behind _child-handle_ exited. Returns `$none` if
it did not exit yet. Returns a map with the structure
`${ status = ..., success = $true / $false }` if the child exited.
Or an error if something failed.

```wlambda
!hdl = unwrap ~ std:process:spawn "bash" $[
    "-c", "for i in `seq 0 10`; do echo $i; sleep 0.2; done; exit 20"
];

!counter = 0;
!ret = $none;
while $true {
    std:thread:sleep :ms => 250;
    .counter += 1;

    .ret = unwrap ~ std:process:try_wait hdl;
    if ret {
        break ret;
    };
};

std:assert counter > 0;
std:assert ~ not ret.success;
std:assert ret.status == 20;
```

#### <a name="1134-stdprocesskillwait-child-handle"></a>11.3.4 - std:process:kill\_wait _child-handle_

Kills the child process behind _child-handle_ and waits for it to return the exit status.
Returns a map with the structure `${ status = ..., success = $true / $false }` if the child exited.
Or an error if something failed.

```wlambda
!hdl = unwrap ~ std:process:spawn "bash" $[
    "-c", "for i in `seq 0 10`; do echo $i; sleep 0.2; done; exit 20"
];

!res = std:process:kill_wait hdl;

std:assert ~ not res.success;
std:assert_eq res.status -1;
```

#### <a name="1135-stdprocesswait-child-handle"></a>11.3.5 - std:process:wait _child-handle_

Waits until the child process behind _child-handle_ exits by itself.
Returns a map with the structure `${ status = ..., success = $true / $false }`
if the child exited. Or an error if something failed.

```wlambda
!hdl = unwrap ~ std:process:spawn "bash" $[
    "-c", "for i in `seq 0 10`; do echo $i; sleep 0.2; done; exit 20"
];

!res = std:process:wait hdl;

std:assert ~ not res.success;
std:assert_eq res.status 20;
```

### <a name="114-file-system"></a>11.4 - File System

#### <a name="1141-stdfsrename-file-path-new-file-name"></a>11.4.1 - std:fs:rename _file-path_ _new-file-name_

Renames the file at _file-path_ to the new name _new-file-name_. This
usually does only work on a single file system.
Returns `$true` if renaming was successful, and an error object if it was not
successful.

#### <a name="1142-stdfscopy-src-file-path-dst-file-path"></a>11.4.2 - std:fs:copy _src-file-path_ _dst-file-path_

Copies the file _src-file-path_ to the _dst-file-path_.
Returns an error if something went wrong.

#### <a name="1143-stdfsreaddir-path-function"></a>11.4.3 - std:fs:read\_dir _path_ _function_

Calls _function_ with the first argument being the directory entry as map
of this structure:

```wlambda
    ${
        atime     = 1587628635, # seconds since UNIX Epoch
        ctime     = 1557382099, # seconds since UNIX Epoch
        mtime     = 1557382099, # seconds since UNIX Epoch
        len       = 478,        # bytes
        name      = "test",     # file name
        path      = "..\\test", # path name
        read_only = $false,     # read only flag
        type      = :f          # possible values:
                                #   - :f for files
                                #   - :l for symlinks
                                #   - :d for directories
    }
```

If the _function_ is called with a directory, you can recurse into that
directory by returning a `$true` value.

You can format the timestamps using `std:chrono:format_utc`.

#### <a name="1144-stdfsremovefile-file-path"></a>11.4.4 - std:fs:remove\_file _file-path_

Removes the file at the given _file-path_.
Returns an error if the file is missing or some other error occured.

#### <a name="1145-stdfsremovedir-dir-path"></a>11.4.5 - std:fs:remove\_dir _dir-path_

Removes the dir at the given _dir-path_.
Returns an error if the dir is missing, is not empty
or some other error occured.

#### <a name="1146-stdfsremovedirall-dir-path"></a>11.4.6 - std:fs:remove\_dir\_all _dir-path_

Removes the given _dir-path_ recursively. Use with care!
Returns an error if the directory does not exist.

### <a name="115-system"></a>11.5 - System

This chapter contains a few system as in _operating system_ related functions.

#### <a name="1151-stdsysos"></a>11.5.1 - std:sys:os

Returns the name of the operating system. These are some possible
values:

- linux
- macos
- ios
- freebsd
- dragonfly
- netbsd
- openbsd
- solaris
- android
- windows

```wlambda
std:assert (len std:sys:os[]) > 0;
```

### <a name="116-threading"></a>11.6 - Threading

WLambda leverages the `std::thread` implementation of Rust's standard library
to provide safe threading. Threading works by spawning new threads that
get sent a piece of WLambda code (as string) and some arguments.

Most WLambda data can be shared between threads. An exception are
UserData values that are not thread safe. Also things like sharing
cyclic data structures are not possible, as the references are currently
broken up.

Sharing data is done by WLambda by transforming the _VVal_ data structures
into a thread safe shareable represenation called _AVal_. An AVal is a
deep copy of the original VVal and can additionally contain atoms (see `std:sync:atom:new`),
MPSC queues (see `std:sync:mpsc:new`) and value slots (see `std:sync:slot:new`).

The scope of threading in WLambda is primarily to provide a way to do asynchronous
work and not so much for high performance computing. You can of course enhance
performance a bit with threading, but if you want to do heavy computing I recommend
implementing your algorithm in Rust instead. You can of course still manage
thread orchestration in WLambda if you just provide a simple function
API to your algorithms.

#### <a name="1161-stdthreadspawn-string-globals-map"></a>11.6.1 - std:thread:spawn _string_ [_globals-map_]

This evaluates the given _string_ as WLambda code in a new thread.
It returns a thread handle, that can be used to join the thread or
wait for it to have properly started.

The new thread starts out with a completely empty global environment.
If you need any builtin functions, use `!@wlambda`, `!@import std`
and other import statements to load the needed functions.

If a _globals-map_ is given, inside the thread the given global
variables will be set to the given value.

Inside the thread, a global variable called `_READY` is set to
an atomic slot, which can be used to signal the parent thread
that the new thread has successfully spawned.

This is a very basic example how to calculate something in
a worker thread and wait in a blocking manner:

```wlambda
!handle = std:thread:spawn $code {
    # Attention: Even if this example does not use any
    #            built in functions, it's a good practice
    #            to load them into the global environment
    #            of the thread!
    !@wlambda;
    !@import std;

    !sum = $@i iter i 0 => 10 {
        $+ i;
    };
    _READY.send $[:ok, sum];

    100
};

std:assert_str_eq handle.recv_ready[] $[:ok, 45];

!res = handle.join[];

std:assert_str_eq res 100;
```

Here an example on how to pass values to the thread.
Please be aware, that only a limited set of data types can be
passed to a thread. Functions and iterators can not be passed for
instance.

```wlambda
!globals = ${
    a = 99,
    b = $[1, 3, 4],
};

!handle = std:thread:spawn $code {
    a + b.1
} globals;

!res = handle.join[];

std:assert_str_eq res 102;
```

#### <a name="1162-stdthreadsleep-duration"></a>11.6.2 - std:thread:sleep _duration_

Lets the current thread sleep for the given _duration_.
_duration_ can either be an integer that will be interpreted
as milliseconds to sleep. Or a pair, containing the duration unit as first element
and the integer as second element. Following units are supported:

- `$p(:s, _seconds_)`
- `$p(:ms, _milliseconds_)`
- `$p(:us, _microseconds_)`
- `$p(:ns, _nanoseconds_)`

```wlambda
!before = std:time:now :ms;
!thrd = std:thread:spawn $code {
    !@import std;
    std:thread:sleep :ms => 150;
};

thrd.join[];

!after = std:time:now :ms;

std:assert (after - before) >= 150;
```

#### <a name="1163-thread-handle-api"></a>11.6.3 - Thread Handle API

##### <a name="11631-thdljoin"></a>11.6.3.1 - thdl.join

This method will wait for the thread to finish and return
the return value of the thread.

```wlambda
!thdl = std:thread:spawn "4 + 3";
std:assert_eq thdl.join[] 7;
```

This method will return an error if the thread handle was already joined.

##### <a name="11632-thdlrecvready"></a>11.6.3.2 - thdl.recv\_ready

Waits for the global `_READY` atomic value slot to be sent a value by the
thread. This is useful for waiting until the thread has started without an
error before expecting it to run properly.
If an error happens, you will receive an error object as return value of
`recv_ready`:

```wlambda
!thdl = std:thread:spawn $code {
    !@wlambda; # importing `panic`
    panic "SOME ERR";
    _READY.send :ok;
};

!err_msg =
    match thdl.recv_ready[]
        ($e err) => { $\.err.0 }
        v        => $\.v;

$DEBUG err_msg;
std:assert err_msg &> $r/ *SOME\ ERR* /;

thdl.join[];
```

This method might return an error if the thread provider
made a handle without a ready slot.

#### <a name="1164-atom-api"></a>11.6.4 - Atom API

For threads a VVal (WLambda data value) is transformed into a value
that can be shared between threads safely. For this the data values are cloned
deeply and transformed into a structure of atomic values.

These values are then stored in a so called _Atom_. They can be safely changed
by threads.

##### <a name="11641-stdsyncatomnew-value"></a>11.6.4.1 - std:sync:atom:new _value_

Creates an Atom, containing the given _value_. The data types for _value_
is limited to these:

- Numbers (Integer, Float)
- Numerical Vectors
- Vectors
- Maps
- Strings
- Symbols
- Byte vectors
- Pairs
- Booleans
- Optionals
- Errors

And also these special types:

- Atom
- Atom Value Slot
- Channel

```wlambda
!at = std:sync:atom:new $[1, 2, 3];

!thdl = std:thread:spawn $code {
    at.write ~ $@i iter i at.read[] {
        $+ i;
    };
    _READY.send :ok;
} ${ at = at };

thdl.recv_ready[];

std:assert_eq at.read[] 6;

thdl.join[]
```

##### <a name="11642-atomread"></a>11.6.4.2 - atom.read

Returns the value stored in the atom.

```wlambda
!at = std:sync:atom:new 99;

std:assert_eq at.read[] 99;
```

This method might return an error if the internal mutex was poisoned.

##### <a name="11643-atomwrite-value"></a>11.6.4.3 - atom.write _value_

Overwrites the contents of the atom with the given _value_.

```wlambda
!at = std:sync:atom:new 99;

at.write 100;

std:assert_eq at.read[] 100;
```

This method might return an error if the internal mutex was poisoned.

##### <a name="11644-atomswap-value"></a>11.6.4.4 - atom.swap _value_

Returns the previous value of the atom and writes in
the given _value_.

```wlambda
!at = std:sync:atom:new 99;

std:assert_eq at.swap[100] 99;

std:assert_eq at.read[] 100;
```

This method might return an error if the internal mutex was poisoned.

#### <a name="1165-atom-value-slot-api"></a>11.6.5 - Atom Value Slot API

An Atom value slot offers more synchronization than a normal Atom value.
It allows you to set the value of the slot, wait for it to be collected
and wait for a value becoming available.
It can be thought of a single element queue, where the element will be
overwritten when a new value is sent to the slot.

You can theoretically receive or wait from multiple threads and also write from
multiple threads. But be aware, that the order of which threads get to read or
write is determined by the operating system and might lead to reader or writer
starvation.

Best recommendation here is to use a slot only from a single writer and
a single reader.

##### <a name="11651-stdsyncslotnew"></a>11.6.5.1 - std:sync:slot:new

Constructs a new Atom slot and returns it.
The slot has the initial status of being _empty_.
If a value is sent to it, it will not be _empty_ anymore.
After a value is received from the slot, the status is _empty_ again.

##### <a name="11652-atomslotsend-value"></a>11.6.5.2 - atom\_slot.send _value_

This method sends the value into the slot, overwriting any previous
set values. The slot can also ha

```wlambda
!slot = std:sync:slot:new[];

std:assert slot.check_empty[];

slot.send $[:ok, $i(1,2,3)];

std:assert ~ not slot.check_empty[];

std:assert_eq slot.recv[].1 $i(1,2,3);

std:assert slot.check_empty[];
```

This method might return an error if there was an issue with locking
the internal mutex or the mutex was poisoned.

##### <a name="11653-atomslotrecv"></a>11.6.5.3 - atom\_slot.recv

If the slot is empty, it will wait for a value to become available.
Once a value is available it is returned and the slot is set to _empty_ again.

```wlambda
!slot = std:sync:slot:new[];

!thrd = std:thread:spawn $code {
    slot.send 99;
} ${ slot = slot };

std:assert_eq slot.recv[] 99;

thrd.join[];
```

This method might return an error if there was an issue with locking
the internal mutex or the mutex was poisoned.

##### <a name="11654-atomslottryrecv"></a>11.6.5.4 - atom\_slot.try\_recv

This method returns an optional value. It will provide an empty optional
value if no value is stored in the slot. But if the slot contains
a value, it will return the value (wrapped in an optional) and set the
slot to be _empty_ again.

```wlambda
!slot       = std:sync:slot:new[];
!start_flag = std:sync:slot:new[];

!thrd = std:thread:spawn $code {

    start_flag.recv[]; # sync with parent

    slot.send 99;

    _READY.send :ok;

} ${ slot = slot, start_flag = start_flag };

std:assert_eq slot.try_recv[] $o();

start_flag.send :ok;
thrd.recv_ready[];

std:assert_eq slot.try_recv[] $o(99);

thrd.join[];
```

This method might return an error if there was an issue with locking
the internal mutex or the mutex was poisoned.

##### <a name="11655-atomslotrecvtimeout-duration"></a>11.6.5.5 - atom\_slot.recv\_timeout _duration_

Acts like `atom_slot.recv`, but it will only wait for the given _duration_.  If
no value was received in the given _duration_ (see std:thread:sleep), `$o()` is
returned.  Otherwise the optional value will contain the received value.

```wlambda
!slot = std:sync:slot:new[];

std:assert_eq (slot.recv_timeout :ms => 100) $o();

slot.send 4;

std:assert_eq (slot.recv_timeout :ms => 100) $o(4);
```

This method might return an error if there was an issue with locking
the internal mutex or the mutex was poisoned.

##### <a name="11656-atomslotcheckempty"></a>11.6.5.6 - atom\_slot.check\_empty

Returns `$true` if the slot is empty.

This method might return an error if there was an issue with locking
the internal mutex or the mutex was poisoned.

##### <a name="11657-atomslotwaitempty"></a>11.6.5.7 - atom\_slot.wait\_empty

Waits until the slot is empty and then returns `$true`.

This method might return an error if there was an issue with locking
the internal mutex or the mutex was poisoned.

##### <a name="11658-atomslotwaitemptytimeout-duration"></a>11.6.5.8 - atom\_slot.wait\_empty\_timeout _duration_

Waits a predefined timeout until the slot is empty. If it did become
empty within the given _duration_ (see std:thread:sleep) it will return `$true`.
Otherwise it will return `$false`.

This method might return an error if there was an issue with locking
the interal mutex or the mutex was poisoned.

#### <a name="1166-channel-api"></a>11.6.6 - Channel API

A channel is a multiple sender, single consumer queue. It can be used to
establish a message passing based communication between threads.

It is basically a wrapper around the Rust `std::sync::mpsc::channel`.

```wlambda
!chan = std:sync:mpsc:new[];

!thdl = std:thread:spawn $code {
    _READY.send :ok;
    iter i 0 => 10 {
        chan.send $p(:val, i);
    };
    chan.send $p(:quit, $none);
} ${ chan = chan };

match thdl.recv_ready[]
    ($e ?) => { std:assert $false };

!item = $none;

!sum = $@i
    while { .item = chan.recv[]; item.0 == :val } {
        $+ item.1;
    };

std:assert_eq sum 45;

thdl.join[];
```

##### <a name="11661-stdsyncmpscnew"></a>11.6.6.1 - std:sync:mpsc:new

This creates a new channel. You can safely send from multiple threads
while reading from one thread at a time.

```wlambda
!chan = std:sync:mpsc:new[];

chan.send :a;
chan.send :b;
chan.send :c;

std:assert_eq chan.recv[] :a;
std:assert_eq chan.recv[] :b;
std:assert_eq chan.recv[] :c;
```

##### <a name="11662-channelsend-value"></a>11.6.6.2 - channel.send _value_

Sends the given _value_ to the channel queue.

```wlambda
!chan = std:sync:mpsc:new[];

chan.send :a;
std:assert_eq chan.recv[] :a;
```

This method might return an error if the channel failed, for instance due
to a poisoned internal mutex.

##### <a name="11663-channelrecv"></a>11.6.6.3 - channel.recv

Receives the next element from the channel. If no element is available
this method will block the thread until an element becomes available.

```wlambda
!chan = std:sync:mpsc:new[];

chan.send :a;
std:assert_eq chan.recv[] :a;
```

This method might return an error if the channel failed, for instance due
to a poisoned internal mutex.

##### <a name="11664-channeltryrecv"></a>11.6.6.4 - channel.try\_recv

Tries to receive the next element from the channel and return it wrapped
into an optional. If no element is available an empty optional `$o()` is returned.

```wlambda
!chan = std:sync:mpsc:new[];

std:assert_eq chan.try_recv[] $o();

chan.send :a;

std:assert_eq chan.try_recv[] $o(:a);
```

This method might return an error if the channel failed, for instance due
to a poisoned internal mutex.

##### <a name="11665-channelrecvtimeout-duration"></a>11.6.6.5 - channel.recv\_timeout _duration_

Tries to receive the next element in the given _duration_ (see std:thread:sleep)
and return it wrapped into an optional. If no element could be received
within that time an empty optional is returned `$o()`.

```wlambda
!chan = std:sync:mpsc:new[];

std:assert_eq (chan.recv_timeout $p(:ms, 100)) $o();

chan.send :x;

std:assert_eq (chan.recv_timeout $p(:ms, 100)) $o(:x);
```

This method might return an error if the channel failed, for instance due
to a poisoned internal mutex.

## <a name="12-optional-standard-library"></a>12 - Optional Standard Library

### <a name="121-serialization"></a>12.1 - serialization

#### <a name="1211-stdserwlambda-arg"></a>12.1.1 - std:ser:wlambda _arg_

Returns the serialized WLambda representation of the value _arg_ as string.

Most values have the same represenation like a WLambda literal,
but there are other values that don't have a literal representation.

Warning: Consider all values that don't have a fixed literal representation
in the WLambda syntax as debug output that might change in future versions.

```wlambda
std:assert_eq (std:ser:wlambda "foo") $q|"foo"|;
std:assert_eq (std:ser:wlambda $none) $q|$n|;
std:assert_eq (std:ser:wlambda $[1,:a]) $q|$[1,:a]|;
```

#### <a name="1212-stdserjson-data-nopretty"></a>12.1.2 - std:ser:json _data_ \[_no\_pretty_]

Serializes the _data_ and returns a JSON formatted (and pretty printed) string.
Optionally not pretty printed if _no_pretty_ is a true value.

```wlambda
!str = std:ser:json $[1,2.3,${a=4}] $t;
std:assert_eq str "[1,2.3,{\"a\":4}]";
```

#### <a name="1213-stddeserjson-string"></a>12.1.3 - std:deser:json _string_

Deserializes the JSON formatted _string_ into a data structure.

```wlambda
!data = std:deser:json ~ std:ser:json $[1,2.3,${a=4}];
std:assert_eq data.0 1;
std:assert_eq data.1 2.3;
std:assert_eq data.(2).a 4;
```

#### <a name="1214-stdsercsv-fielddelim-rowseparator-escapeall-table"></a>12.1.4 - std:ser:csv _field\_delim_ _row\_separator_ _escape\_all_ _table_

This serializes the _table_ as CSV with the given _field_delim_
and _row_separator_. If _escape_all_ is `$true` all fields will be
put into '"'.

```wlambda
!csv_str =
    std:ser:csv
        ";" "|" $f
        $[ $[1,2,3,4,$q/foo"bar/],
           $[44,55],
           $[]]
    | std:displayln;

std:assert_eq csv_str $q/1;2;3;4;"foo""bar"|44;55||/;

std:assert_eq
    (std:ser:csv ";" "|" $f $[$[:a,$q/;/, $q/|/, $q/ /]])
    "a;\";\";\"|\";\" \"|";
```

#### <a name="1215-stddesercsv-fielddelim-rowseparator-data"></a>12.1.5 - std:deser:csv _field\_delim_ _row\_separator_ _data_

Parses the string _data_ as CSV. With the field delimiter _field_delim_
and the _row_separator_ for the data rows.

```wlambda
!table = std:deser:csv ";" "\r\n" "foo;bar\r\nx;y\r\n";
std:assert_eq table.0.0 "foo";
std:assert_eq table.0.1 "bar";
std:assert_eq table.1.1 "y";
```

#### <a name="1216-stdsermsgpack-data"></a>12.1.6 - std:ser:msgpack _data_

Serializes the _data_ and returns a msgpack bytes value.

```wlambda
std:assert_eq (std:ser:msgpack $b"abc") $b"\xC4\x03abc";
```

#### <a name="1217-stddesermsgpack-bytes"></a>12.1.7 - std:deser:msgpack _bytes_

Deserializes the msgpack bytes value into a data structure.

```wlambda
std:assert_eq (std:deser:msgpack $b"\xC4\x03abc") $b"abc";
```

### <a name="122-regular-expressions-more-classic-syntax"></a>12.2 - Regular Expressions (more classic syntax)

WLambda supports a more common form of regular expression syntax
if the "regex" feature is enabled when compiling WLambda.

It uses the regex syntax as described in the Rust "regex" crate:
[https://docs.rs/regex/newest/regex/](https://docs.rs/regex/newest/regex/#syntax).

#### <a name="1221-stdrematch-regex-string-input-string-function"></a>12.2.1 - std:re:match _regex-string_ _input-string_ _function_

If the given regular expression _regex-string_ matches the given _input-string_
the _function_ will be called with a vector containing the matched string
and the captures as first argument.
The return value is the return value of the function call or `$none`.
Returns an error if the _regex-string_ has a syntax error.

```wlambda
!ret = std:re:match $q|(\d+)-(\d+)-(\d+)| "2020-05-01" {
    std:str:join "." std:reverse <& (1 => 3) <&_;
};

std:assert_str_eq ret "01.05.2020";
```

#### <a name="1222-stdrematchcompile-regex-string"></a>12.2.2 - std:re:match\_compile _regex-string_

This function compiles the given _regex-string_ and returns a function that
will execute the regex matching. If the syntax in _regex-string_ is wrong,
an error is returned.

The returned function takes the string to match against as first parameter
and the function that is called if the regex matches as second parameter.

```wlambda
!match_fun = std:re:match_compile $q|(\d+)-(\d+)-(\d+)|;

!ret = match_fun "2020-05-01" {
    std:str:join "." std:reverse <& (1 => 3) <&_;
};

std:assert_str_eq ret "01.05.2020";
```

#### <a name="1223-stdremap-regex-string-function-input-string"></a>12.2.3 - std:re:map _regex-string_ _function_ _input-string_

Executes _function_ for each match of the regex defined by _regex-string_
on the _input-string_. Returns an error if there is a syntax error in the regex.
Otherwise returns the last return value of _function_.

```wlambda
!res = $@vec std:re:map $q|(\d+)-(\d+)-(\d+)| {!(str, d1, d2, d3) = _;
    $+ $[int d1, int d2, int d3]
} "foo bar 2020-05-01 fofo 2020-06-01 bar 2019-12-31";

std:assert_str_eq res $[$[2020,5,1], $[2020,6,1], $[2019,12,31]];
```

#### <a name="1224-stdrereplaceall-regex-string-replace-function-input-string"></a>12.2.4 - std:re:replace\_all _regex-string_ _replace-function_ _input-string_

This function replaces all matches of the regex _regex-string_ in the _input-string_
by the return value of the _replace-function_. Returns an error if there is
a syntax error in the _regex-string_.

```wlambda
!res = std:re:replace_all $q"(\d+)" {
    str (int _.1) + 1
} "foo 32 fifi 99";

std:assert_eq res "foo 33 fifi 100";
```

### <a name="123-xml"></a>12.3 - xml

#### <a name="1231-stdxmlreadsax-xml-string-event-callback-function-do-not-trim-text"></a>12.3.1 - std:xml:read\_sax _xml-string_ _event-callback-function_ [_do-not-trim-text_]

```wlambda
\:x {
    $@v _? :x ~ std:xml:read_sax
        "x<x a='12'>fooo fweor weio ew <i/> foefoe</i></x>y"
        $+;
}[]
```

#### <a name="1232-stdxmlcreatesaxwriter-indent"></a>12.3.2 - std:xml:create\_sax\_writer [_indent_]

Creates an XML SAX event based writer function. The function
should be called with single events as received by `std:xml:read_sax`.
To receive the final output of the writer, call the returned function
without any arguments.

```wlambda
!writer = std:xml:create_sax_writer[];
writer $[:start, "test"];
writer $[:end, "test"];

std:assert_eq writer[] "<test></test>";
```

#### <a name="1233-stdxmlcreatetreebuilder"></a>12.3.3 - std:xml:create\_tree\_builder

This function returns a function that acts as WLambda data structure builder
that accepts SAX events as given to the callback of `std:xml:read_sax`.

The returned data structure is a tree build of the following elements:

- `$[:decl,    ${ version=..., encoding=..., standalone=... }]`
- `$[:elem,    name, ${ <attributes> }, $[ <child elements> ]]`
- `$[:comment, text]`
- `$[:pi,      text]`
- `$[:text,    text]`
- `$[:doctype, text]`
- `$[:cdata,   text]`

Here is a more elaborate example on how to use it:

```wlambda
!tb = std:xml:create_tree_builder[];

!tree = std:xml:read_sax $q$
    <foo>
        <i x="here"/>
        hello
    </foo>
    <foo>
        blop<i x="10"/>
        lol
    </foo>$
    tb;

std:assert_str_eq
    tree
    $[:root,$n,$n,$[
        $[:elem,"foo",$n,$[
            $[:elem,"i",${x="here"},$n],$[:text,"hello"]]],
        $[:elem,"foo",$n,$[
            $[:text,"blop"],$[:elem,"i",${x="10"},$n],$[:text,"lol"]]]
    ]];

# Here we use the structure matchers for finding the values of the x attributes
# of the <i> elements:
std:assert_str_eq
    $S[ 3 / *:{0=elem,1=foo} /
        3 / *:{0=elem,1=i} /
        2 / x
    ] <& tree
    $["here","10"];
```

### <a name="124-chrono"></a>12.4 - chrono

#### <a name="1241-stdchronotimestamp-format"></a>12.4.1 - std:chrono:timestamp \[_format_]

For the documentation of _format_ please consule the
chrono Rust crate documentation: [chrono crate strftime format](https://docs.rs/chrono/latest/chrono/format/strftime/index.html#specifiers).

```wlambda
!year_str = std:chrono:timestamp "%Y";
std:displayln :XXXX ~ (year_str | int) == 2022;
std:assert ~ (year_str | int) == 2022;

!now_str = std:chrono:timestamp[];
```

#### <a name="1242-stdchronoformatutc-utc-timestamp-format"></a>12.4.2 - std:chrono:format\_utc _utc-timestamp_ [_format_]

Formats the given _utc-timestamp_ in seconds according to _format_.

For the documentation of _format_ please consule the
chrono Rust crate documentation: [chrono crate strftime format](https://docs.rs/chrono/latest/chrono/format/strftime/index.html#specifiers).

```wlambda
!year_str = std:chrono:format_utc 1603796989 "%H:%M:%S %Y";

std:assert_str_eq year_str "11:09:49 2020";
```

#### <a name="1243-stdchronoformatlocal-utc-timestamp-format"></a>12.4.3 - std:chrono:format\_local _utc-timestamp_ [_format_]

Formats the given _utc-timestamp_ in seconds according to _format_ in the local timezone.

For the documentation of _format_ please consule the
chrono Rust crate documentation: [chrono crate strftime format](https://docs.rs/chrono/latest/chrono/format/strftime/index.html#specifiers).

```wlambda
!year_str = std:chrono:format_local 1603796989 "%H:%M:%S %Y";

std:assert_str_eq year_str "12:09:49 2020";
```

### <a name="125-color-conversion"></a>12.5 - color conversion

This section highlights the color conversion functions available in WLambda.
Numerical vectors are used in WLambda to represent colors. There are two
representations of a color.

If you use a float vector `$f(r, g, b, a)` the values for RGB are in the range
of 0.0 to 1.0. For HSV `$f(h, s, v, a)` h is within 0.0 to 360.0 while the
others are in the range 0.0 to 1.0.

For integer vectors the values for RGB are in the range 0 to 255.
And the values for HSV are in the range 0 to 360, and the others in the range
0 to 100.

You can also use 3 dimensional vectors without the alpha value: `$i(r, g, b)` / `$i(h, s, v)`
and `$f(r, g, b)` / `$f(h, s, v)`.

#### <a name="1251-stdvrgb2hsv-color-vector"></a>12.5.1 - std:v:rgb2hsv _color-vector_

Converts an RGB color into a HSV color representation.

```wlambda
std:assert_eq std:v:rgb2hsv <& $i(0, 255, 0, 255)   $i(120, 100, 100, 100);
std:assert_eq std:v:rgb2hsv <& $i(0, 255, 0)        $i(120, 100, 100);

std:assert_eq std:v:rgb2hsv <& $f(0, 1.0, 0, 1.0)   $f(120, 1, 1, 1);
std:assert_eq std:v:rgb2hsv <& $f(0, 1.0, 0)        $f(120, 1, 1);

std:assert_eq std:v:rgb2hsv <& $f(0, 0.5, 0, 1.0)     $f(120, 1, 0.5, 1);
std:assert_eq std:v:rgb2hsv <& $f(0.1, 0.5, 0.1, 1.0) $f(120, 0.8, 0.5, 1);
```

#### <a name="1252-stdvhsv2rgb-color-vector"></a>12.5.2 - std:v:hsv2rgb _color-vector_

Converts a color from HSV to RGB representation.

```wlambda
std:assert_eq std:v:hsv2rgb <& $i(120, 80, 50, 100)   $i(25,128,25,255);

!clr = std:v:hsv2rgb <& $f(120, 0.8, 0.5, 1.0);
std:assert_rel_eq clr.r 0.1 0.001;
std:assert_rel_eq clr.g 0.5 0.001;
std:assert_rel_eq clr.b 0.1 0.001;
```

#### <a name="1253-stdvrgba2hex-color-vector"></a>12.5.3 - std:v:rgba2hex _color-vector_

This function converts a color to a string of hex digits (without the common '#'
prefix however).

```wlambda
std:assert_eq std:v:rgba2hex <& $i(255, 128, 64, 32)       "ff804020";
std:assert_eq std:v:rgba2hex <& $f(1.0, 0.5, 0.25, 0.125)  "ff804020";
```

#### <a name="1254-stdvhex2rgbaf-string"></a>12.5.4 - std:v:hex2rgba\_f _string_

Interprets _string_ as an hex encoded color and
returns a 4 element big float vector. The color components
of the float vector go from 0.0 to 1.0.

The string can be:

- 8 characters: `"RRGGBBAA"`
- 6 characters: `"RRGGBB"`, alpha will be 1.0
- 4 characters: `"RGBA"`
- 3 characters: `"RGB"`, alpha will be 1.0
- 2 characters: `"YY"`, where YY is put into R, G and B. Alpha will be 1.0.

```wlambda
!color = std:v:hex2rgba_f "FF00FFFF";

std:assert_rel_eq color.r 1.0 0.001;
std:assert_rel_eq color.g 0.0 0.001;
std:assert_rel_eq color.b 1.0 0.001;
std:assert_rel_eq color.a 1.0 0.001;

!color2 = std:v:hex2rgba_f "C83F";
std:assert_rel_eq color2.r 0.8   0.001;
std:assert_rel_eq color2.g 0.533 0.001;
std:assert_rel_eq color2.b 0.2   0.001;
std:assert_rel_eq color2.a 1.0   0.001;
```

#### <a name="1255-stdvhex2rgbai-string"></a>12.5.5 - std:v:hex2rgba\_i _string_

Like `std:v:hex2rgba_f` this function converts a hex encoded color
from _string_ but returns an integer vector with 4 elements.
The integers are in the range of 0 to 255.

About the format of _string_ please refer to `std:v:hex2rgba_f`.

```wlambda
!color = std:v:hex2rgba_i "FF00FFFF";

std:assert_eq color.r 255;
std:assert_eq color.g 0;
std:assert_eq color.b 255;
std:assert_eq color.a 255;

!color2 = std:v:hex2rgba_i "C83F";
std:assert_eq color2.r 204;
std:assert_eq color2.g 136;
std:assert_eq color2.b 51;
std:assert_eq color2.a 255;
```

#### <a name="1256-stdvhex2hsvai-string"></a>12.5.6 - std:v:hex2hsva\_i _string_

Converts the hex represenation of a HSVA color to an integer vector `$i(h, s, v, a)`.
This function is probably not that useful, as the bit distribution along
the 3 bytes is not ideal. If you want to store colors properly, don't use this.
It's mostly useful for testing and quick experiments.

```wlambda
!color = std:v:hex2hsva_i "FF8040FF";
std:assert_eq color $i(360,50,25,100);
```

#### <a name="1257-stdvhex2hsvaf-string"></a>12.5.7 - std:v:hex2hsva\_f _string_

Converts the hex represenation of a HSVA color to a float vector `$i(h, s, v, a)`.
This function is probably not that useful, as the bit distribution along
the 3 bytes is not ideal. If you want to store colors properly, don't use this.
It's mostly useful for testing and quick experiments.

```wlambda
!color = std:v:hex2hsva_f "FF8040FF";

std:assert_rel_eq color.0 360.0 1.0;
std:assert_rel_eq color.1  50.0 1.0;
std:assert_rel_eq color.2  25.0 1.0;
std:assert_rel_eq color.3 100.0 1.0;
```

### <a name="126-hash"></a>12.6 - hash

#### <a name="1261-stdhashfnv1a-arg1-"></a>12.6.1 - std:hash:fnv1a _arg1_ ...

Hashes all the arguments as FNV1a and returns an integer.

### <a name="127-rand"></a>12.7 - rand

#### <a name="1271-stdrandsplitmix64new"></a>12.7.1 - std:rand:split\_mix64\_new

Initializes the _sm_state_ from the current time (seconds) and returns it.
The time is retrieved in seconds, so don't expect different seed states
if you call this multiple times in the same wall clock second.
The returned value is supposed to be passed to `rand:split_mix64_next`
or `rand:split_mix64_next_open01`.

#### <a name="1272-stdrandsplitmix64newfrom-seed"></a>12.7.2 - std:rand:split\_mix64\_new\_from _seed_

Initializes the _sm_state_ from the given _seed_ and returns it.
The returned value is supposed to be passed to `rand:split_mix64_next`
or `rand:split_mix64_next_open01`.

#### <a name="1273-stdrandsplitmix64next-smstate-count"></a>12.7.3 - std:rand:split\_mix64\_next _sm\_state_ \[_count_]

Returns the _count_ next integer values generated from the given
_sm_state_.

#### <a name="1274-stdrandsplitmix64nextopen01-smstate-count"></a>12.7.4 - std:rand:split\_mix64\_next\_open01 _sm\_state_ \[_count_]

Returns the _count_ next float values (in an open [0, 1) interval)
generated from the given _sm_state_.

#### <a name="1275-stdrandsplitmix64nextopenclosed01-smstate-count"></a>12.7.5 - std:rand:split\_mix64\_next\_open\_closed01 _sm\_state_ \[_count_]

Returns the _count_ next float values (in an open (0, 1] interval)
generated from the given _sm_state_.

#### <a name="1276-stdrandsplitmix64nextclosedopen01-smstate-count"></a>12.7.6 - std:rand:split\_mix64\_next\_closed\_open01 _sm\_state_ \[_count_]

Returns the _count_ next float values (in an open [0, 1) interval)
generated from the given _sm_state_.

### <a name="128-utility-functions"></a>12.8 - Utility Functions

#### <a name="1281-stddumpupvals-function"></a>12.8.1 - std:dump\_upvals _function_

Returns a vector of all the upvalues of the _function_.
Please use this function for debugging purposes only, as the order of the
variables, while consistent for a specific WLambda version,
is not defined at this point.

```wlambda
!x = 1;
!y = 2;
!fun = { _ + x + y };

std:assert_eq fun[3]   6;
.x = 3;
std:assert_eq fun[3]   8;

!upvs = std:dump_upvals fun;
std:assert_eq (str upvs) "$[$&3,$&2]";
.y = 4;
std:assert_eq (str upvs) "$[$&3,$&4]";

std:assert_eq $*(upvs.0) 3;
std:assert_eq $*(upvs.1) 4;
```

#### <a name="1282-stdwlambdaversion"></a>12.8.2 - std:wlambda:version

Returns the version number of the WLambda crate when called.

#### <a name="1283-stdwlambdasizes"></a>12.8.3 - std:wlambda:sizes

Writes a table of internal data structure sizes to stdout. Just for development
purposes.

#### <a name="1284-stdwlambdaparse-string"></a>12.8.4 - std:wlambda:parse _string_

Parses _string_ as if it was a piece of WLambda code and returns an abstract syntax tree.

```wlambda
std:assert_str_eq
    (std:wlambda:parse "1 + 2")
    $[$%:Block,$[$%:BinOpAdd,1,2]]
```

### <a name="129-http-client"></a>12.9 - HTTP Client

WLambda offers an optional integrated HTTP client by enabling the `reqwest`
feature at compile time. With this you can create a new client using `std:http:client:new` and make HTTP requests using `std:http:get`, `std:http:post` and `std:http:request`. Also support for basic authentication and token based bearer authentication
is there.

#### <a name="1291-stdhttpclientnew"></a>12.9.1 - std:http:client:new

Creates a new HTTP client instance and returns it. You can use it to make
HTTP requests afterwards.

```wlambda
!client = std:http:client:new[];
!response = std:http:get client "https://duckduckgo.com/";

!body = std:str:from_utf8_lossy response.body;
std:assert ($p(0, "</html>") body) > 0;
std:assert_eq response.status 200;
std:assert_eq response.headers.content-type "text/html; charset=UTF-8";
```

See also `std:http:get` for a more elaborate example with providing headers.

#### <a name="1292-stdhttpget-http-client-url-string-headers-and-options-map"></a>12.9.2 - std:http:get _http-client_ _url-string_ [_headers-and-options-map_]

Performs a HTTP GET request to the given _url-string_ using the _http-client_.
The _headers-and-options-map_ can contain following special keys apart from your
custom HTTP headers themself:

- `@basic_auth` with `$[user, $none]` or `$[user, password]` as value.
- `@bearer_auth` with `token` as value.
- `@timeout` with a timeout duration as value. (See also `std:thread:sleep`).
- `@query` with a map of query parameters and their values to modify the
query string of the _url-string_. This properly encodes the strings.

The client will either return an error or a response map with following keys:

- `status` contains the HTTP response code (usually `200` if everything went fine).
- `reason` contains a human readable canonical reason string for the status.
- `body` contains the byte vector with the body data.
- `headers` contains a map of all headers, where the keys are the lower case
header names.

Here is an example on how to use this while providing HTTP Headers:

```wlambda
!client = std:http:client:new[];
!response =
    std:http:get client "https://crates.io/api/v1/crates?page=1&per_page=10&q=wlambda" ${
        Accept        = "application/json",
        Cache-Control = "no-cache",
        DNT           = 1,
        User-Agent    = "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:97.0) Gecko/20100101 Firefox/97.0",
    };

!body = std:deser:json ~ std:str:from_utf8_lossy response.body;
# std:displayln ~ std:ser:json body $f;
std:assert_eq body.crates.0.name            "wlambda";
std:assert_eq response.headers.content-type "application/json; charset=utf-8";
std:assert_eq response.status               200;
```

#### <a name="1293-stdhttppost-http-client-url-string-body-bytes-headers-and-options-map"></a>12.9.3 - std:http:post _http-client_ _url-string_ _body-bytes_ [_headers-and-options-map_]

This call is like `std:http:get` but makes a HTTP POST request with the given payload _body_. For HTTP requests with other methods please look at `std:http:request`. The rest of the options are the same as `std:http:get`. But here is an example how to
transmit a piece of JSON easily:

```wlambda
!client = std:http:client:new[];
!response =
    std:http:post client "http://httpbin.org/post"
        (std:str:to_bytes ~ std:ser:json $[
            :x => 10,
            ${ y = 20 },
        ]);

!body = std:deser:json ~ std:str:from_utf8_lossy response.body;

std:assert_eq body.url "http://httpbin.org/post";
std:assert_str_eq body.json  $[ $["x", 10], ${ y = 20 } ];
std:assert_eq response.status 200;
```

#### <a name="1294-stdhttprequest-http-client-method-string-url-string-body-bytes-headers-and-options-map"></a>12.9.4 - std:http:request _http-client_ _method-string_ _url-string_ [_body-bytes_ [_headers-and-options-map_]]

This call is like `std:http:post` but makes HTTP requests with an almost
arbitrary method with the optional given payload _body_. The rest of the
options are the same as `std:http:get`.


```wlambda
!client = std:http:client:new[];
!response =
    std:http:request client :GET "http://httpbin.org/get";

!body = std:deser:json ~ std:str:from_utf8_lossy response.body;
std:assert_eq body.url "http://httpbin.org/get";
```

Or a POST request:

```wlambda
!client = std:http:client:new[];
!response =
    std:http:request client :POST "http://httpbin.org/post"
        (std:str:to_bytes ~ std:ser:json $[
            :x => 10,
            ${ y = 20 },
        ]);

!body = std:deser:json ~ std:str:from_utf8_lossy response.body;

std:assert_eq body.url "http://httpbin.org/post";
std:assert_str_eq body.json  $[ $["x", 10], ${ y = 20 } ];
std:assert_eq response.status 200;
```

### <a name="1210-mqtt-messaging"></a>12.10 - MQTT Messaging

WLambda offers an optional support for the MQTT protocol. You can setup a MQTT client
as well as an embedded MQTT broker. The very simple integration offers you a very
easy way to setup inter process communication between WLambda applications.

Support for MQTT has to be explicitly compiled into WLambda by selecting the
`mqtt` feature.

#### <a name="12101-stdmqttbrokernew-config"></a>12.10.1 - std:mqtt:broker:new _config_

This function sets up an embedded MQTT broker. A handle is returned that you can use
to publish messages using the locally connected client link.
You can configure it's endpoints via the _config_.
The _config_ offers following keys:

```text
${
    id             = 0,                 # Broker ID
    listen         = "0.0.0.0:1883",    # Broker server endpoint
    console_listen = "0.0.0.0:18088",   # An extra HTTP console endpoint
    link = ${                           # Configure the local link
        client_id = "some_id",          # Link client ID, default is 'wl_local'
        recv = <std:sync:mpsc channel>, # Channel to receive messages for the
                                        # subscribed topics.
        # Topics to subscribe to, if not given, '#' will be used:
        topics = $["test/me", "another/topic", ...]
    },
}
```

The default maximum MQTT payload the broker is setup to support is 10240 bytes
(10 kb).

Here is an example:

```wlambda
!broker = std:mqtt:broker:new ${
    listen         = "0.0.0.0:1883",
    console_listen = "0.0.0.0:18080",
};

# sleep a bit until the broker is initialized:
std:thread:sleep :ms => 500;

!chan = std:sync:mpsc:new[];
!cl = std:mqtt:client:new chan "test1" "localhost" 1883;

# let it connect:
std:thread:sleep :ms => 200;

!_ = cl.subscribe "test/me";
!_ = cl.publish "test/me" $b"test123\xFF";

std:assert_str_eq chan.recv[] $p(:"$WL/connected", $n);
std:assert_str_eq chan.recv[] $p("test/me", $b"test123\xFF");
```

##### <a name="121011-brokerpublish-topic-string-payload-bytes"></a>12.10.1.1 - broker.publish _topic-string_ _payload-bytes_

Publishes the _payload-bytes_ under the _topic-string_. Returns an error
if something went wrong (client not connected, or some other error). It might
block.

#### <a name="12102-stdmqttclientnew-channel-client-id-broker-host-broker-port"></a>12.10.2 - std:mqtt:client:new _channel_ _client-id_ _broker-host_ _broker-port_

This sets up a MQTT client that connects to the given _broker-host_ and _broker-port_.
It will connect and reconnect upon connection failure in the background automatically
for you. So you don't have to manage the connection yourself.

This function returns a client handle that is describe a little bit further below.

The _client-id_ should be a unique ID to identify your MQTT client.

The _channel_ must be a `std:sync:mpsc` channel that you can create using `std:sync:mpsc:new`.
It's the source of incoming messages and connection control information.
It will send you following possible message data:

- `$p(:"$WL/connected", $n)`    - When the client connection was setup
- `$p(:"$WL/error", "some message here...")` - When an error occurred in the connection handling.
- `$p(topic, payload_bytes)` - An incoming MQTT message that belongs to the _topic_.

Here is an example of a common client setup:

```wlambda
!broker = std:mqtt:broker:new ${
    listen         = "0.0.0.0:1883",
    console_listen = "0.0.0.0:18080",
};

# sleep a bit until the broker is initialized:
std:thread:sleep :ms => 500;

!chan = std:sync:mpsc:new[];
!cl = std:mqtt:client:new chan "test1" "localhost" 1883;

# let it connect:
std:thread:sleep :ms => 200;

!_ = cl.subscribe "test/me";
!_ = cl.publish "test/me" $b"test";
!_ = cl.publish "test/me" $b"quit";

!got_some_stuff = $n;

while $t {
    !msg = chan.recv[];
    match msg
        $p(topic, $b"quit") => { break[]; }
        $p(topic, data)     => { .got_some_stuff = std:copy $\; }; # std:copy because $\ is changing!
};

std:assert_eq got_some_stuff.topic "test/me";
std:assert_eq got_some_stuff.data  $b"test";
```

The returned client handle understands the following methods:

##### <a name="121021-mqttclientpublish-topic-string-payload-bytes"></a>12.10.2.1 - mqtt\_client.publish _topic-string_ _payload-bytes_

Publishes the _payload-bytes_ under the _topic-string_. Returns an error
if something went wrong (client not connected, or some other error). It might
block.

##### <a name="121022-mqttclientsubscribe-topic-string"></a>12.10.2.2 - mqtt\_client.subscribe _topic-string_

Subscribes to the _topic-string_. Returns an error if something went wrong.
It might block.

## <a name="13-wlambda-lexical-syntax-and-grammar"></a>13 - WLambda Lexical Syntax and Grammar

White space is everything that satisfies `std::char::is_whitespace`,
so unicode white space is respected. Comments have the following syntax:

```ebnf
    comment = "#" ?anything except "\n"? "\n"
```

In the following grammar, white space and comments are omitted:

```ebnf

    ident_start   = ( ?alphabetic? | "_" | "@" | "?" )
    ident_end     = { ?any character?
                     - ( ?white space?
                         | "." | "," | ";"
                         | "{" | "}" | "[" | "]" | "(" | ")"
                         | "~" | "|" | "=" ) }
                  ;
    qident        = ident_end
                  (* a quoted identifier can not appear anywhere,
                     it's usually delimited or follows something that
                     makes sure we are now expecting an identifier *)
                  | "`", { ?any character except '`'? }, "`" (* quoted identifier *)
                  ;
    ident         = ident_start, [ ident_end ]
                  | "`", { ?any character except '`'? }, "`" (* quoted identifier *)
                  ;
    ref_specifier = ":", qident
                  ;

    digit         = "0" | "1" | "2" | "3" | "4" | "5"
                  | "6" | "7" | "8" | "9"
                  ;
    integer       = digit, { digit }
                  ;
    radix         = integer
                  ;
    radix_digits  = (* digits in the radix specified
                       earlier in the number.
                       Default radix is of course 10. *)
    number        = [ "-" | "+" ],
                    [ ( radix, "r"
                      | "0", "x"
                      | "0", "b"
                      | "0", "o"
                      ) ],
                    radix_digits,
                    [ ".", radix_digits ]
                  ;
    hexdigit      = ?hexdigit, upper or lower case?
                  ;
    ascii_c_name  = (* note: upper and lower case versions are possible *)
                    "NULL" | "SOH" | "STX" | "ETX" | "EOT" | "ENQ" | "ACK"
                  | "BEL" | "BS" | "HT" | "LF" | "VT" | "FF" | "CR" | "SO"
                  | "SI" | "DLE" | "DC1" | "DC2" | "DC3" | "DC4" | "NAK"
                  | "SYN" | "ETB" | "CAN" | "EM" | "SUB" | "ESC" | "FS"
                  | "GS" | "RS" | "US" | "DEL" | "SPACE" | "NBSP"
                  ;
    string_escape = "x", hexdigit, hexdigit  (* byte/ascii escape *)
                  | "n"                      (* newline *)
                  | "r"                      (* carriage return *)
                  | "t"                      (* horizontal tab *)
                  | "0"                      (* nul byte/char *)
                  | "u", hexdigit, { hexdigit }
                                             (* unicode char, or in byte strings
                                                their utf-8 encoded form *)
                  | "\""
                  | "\'"
                  | "\\"
                  | "\\<", ascii_c_name, ">" (* the corresponding ascii value *)
                  ;
    string_lit    = string
                  | character
                  | "$", quote_string
                  | "$", byte_string
                  | "$", code_string
                  ;
    character     = "'", ( "\\", string_escape | ?any character? - "\\" and "'" ), "'"
                  ;
    string        = "\"", { "\\", string_escape | ?any character? - "\\" and "\"" },"\""
                  ;
    byte_char     = "b", character
                  ;
    byte_string   = "b", string
                  ;
    quote_string  = "q", ?any character as quote?,
                         { ?any character? },
                         ?any character as quote?
                  | "Q", ?any character as quote?,
                         { ?any character? },
                         ?any character as quote?
                    (* but Q generates a byte string instead! *)
    selector      = "S", ?any character as quote?,
                         selector_rs_syntax,
                         ?any character as quote?
                    (* parses substring like 'q', but constructs a
                       selector_rs_syntax matcher at compile time *)
                  ;
    pattern       = "r", [ "g" ], (* "g" for find all *)
                         ?any character as quote?,
                         selector_rs_pattern_syntax,
                         ?any character as quote?
                    (* parses substring like 'q', but constructs a
                       pattern matcher at compile time *)
                  ;
    struct_match  = "M", expr   (* compiles expr as structure matcher function.
                                   If called, it matches the first argument against
                                   the literal structure and returns a map of
                                   matched variables. If nothing matches $none
                                   is returned. *)
    formatter     = "F", string_lit (* compiles the string into a formatter, that
                                       takes as many arguments as there are format
                                       specifiers in the string. See also: String
                                       formatting syntax in the next section. *)
    list_expr     = "*", expr   (* splices the vector result of 'expr'
                                   into the currently parsed list *)
                  | expr
                  ;
    list          = "[", [ list_expr, { ",", list_expr }, [ "," ] ],"]"
                  ;
    map_expr      = (ident | expr), "=", expr
                  | "*", expr   (* splices the map result of 'expr'
                                   into the currently parsed map *)
                  ;
    map           = "{", [ map_expr, { ",", map_expr }, [ "," ] ], "}"
                  ;
    self          = "s" | "self"
                  ;
    true          = "t" | "true"
                  ;
    false         = "f" | "false"
                  ;
    none          = "n" | "none"
                  ;
    code_string   = ("c" | "code" ), block
                  | ("c" | "code" ), expr
                  ;
    pair          = "p", "(", expr, "," expr, ")"
                  ;
    err           = ("e" | "error"), expr
                  ;
    nvec          = ("i" | "f"), "(", expr, { ",", expr }, ")"
                  ;
    ref           = "&&", value
                  ;
    ref_hidden    = "&", value
                  ;
    ref_weak      = ("w&" | "weak&"), value
                  ;
    syntax        = "%:", {? any possible Syntax Type Identifier
                             eg. "Block", "Call", ... ?}
                    (* A syntax VVal, the possible identifiers are one of the
                       possible result symbols of std:syn:type. This also
                       saves the current parser position. *)
                  ;
    accumulator   = "@", ("i" | "int"
                         |"s" | "string"
                         |"f" | "float"
                         |"b" | "bytes"
                         |"v" | "vec"
                         |"m" | "map" ), expr
                    (* defines a new accumulator context *)
                  | "@@" (* returns the current accumulator value *)
                  | "+"  (* resolves to the current accumulator function *)
                  ;
    debug_print   = "DEBUG" (* evaluates to a debug print function that
                               also prints source position and dynamic type.
                               very useful for debugging. *)
                  ;
    import        = "@import", ident, [ ident ]
                  ;
    export        = "@export", ident, [ "=" ], expr
                  ;
    capture_ref   = ":", var
                  ;
    deref         = "*", value
                  ;
    special_value = list
                  | map
                  | none
                  | true
                  | false
                  | self
                  | err
                  | nvec
                  | pair
                  | ref
                  | ref_hidden
                  | ref_weak
                  | deref
                  | capture_ref
                  | accumulator
                  | selector
                  | pattern
                  | struct_match
                  | debug_print
                  | "\"             (* The global variable with the name "\" *)
                  ;
    arity_def     = "|", number, "<", number, "|" (* set min/max *)
                  | "|", number, "|"              (* set min and max *)
                  | "|", "|"                      (* no enforcement *)
                  ;
    function      = [ "\:", ident ], "{", [ arity_def ], block, "}"
                  | "\", [ arity_def ], statement
                  ;
    var           = ident
                  ;
    symbol        = ":", qident
                  | ":", "\"", (? any char, quoted \\ and \" ?), "\""
                  (*
                     symbols are usually used to specify
                     fields in literal map definitions
                     and lots of other places as stringy sentinel values
                  *)
                  ;
    value         = number
                  | string_lit
                  | "$", special_value
                  | "(", expr, ")"
                  | function
                  | symbol
                  | var
                  ;
    op            = (* here all operators are listed line by line regarding
                       their precedence, top to bottom *)
                    "&>" | "&@>"      (* call rhs with lhs operator *)
                  | "<&" | "<@&"      (* call lhs with rhs operator *)
                  | "^"
                  | "*" | "/" | "%"
                  | "-" | "+"
                  | "<<" | ">>"       (* binary shift *)
                  | "<" | ">" | "<=" | ">="
                  | "==" | "!="
                  | "&"               (* binary and *)
                  | "&^"              (* binary xor *)
                  | "&|"              (* binary or *)
                  | "&and"            (* logical and, short circuit *)
                  | "&or"             (* logical or, short circuit *)
                  | "=>"              (* pair constructor *)
                  | "+>"              (* take lhs, wrap it into list if not already
                                         and append the right side.
                                         if lhs is an iterator, append all elements. *)
                  | "<+"              (* take rhs, wrap it into list if not already
                                         and prepend the left side.
                                         if rhs is an iterator, prepend all elements. *)
                  ;
    bin_op        = call_no_ops, { op, bin_op } (* precedence parsing is done
                                                   in a Pratt parser style *)
                  ;
    arg_list      = "[", [ expr, { ",", expr }, [ "," ] ], "]"
                  | "[[", expr, "]]"  (* apply result vector of expr as argument list *)
                  ;
    field         = ".", ( integer | ident | value ), [ field ]
                  ;
    field_access  = field, [ op ], "=", expr
                  | field, arg_list
                  | field
                  (* please note, that a field access like:
                     `obj.field` is equivalent to the call:
                     `field[obj]`. That also means that
                     `obj.field[...]` is transformed into
                     `field[obj][...]`.
                     The exception is "=" which assigns
                     the field as specified.
                     BUT: There is a special case, when you specify
                          an identifier as field, it is quoted and
                          interpreted as symbol. *)
                  ;
    call_no_ops   = value, { arg_list | field_access }
                  ;
    call          = value,
                    { arg_list | field_access | bin_op | value },
                    [ "~", expr ] (* this is a tail argument, if present the
                                     expr is appended to the argument list *)
                  ;
    expr          = call, { "|", call }
                  | call, { "|>", call }
                  | call, { "||", call }
                  ;
    simple_assign = qident, [ op ], "=", expr
                  ;
    destr_assign  = "(", [ qident, { ",", qident } ], ")", "=" expr
                  ;
    definition    = [ ref_specifier ], ( simple_assign | destr_assign )
                  ;
    import        = "!", "@import", symbol, [ [ "=" ], symbol ]
                  | "!", "@wlambda"
                  ;
    export        = "!", "@export", symbol, [ "=" ], expr
                  ;
    statement     = "!" definition
                  | "." simple_assign
                  | "." destr_assign
                  | import
                  | export
                  | expr
                  ;
    block         = "{", { statement, ";", {";"}}, [ statement, {";"} ], "}"
                  | { statement, ";", {";"} }, [ statement, {";"} ]
                  ;
    code          = block
                  ;
```

### <a name="131-special-forms"></a>13.1 - Special Forms

There are certain calls that are handled by the compiler differently.

- `if _condition_ _then-block-or-expr_ [_else-block-or-expr_]`
- `while _condition_ _block-or-expr_`
- `iter _var_ _value-expr_ _block-or-expr_`
- `next _x_`
- `break`
- `match _value-expr_ $p(structure_pattern, branch_block) ... [ branch_block ]
- `jump _idx-expr_ _block1_ ...`

### <a name="132-string-formatting-syntax"></a>13.2 - String Formatting Syntax

The `$F` special value takes a string and creates a formatting function.
The syntax for formatting is very similar to Rust's string formatting:

```ebnf
    format_string = <text>, { maybe-format, <text> }
                  ;
    maybe-format  = '{', '{'
                  | '}', '}'
                  | <format>
                  ;
    format        = '{' [ argument ], [ ':' format_spec ] '}'
                  ;
    argument      = integer    (* index into argument vector *)
                  | identifier (* requires a map as parameter *)
                  ;

    format_spec   = [[fill]align][sign]['#']['0'][width]['.' precision]['!' cast_type][type]
                  ;
    fill          = character
                  ;
    align         = '<' | '^' | '>'
                  ;
    sign          = '+' | '-'
                  ;
    width         = count
                  ;
    precision     = count | '*'
                  ;
    cast_type     = 'i'             (* interpret arg as integer *)
                  | 'f'             (* interpret arg as float *)
                  | 's'             (* (default) interpret arg as string *)
                  ;
    type          = 'x'             (* hex lower case *)
                  | 'X'             (* hex upper case *)
                  | 'b'             (* binary *)
                  | 'o'             (* octal *)
                  | 'j', character  (* a string join of a vector,
                                       separated by 'character' *)
                  | 'C', character  (* A CSV row, separated by 'character'.
                                       This also supports proper
                                       escaping using '"' *)
                  | 'J', ['p']      (* JSON, optional pretty printed *)
                  | 'w', ['p']      (* print written WLambda representation,
                                       optional pretty printed *)
                  | ''
                  ;
    count         = parameter | integer
                  ;
    parameter     = argument, '$'
                  ;
```

### <a name="133-format-string-syntax-for-stdbytespack-and-stdbytesunpack"></a>13.3 - Format String Syntax for std:bytes:pack and std:bytes:unpack

This syntax describes the accepted format strigns for the `std:bytes:pack` and
`std:bytes:unpack`. The format is loosely adapted from the Lua syntax for
`string.pack` and `string.unpack`.

| Syntax | Semantics |
|-|-|
| `<` | Sets little endian |
| `>` | Sets big endian |
| `=` | Sets native endian |
| `x` | One zero byte of padding |
| `y` | Byte content with unspecified length. On `unpack` this reads to the end of the input.  |
| `z` | A zero-terminated string of bytes. |
| `c<n>` | An `n` long field of bytes. |
| `b` | A single byte. |
| `s<bits>` | A string of bytes that is prefixed with a `<bits>` wide binary length field. |
| `u<bits>` | A `<bits>` wide unsigned integer field. |
| `i<bits>` | A `<bits>` wide signed integer field. |
| `f` | A float field (32 bits). |
| `d` | A double field (64 bits). |

- `<n>` can be any number.
- `<bits>` can be 8, 16, 32, 64 or 128.


[]: ---- REFERENCE DOC END ----

*/

const VERSION: &str = env!("CARGO_PKG_VERSION");

use crate::compiler::*;
use crate::vval::*;
use crate::util;
use std::rc::Rc;
use crate::threads::*;
use crate::selector::*;
use crate::formatter::*;
use crate::io::print_value;

macro_rules! func {
    ($g: ident, $name: expr, $cb: expr, $min: expr, $max: expr, $err_arg_ok: expr) => {
        $g.fun($name, $cb, $min, $max, $err_arg_ok);
    }
}

macro_rules! add_func {
    ($g: ident, $op: tt, $env: ident, $argc: ident, $b: block, $min: expr, $max: expr, $err_arg_ok: expr) => {
        $g.fun(stringify!($op), |$env: &mut Env, $argc: usize| $b, $min, $max, $err_arg_ok);
    }
}

macro_rules! add_multi_op {
    ($g: ident, $op: tt) => {
        add_func!($g, $op, env, argc, {
            if argc <= 0 { return Ok(VVal::None); }
            if let VVal::Flt(f) = env.arg(0) {
                let mut accum = f;
                for i in 1..argc { accum = accum $op env.arg(i).f() }
                Ok(VVal::Flt(accum))
            } else {
                let mut accum = env.arg(0).i();
                for i in 1..argc { accum = accum $op env.arg(i).i() }
                Ok(VVal::Int(accum))
            }
        }, Some(2), None, false)
    }
}

macro_rules! add_multi_op_zero {
    ($g: ident, $op: tt, $err: expr) => {
        add_func!($g, $op, env, argc, {
            if argc <= 0 { return Ok(VVal::None); }
            if let VVal::Flt(f) = env.arg(0) {
                let mut accum = f;
                for i in 1..argc { accum = accum $op env.arg(i).f() }
                Ok(VVal::Flt(accum))

            } else {
                let mut accum = env.arg(0).i();
                for i in 1..argc {
                    let v = env.arg(i).i();
                    if v == 0 {
                        return
                            Err(StackAction::panic_str(
                                format!("{}", $err),
                                None,
                                env.argv()));
                    }
                    accum = accum $op v;
                }
                Ok(VVal::Int(accum))
            }
        }, Some(2), None, false)
    }
}

macro_rules! add_bool_bin_op {
    ($g: ident, $op: tt) => {
        add_func!($g, $op, env, argc, {
            if argc < 2 { return Ok(VVal::None); }
            let a = env.arg(0);
            if let VVal::Flt(af) = a { Ok(VVal::Bol(af $op env.arg(1).f())) }
            else { Ok(VVal::Bol(a.i() $op env.arg(1).i())) }
        }, Some(2), Some(2), false)
    }
}

macro_rules! add_fi_bin_op {
    ($g: ident, $op: tt, $a: ident, $b: ident, $ef: expr, $ei: expr) => {
        add_func!($g, $op, env, argc, {
            if argc < 2 { return Ok(VVal::None); }
            let $a = env.arg(0);
            let $b = env.arg(1);
            if let VVal::Flt(_) = $a { $ef }
            else { $ei }
        }, Some(2), Some(2), false)
    }
}

macro_rules! add_bin_op_err_ok {
    ($g: ident, $op: tt, $a: ident, $b: ident, $e: expr) => {
        add_func!($g, $op, env, argc, {
            if argc < 2 { return Ok(VVal::None); }
            let $a = env.arg(0);
            let $b = env.arg(1);
            $e
        }, Some(2), Some(2), true)
    }
}

macro_rules! add_sbin_op {
    ($g: ident, $op: literal, $a: ident, $b: ident, $e: expr) => {
        func!($g, $op, |env: &mut Env, argc: usize| {
            if argc < 2 { return Ok(VVal::None); }
            let $a = env.arg(0);
            let $b = env.arg(1);
            $e
        }, Some(2), Some(2), false);
    }
}

macro_rules! add_num_fun {
    ($g: ident, $op: literal, $e: tt) => {
        func!($g, $op,
            |env: &mut Env, _argc: usize| {
                Ok(match env.arg(0).deref() {
                    VVal::Int(f) => { VVal::Int(f.$e()) }
                    v            => { VVal::Flt(v.f().$e()) }
                })
            }, Some(1), Some(1), false);
    }
}

macro_rules! add_num_fun_flt {
    ($g: ident, $op: literal, $e: tt) => {
        func!($g, $op,
            |env: &mut Env, _argc: usize| {
                Ok(VVal::Flt(env.arg(0).f().$e()))
            }, Some(1), Some(1), false);
    }
}

macro_rules! add_num_fun_flt2 {
    ($g: ident, $op: literal, $e: tt) => {
        func!($g, $op,
            |env: &mut Env, _argc: usize| {
                Ok(VVal::Flt(env.arg(0).f().$e(env.arg(1).f())))
            }, Some(2), Some(2), false);
    }
}

macro_rules! sizeof_writeln {
    ($write: ident, $type: ty) => {
        writeln!($write, "sizeof {:40}:  {:2} bytes",
                 stringify!($type),
                 std::mem::size_of::<$type>()).expect("stdout access works");
    }
}

macro_rules! process_vec_input {
    ($env: ident, $arg: ident, $v: ident, $x: ident, $y: ident, $z: ident, $w: ident, $three_i: block, $three_f: block, $four_i: block, $four_f: block) => {
        match $arg.nvec_len() {
            3 => match $arg {
                VVal::FVec($v) => {
                    let $x = $v.x_raw();
                    let $y = $v.y_raw();
                    let $z = $v.z_raw().unwrap_or(0.0);
                    $three_f
                },
                VVal::IVec($v) => {
                    let $x = $v.x_raw();
                    let $y = $v.y_raw();
                    let $z = $v.z_raw().unwrap_or(0);
                    $three_i
                },
                _ => {
                    Ok($env.new_err(
                        "expects float or int vectors".to_string()))
                },
            },
            4 => match $arg {
                VVal::FVec($v) => {
                    let $x = $v.x_raw();
                    let $y = $v.y_raw();
                    let $z = $v.z_raw().unwrap_or(0.0);
                    let $w = $v.w_raw().unwrap_or(0.0);
                    $four_f
                },
                VVal::IVec($v) => {
                    let $x = $v.x_raw();
                    let $y = $v.y_raw();
                    let $z = $v.z_raw().unwrap_or(0);
                    let $w = $v.w_raw().unwrap_or(0);
                    $four_i
                },
                _ => {
                    Ok($env.new_err(
                        "v:rgba2hex expects float or int vectors"
                        .to_string()))
                },
            },
            _ => Ok($env.new_err(
                "expects 3 or 4 dimensional vectors".to_string()))
        }
    }
}

/// Returns a SymbolTable with all WLambda core language symbols.
#[allow(clippy::cast_lossless,clippy::assign_op_pattern)]
pub fn core_symbol_table() -> SymbolTable {
    let mut st = SymbolTable::new();

    // The implementations for +/- are essentially just like the `add_multi_op`
    // implementations, except for how they accept down to 1 parameter for
    // unary +/-.
    add_func!(st, +, env, argc, {
        Ok(match (argc, env.arg(0)) {
            (0, _) => VVal::None,
            (1, VVal::Flt(f)) => VVal::Flt(f),
            (1, VVal::Int(i)) => VVal::Int(i),
            (1, VVal::FVec(fv)) => VVal::FVec(fv),
            (1, VVal::IVec(iv)) => VVal::IVec(iv),
            (a, VVal::Flt(f)) => {
                let mut accum = f;
                for i in 1..a { accum = accum + env.arg(i).f() }
                VVal::Flt(accum)
            }
            (a, v) => {
                let mut accum = v.i();
                for i in 1..a { accum = accum + env.arg(i).i() }
                VVal::Int(accum)
            }
        })
    }, Some(1), None, false);
    add_func!(st, -, env, argc, {
        Ok(match (argc, env.arg(0)) {
            (0, _) => VVal::None,
            (1, VVal::Int(i))   => VVal::Int(-i),
            (1, VVal::Flt(f))   => VVal::Flt(-f),
            (1, VVal::FVec(fv)) => VVal::FVec(Box::new(-*fv)),
            (1, VVal::IVec(iv)) => VVal::IVec(Box::new(-*iv)),
            (a, VVal::Flt(f))   => {
                let mut accum = f;
                for i in 1..a { accum = accum - env.arg(i).f() }
                VVal::Flt(accum)
            }
            (a, v) => {
                let mut accum = v.i();
                for i in 1..a { accum = accum - env.arg(i).i() }
                VVal::Int(accum)
            }
        })
    }, Some(1), None, false);

    add_multi_op!(st, *);
    add_multi_op_zero!(st, /, "Division by 0");
    add_multi_op_zero!(st, %, "Remainder with divisor by 0");

    add_bool_bin_op!(st, <);
    add_bool_bin_op!(st, >);
    add_bool_bin_op!(st, <=);
    add_bool_bin_op!(st, >=);

    add_bin_op_err_ok!(st, ==, a, b, Ok(VVal::Bol(a.eqv(&b))));
    add_bin_op_err_ok!(st, !=, a, b, Ok(VVal::Bol(!a.eqv(&b))));

    add_sbin_op!(st, "&|", a, b,
        Ok(VVal::Int(((a.i() as u32) | (b.i() as u32)) as i64)));
    add_sbin_op!(st, "&", a, b,
        Ok(VVal::Int(((a.i() as u32) & (b.i() as u32)) as i64)));
    add_sbin_op!(st, "&^", a, b,
        Ok(VVal::Int(((a.i() as u32) ^ (b.i() as u32)) as i64)));
    add_sbin_op!(st, "<<", a, b,
        Ok(VVal::Int(((a.i() as u32) << (b.i() as u32)) as i64)));
    add_sbin_op!(st, ">>", a, b,
        Ok(VVal::Int(((a.i() as u32) >> (b.i() as u32)) as i64)));

    add_fi_bin_op!(st, ^, a, b,
        Ok(VVal::Flt(a.f().powf(b.f()))),
        Ok(VVal::Int(a.i().pow(b.i() as u32))));

    func!(st, "//",
        |env: &mut Env, _argc: usize| {
            let a = env.arg(0);
            let b = env.arg(1);

            Ok(match a {
                VVal::Opt(Some(a)) => a.as_ref().clone(),
                VVal::Opt(None)    => b,
                VVal::None         => b,
                _                  => a,
            })
        }, Some(2), Some(2), true);

    func!(st, "/?",
        |env: &mut Env, _argc: usize| {
            let a = env.arg(0);
            let b = env.arg(1);

            Ok(match a {
                VVal::Opt(Some(a)) => a.as_ref().clone(),
                VVal::Opt(None)    => b,
                VVal::Err(_)       => b,
                VVal::None         => b,
                _                  => a,
            })
        }, Some(2), Some(2), true);

    func!(st, "/$n",
        |env: &mut Env, _argc: usize| {
            let a = env.arg(0);
            let b = env.arg(1);

            Ok(match a {
                VVal::None => b,
                _          => a,
            })
        }, Some(2), Some(2), true);

    func!(st, "/$o",
        |env: &mut Env, _argc: usize| {
            let a = env.arg(0);
            let b = env.arg(1);

            Ok(match a {
                VVal::Opt(Some(a)) => a.as_ref().clone(),
                VVal::Opt(None)    => b,
                _                  => a,
            })
        }, Some(2), Some(2), true);

    func!(st, "/$e",
        |env: &mut Env, _argc: usize| {
            let a = env.arg(0);
            let b = env.arg(1);

            Ok(match a {
                VVal::Err(_) => b,
                _            => a,
            })
        }, Some(2), Some(2), true);

    func!(st, "+>",
        |env: &mut Env, argc: usize| {
            use crate::compiler::collection_add;
            collection_add(env, argc, CollectionAdd::Push)
        }, None, None, false);

    func!(st, "<+",
        |env: &mut Env, argc: usize| {
            use crate::compiler::collection_add;
            collection_add(env, argc, CollectionAdd::Unshift)
        }, None, None, false);

    func!(st, "not",
        |env: &mut Env, _argc: usize| {
            Ok(VVal::Bol(!env.arg(0).b()))
        }, Some(1), Some(1), false);

    func!(st, "panic",
        |env: &mut Env, _argc: usize| {
            Err(env.new_panic(env.arg(0)))
        }, Some(1), Some(1), true);

    func!(st, "block",
        |env: &mut Env, argc: usize| {
            let mut label = VVal::None;
            let fn_arg_idx = if argc <= 1 { 0 } else { label = env.arg(0); 1 };
            match env.arg(fn_arg_idx).call_no_args(env) {
                Ok(v)   => Ok(v),
                Err(StackAction::Return(ret)) => {
                    if ret.0.eqv(&label) { Ok(ret.1) }
                    else { Err(StackAction::Return(ret)) }
                },
                Err(e)  => Err(e),
            }
        }, Some(1), Some(2), false);

    func!(st, "_?",
        |env: &mut Env, argc: usize| {
            let mut lbl = VVal::None;
            let err_val = if argc > 1 {
                lbl = env.arg(0);
                env.arg(1)
            } else { env.arg(0) };

            match err_val {
                VVal::Err(e) => Err(StackAction::Return(Box::new((lbl, VVal::Err(e))))),
                v            => Ok(v),
            }
        }, Some(1), Some(2), true);

    func!(st, "unwrap_err",
        |env: &mut Env, _argc: usize| {
            match env.arg(0) {
                VVal::Err(err_v) => {
                    Ok(err_v.borrow().0.clone())
                },
                v => {
                    Err(StackAction::panic_msg(
                        format!("unwrap_err on non error value: {}", v.s())))
                },
            }
        }, Some(1), Some(1), true);

    func!(st, "unwrap",
        |env: &mut Env, _argc: usize| {
            match env.arg(0) {
                VVal::Err(err_v) => {
                    Err(StackAction::panic_str(
                        format!("unwrap error: {}", err_v.borrow().0.s()),
                        Some(err_v.borrow().1.clone()),
                        err_v.borrow().0.clone()))
                },
                VVal::Opt(None) => {
                    Err(StackAction::panic_str(
                        "unwrap empty option!".to_string(), None,
                        VVal::None))
                },
                VVal::Opt(Some(v)) => Ok((*v).clone()),
                v => Ok(v)
            }
        }, Some(1), Some(1), true);

    func!(st, "on_error",
        |env: &mut Env, _argc: usize| {
            let err_fn = env.arg(0);
            match env.arg(1) {
                VVal::Err(err_v) => {
                    env.with_restore_sp(|e: &mut Env| {
                        e.push(err_v.borrow().0.clone());
                        e.push(VVal::Int(err_v.borrow().1.line() as i64));
                        e.push(VVal::Int(err_v.borrow().1.col() as i64));
                        e.push(VVal::new_str(err_v.borrow().1.filename()));
                        err_fn.call_internal(e, 4)
                    })
                },
                e => Ok(e)
            }
        }, Some(2), Some(2), true);

    func!(st, "return",
        |env: &mut Env, argc: usize| {
            if argc < 1 { return Err(StackAction::Return(Box::new((VVal::None, VVal::None)))); }
            if argc < 2 { return Err(StackAction::Return(Box::new((VVal::None, env.arg(0))))); }
            Err(StackAction::Return(Box::new((env.arg(0), env.arg(1)))))
        }, Some(1), Some(2), true);

    func!(st, "break",
        |env: &mut Env, argc: usize| {
            if argc < 1 { return Err(StackAction::Break(Box::new(VVal::None))); }
            Err(StackAction::Break(Box::new(env.arg(0))))
        }, Some(0), Some(1), true);

    func!(st, "next",
        |_env: &mut Env, _argc: usize| {
            Err(StackAction::Next)
        }, Some(0), Some(0), false);

    func!(st, "pick",
        |env: &mut Env, _argc: usize| Ok(if env.arg(0).b() { env.arg(1) } else { env.arg(2) }),
        Some(3), Some(3), false);

    func!(st, "ivec",
        |env: &mut Env, _argc: usize| Ok(VVal::IVec(Box::new(env.arg(0).nvec()))),
        Some(1), Some(1), false);
    func!(st, "ivec2",
        |env: &mut Env, _argc: usize| Ok(VVal::IVec(Box::new(env.arg(0).nvec().vec2()))),
        Some(1), Some(1), false);
    func!(st, "ivec3",
        |env: &mut Env, _argc: usize| Ok(VVal::IVec(Box::new(env.arg(0).nvec().vec3()))),
        Some(1), Some(1), false);
    func!(st, "ivec4",
        |env: &mut Env, _argc: usize| Ok(VVal::IVec(Box::new(env.arg(0).nvec().vec4()))),
        Some(1), Some(1), false);
    func!(st, "fvec",
        |env: &mut Env, _argc: usize| Ok(VVal::FVec(Box::new(env.arg(0).nvec()))),
        Some(1), Some(1), false);
    func!(st, "fvec2",
        |env: &mut Env, _argc: usize| Ok(VVal::FVec(Box::new(env.arg(0).nvec().vec2()))),
        Some(1), Some(1), false);
    func!(st, "fvec3",
        |env: &mut Env, _argc: usize| Ok(VVal::FVec(Box::new(env.arg(0).nvec().vec3()))),
        Some(1), Some(1), false);
    func!(st, "fvec4",
        |env: &mut Env, _argc: usize| Ok(VVal::FVec(Box::new(env.arg(0).nvec().vec4()))),
        Some(1), Some(1), false);
    func!(st, "is_nvec",
        |env: &mut Env, _argc: usize| Ok(VVal::Bol(env.arg(0).is_nvec())),
        Some(1), Some(1), false);
    func!(st, "is_ivec",
        |env: &mut Env, _argc: usize| Ok(VVal::Bol(env.arg(0).is_ivec())),
        Some(1), Some(1), false);
    func!(st, "is_fvec",
        |env: &mut Env, _argc: usize| Ok(VVal::Bol(env.arg(0).is_fvec())),
        Some(1), Some(1), false);
    func!(st, "nvec_len",
        |env: &mut Env, _argc: usize| Ok(VVal::Int(env.arg(0).nvec_len() as i64)),
        Some(1), Some(1), false);

    func!(st, "bool",
        |env: &mut Env, _argc: usize| { Ok(VVal::Bol(env.arg(0).b())) },
        Some(1), Some(1), true);
    func!(st, "float",
        |env: &mut Env, _argc: usize| { Ok(VVal::Flt(env.arg(0).f())) },
        Some(1), Some(1), false);
    func!(st, "int",
        |env: &mut Env, _argc: usize| { Ok(VVal::Int(env.arg(0).i())) },
        Some(1), Some(1), false);
    func!(st, "char",
        |env: &mut Env, _argc: usize| { Ok(VVal::Chr(VValChr::Char(env.arg(0).c()))) },
        Some(1), Some(1), false);
    func!(st, "byte",
        |env: &mut Env, _argc: usize| { Ok(VVal::Chr(VValChr::Byte(env.arg(0).byte()))) },
        Some(1), Some(1), false);
    func!(st, "str",
        |env: &mut Env, _argc: usize| { Ok(VVal::new_str_mv(env.arg(0).s_raw())) },
        Some(1), Some(1), false);
    func!(st, "sym",
        |env: &mut Env, _argc: usize|
            env.arg(0).with_s_ref(|s: &str| { Ok(VVal::new_sym(s)) }),
        Some(1), Some(1), false);
    func!(st, "is_some",
        |env: &mut Env, _argc: usize| { Ok(VVal::Bol(env.arg(0).is_some())) },
        Some(1), Some(1), true);
    func!(st, "is_none",
        |env: &mut Env, _argc: usize| { Ok(VVal::Bol(env.arg(0).is_none())) },
        Some(1), Some(1), true);
    func!(st, "is_err",
        |env: &mut Env, _argc: usize| { Ok(VVal::Bol(env.arg(0).is_err())) },
        Some(1), Some(1), true);
    func!(st, "is_map",
        |env: &mut Env, _argc: usize| { Ok(VVal::Bol(env.arg(0).is_map())) },
        Some(1), Some(1), true);
    func!(st, "is_vec",
        |env: &mut Env, _argc: usize| { Ok(VVal::Bol(env.arg(0).is_vec())) },
        Some(1), Some(1), true);
    func!(st, "is_fun",
        |env: &mut Env, _argc: usize| { Ok(VVal::Bol(env.arg(0).is_fun())) },
        Some(1), Some(1), true);
    func!(st, "is_str",
        |env: &mut Env, _argc: usize| { Ok(VVal::Bol(env.arg(0).is_str())) },
        Some(1), Some(1), true);
    func!(st, "is_wref",
        |env: &mut Env, _argc: usize| { Ok(VVal::Bol(env.arg(0).is_wref())) },
        Some(1), Some(1), true);
    func!(st, "is_ref",
        |env: &mut Env, _argc: usize| { Ok(VVal::Bol(env.arg(0).is_ref())) },
        Some(1), Some(1), true);
    func!(st, "is_bool",
        |env: &mut Env, _argc: usize| { Ok(VVal::Bol(env.arg(0).is_bool())) },
        Some(1), Some(1), true);
    func!(st, "is_bytes",
        |env: &mut Env, _argc: usize| { Ok(VVal::Bol(env.arg(0).is_bytes())) },
        Some(1), Some(1), true);
    func!(st, "is_sym",
        |env: &mut Env, _argc: usize| { Ok(VVal::Bol(env.arg(0).is_sym())) },
        Some(1), Some(1), true);
    func!(st, "is_float",
        |env: &mut Env, _argc: usize| { Ok(VVal::Bol(env.arg(0).is_float())) },
        Some(1), Some(1), true);
    func!(st, "is_pair",
        |env: &mut Env, _argc: usize| { Ok(VVal::Bol(env.arg(0).is_pair())) },
        Some(1), Some(1), true);
    func!(st, "is_optional",
        |env: &mut Env, _argc: usize| { Ok(VVal::Bol(env.arg(0).is_optional())) },
        Some(1), Some(1), true);
    func!(st, "is_iter",
        |env: &mut Env, _argc: usize| { Ok(VVal::Bol(env.arg(0).is_iter())) },
        Some(1), Some(1), true);
    func!(st, "is_int",
        |env: &mut Env, _argc: usize| { Ok(VVal::Bol(env.arg(0).is_int())) },
        Some(1), Some(1), true);
    func!(st, "is_char",
        |env: &mut Env, _argc: usize| { Ok(VVal::Bol(env.arg(0).is_char())) },
        Some(1), Some(1), true);
    func!(st, "is_byte",
        |env: &mut Env, _argc: usize| { Ok(VVal::Bol(env.arg(0).is_byte())) },
        Some(1), Some(1), true);

    func!(st, "len",
        |env: &mut Env, _argc: usize| { Ok(VVal::Int(env.arg(0).len() as i64)) },
        Some(1), Some(1), false);

    func!(st, "type",
        |env: &mut Env, _argc: usize| {
            Ok(VVal::new_str(env.arg(0).type_name()))
        }, Some(1), Some(1), true);

    func!(st, "cons",
        |env: &mut Env, _argc: usize| {
            Ok(VVal::pair(env.arg(0), env.arg(1)))
        }, Some(2), Some(2), true);

    func!(st, "filter",
        |env: &mut Env, _argc: usize| {
            let f   = env.arg(0);
            let val = env.arg(1);

            val.with_iter(move |iter| {

                let ret = VVal::vec();

                for (v, k) in iter {
                    env.push(v.clone());
                    let n =
                        if let Some(k) = &k { env.push(k.clone()); 2 }
                        else                { 1 };
                    match f.call_internal(env, n) {
                        Ok(test) => {
                            if test.b() {
                                if let Some(k) = k { ret.push(VVal::pair(v, k)); }
                                else               { ret.push(v); }
                            }
                        },
                        Err(StackAction::Break(v)) => { env.popn(n); return Ok(*v); },
                        Err(StackAction::Next)     => { },
                        Err(e)                     => { env.popn(n); return Err(e); }
                    }
                    env.popn(n);
                }

                Ok(ret)
            })
        }, Some(2), Some(2), false);

    func!(st, "map",
        |env: &mut Env, _argc: usize| {
            let f   = env.arg(0);
            let val = env.arg(1);

            val.with_iter(move |iter| {
                let ret = VVal::vec();

                for (v, k) in iter {
                    env.push(v);
                    let n =
                        if let Some(k) = k { env.push(k); 2 }
                        else               { 1 };
                    match f.call_internal(env, n) {
                        Ok(v)                      => { ret.push(v); },
                        Err(StackAction::Break(v)) => { env.popn(n); return Ok(*v); },
                        Err(StackAction::Next)     => { },
                        Err(e)                     => { env.popn(n); return Err(e); }
                    }
                    env.popn(n);
                }

                Ok(ret)
            })
        }, Some(2), Some(2), false);

    func!(st, "for",
        |env: &mut Env, _argc: usize| {
            let val = env.arg(0);
            let f   = env.arg(1);

            val.with_iter(move |iter| {
                let mut ret = VVal::None;

                for (v, k) in iter {
                    env.push(v);
                    let n =
                        if let Some(k) = k { env.push(k); 2 }
                        else               { 1 };
                    match f.call_internal(env, n) {
                        Ok(v)                      => { ret = v; },
                        Err(StackAction::Break(v)) => { env.popn(n); return Ok(*v); },
                        Err(StackAction::Next)     => { },
                        Err(e)                     => { env.popn(n); return Err(e); }
                    }
                    env.popn(n);
                }

                Ok(ret)
            })
        }, Some(2), Some(2), false);

    func!(st, "range",
        |env: &mut Env, _argc: usize| {
            let from     = env.arg(0);
            let to       = env.arg(1);
            let step     = env.arg(2);
            let f        = env.arg(3);
            //println!("RAGEN from={} to={} f={}", from.s(), to.s(), f.s());

            if let VVal::Flt(_) = from {
                let mut from = from.f();
                let to       = to.f();
                let step     = step.f();

                let mut ret = VVal::None;
                #[allow(unused_must_use)]
                while from <= to {
                    ret = VVal::None;
                    env.push(VVal::Flt(from));
                    match f.call_internal(env, 1) {
                        Ok(v)                      => { ret = v; },
                        Err(StackAction::Break(v)) => { env.popn(1); return Ok(*v); },
                        Err(StackAction::Next)     => { },
                        Err(e)                     => { env.popn(1); return Err(e); }
                    }
                    from += step;
                    env.popn(1);
                }
                Ok(ret)
            } else {
                let mut from = from.i();
                let to       = to.i();
                let step     = step.i();

                let mut ret = VVal::None;
                #[allow(unused_must_use)]
                while from <= to {
                    ret = VVal::None;
                    env.push(VVal::Int(from));
                    match f.call_internal(env, 1) {
                        Ok(v)                      => { ret = v; },
                        Err(StackAction::Break(v)) => { env.popn(1); return Ok(*v); },
                        Err(StackAction::Next)     => { },
                        Err(e)                     => { env.popn(1); return Err(e); }
                    }
                    from += step;
                    env.popn(1);
                }
                Ok(ret)
            }
        }, Some(4), Some(4), false);

    st
}

fn systime_to_unix(syst: &std::time::SystemTime, unit: &str) -> Result<VVal, StackAction> {
    match syst.duration_since(std::time::SystemTime::UNIX_EPOCH) {
        Ok(n) => {
            Ok(duration_to_vval(n, unit))
        },
        Err(_) =>
            Err(StackAction::panic_msg(
                "SystemTime before UNIX EPOCH!".to_string()))
    }
}

fn duration_to_vval(dur: std::time::Duration, unit: &str) -> VVal {
    match unit {
        "s"  => { VVal::Int(i64::try_from(dur.as_secs())  .unwrap_or(0)) },
        "ms" => { VVal::Int(i64::try_from(dur.as_millis()).unwrap_or(0)) },
        "us" => { VVal::Int(i64::try_from(dur.as_micros()).unwrap_or(0)) },
        "ns" => { VVal::Int(i64::try_from(dur.as_nanos()) .unwrap_or(0)) },
        _    => { VVal::Int(i64::try_from(dur.as_millis()).unwrap_or(0)) },
    }
}

fn dir_entry_to_vval(env: &mut Env, path: &str, entry: Result<std::fs::DirEntry, std::io::Error>) -> Result<VVal, StackAction> {
    let entry = match entry {
        Ok(e) => e,
        Err(e) => {
            return Ok(env.new_err(
                format!(
                    "Couldn't directory read entry '{}': {}",
                    path, e)))
        },
    };

    let metadata = match entry.metadata() {
        Ok(m) => m,
        Err(e) => {
            return Ok(env.new_err(
                format!(
                    "Couldn't read entry metadata '{}': {}",
                    entry.path().to_string_lossy(), e)))
        },
    };

    let ve = VVal::map3(
        "name", VVal::new_str_mv(entry.file_name().to_string_lossy().to_string()),
        "path", VVal::new_str_mv(entry.path().to_string_lossy().to_string()),
        "type", if metadata.file_type().is_dir() {
            VVal::sym("d")
        } else if metadata.file_type().is_symlink() {
            VVal::sym("l")
        } else {
            VVal::sym("f")
        });
    ve.set_key_str("len", VVal::Int(metadata.len() as i64))
      .expect("single use");

    if let Ok(atime) = metadata.accessed() {
        ve.set_key_str(
            "atime", systime_to_unix(&atime, "s")?)
          .expect("single use");
    }

    if let Ok(mtime) = metadata.modified() {
        ve.set_key_str(
            "mtime", systime_to_unix(&mtime, "s")?)
          .expect("single use");
    }

    if let Ok(ctime) = metadata.created() {
        ve.set_key_str(
            "ctime", systime_to_unix(&ctime, "s")?)
          .expect("single use");
    }

    ve.set_key_str(
      "read_only",
      VVal::Bol(metadata.permissions().readonly()))
      .expect("single use");

    Ok(ve)
}

/// Returns a SymbolTable with all WLambda standard library language symbols.
#[allow(clippy::question_mark)]
pub fn std_symbol_table() -> SymbolTable {
    let mut st = SymbolTable::new();

    func!(st, "not_i64",
        |env: &mut Env, _argc: usize| {
            Ok(VVal::Int(!env.arg(0).i()))
        }, Some(1), Some(1), false);
    func!(st, "neg_i64",
        |env: &mut Env, _argc: usize| {
            Ok(VVal::Int(env.arg(0).i().wrapping_neg()))
        }, Some(1), Some(1), false);
    func!(st, "not_u32",
        |env: &mut Env, _argc: usize| {
            Ok(VVal::Int(i64::from(!(env.arg(0).i() as u32))))
        }, Some(1), Some(1), false);
    func!(st, "neg_u32",
        |env: &mut Env, _argc: usize| {
            Ok(VVal::Int(i64::from((env.arg(0).i() as u32).wrapping_neg())))
        }, Some(1), Some(1), false);

    func!(st, "unshift",
        |env: &mut Env, _argc: usize| {
            let v = env.arg(0);
            v.unshift(env.arg(1));
            Ok(v)
        }, Some(2), Some(2), false);

    func!(st, "push",
        |env: &mut Env, _argc: usize| {
            let v = env.arg(0);
            v.push(env.arg(1));
            Ok(v)
        }, Some(2), Some(2), false);

    func!(st, "reverse",
        |env: &mut Env, _argc: usize| {
            Ok(env.arg(0).reverse())
        }, Some(1), Some(1), false);

    func!(st, "keys",
        |env: &mut Env, _argc: usize| {
            let v = env.arg(0);
            Ok(v.keys())
        }, Some(1), Some(1), false);

    func!(st, "values",
        |env: &mut Env, _argc: usize| {
            let v = env.arg(0);
            Ok(v.values())
        }, Some(1), Some(1), false);

    func!(st, "accum",
        |env: &mut Env, argc: usize| {
            let mut v = env.arg(0);
            for i in 1..argc {
                v.accum(&env.arg(i));
            }
            Ok(v)
        }, Some(2), None, false);

    func!(st, "delete",
        |env: &mut Env, _argc: usize| {
            let v   = env.arg(0);
            let key = env.arg(1);
            v.delete_key(&key)
        }, Some(2), Some(2), false);

    func!(st, "prepend",
        |env: &mut Env, argc: usize| {
            let v = env.arg(0);
            let v =
                if v.is_vec() { v }
                else {
                    let r = VVal::vec();
                    r.push(v);
                    r
                };

            for i in 1..argc {
                match env.arg(i) {
                    VVal::Lst(b) => {
                        for item in b.borrow().iter() {
                            v.list_operation(|r: &mut std::cell::RefMut<Vec<VVal>>| {
                                r.insert(0, item.clone());
                            })?;
                        }
                    },
                    item => {
                        v.list_operation(|r: &mut std::cell::RefMut<Vec<VVal>>| {
                            r.insert(0, item.clone());
                        })?;
                    },
                }
            }

            Ok(v)
        }, Some(1), None, false);

    func!(st, "append",
        |env: &mut Env, argc: usize| {
            let v = env.arg(0);
            let v =
                if v.is_vec() { v }
                else {
                    let r = VVal::vec();
                    r.push(v);
                    r
                };

            for i in 1..argc {
                match env.arg(i) {
                    VVal::Lst(b) => {
                        for item in b.borrow().iter() {
                            v.list_operation(|r: &mut std::cell::RefMut<Vec<VVal>>| {
                                r.push(item.clone());
                            })?;
                        }
                    },
                    item => {
                        v.list_operation(|r: &mut std::cell::RefMut<Vec<VVal>>| {
                            r.push(item.clone());
                        })?;
                    }
                }
            }

            Ok(v)
        }, Some(1), None, false);

    func!(st, "pop",
        |env: &mut Env, _argc: usize| {
            let v = env.arg(0);
            Ok(v.pop())
        }, Some(1), Some(1), false);

    func!(st, "take",
        |env: &mut Env, _argc: usize| {
            let cnt = env.arg(0).i() as usize;
            let lst = env.arg(1);

            lst.list_operation(|r: &mut std::cell::RefMut<Vec<VVal>>| {
                let svec : Vec<VVal> =
                    r.iter().take(cnt).cloned().collect();
                VVal::vec_mv(svec)
            })
        }, Some(2), Some(2), false);

    func!(st, "drop",
        |env: &mut Env, _argc: usize| {
            let cnt = env.arg(0).i() as usize;
            let lst = env.arg(1);

            lst.list_operation(|r: &mut std::cell::RefMut<Vec<VVal>>| {
                let svec : Vec<VVal> =
                    r.iter().skip(cnt).cloned().collect();
                VVal::vec_mv(svec)
            })
        }, Some(2), Some(2), false);

    func!(st, "error_to_str",
        |env: &mut Env, _argc: usize| {
            match env.arg(0) {
                VVal::Err(_) => {
                    Ok(VVal::new_str_mv(env.arg(0).s()))
                },
                v => {
                    Err(StackAction::panic_msg(
                        format!("std:error_to_str on non error value: {}", v.s())))
                },
            }
        }, Some(1), Some(1), true);

    func!(st, "ser:wlambda",
        |env: &mut Env, _argc: usize| { Ok(VVal::new_str_mv(env.arg(0).s())) },
        Some(1), Some(1), true);
    func!(st, "str:len",
        |env: &mut Env, _argc: usize| { Ok(VVal::Int(env.arg(0).s_len() as i64)) },
        Some(1), Some(1), false);
    func!(st, "str:to_lowercase",
        |env: &mut Env, _argc: usize| {
            Ok(VVal::new_str_mv(
                env.arg_ref(0).unwrap().with_s_ref(|s: &str| s.to_lowercase()))) },
        Some(1), Some(1), false);
    func!(st, "str:to_uppercase",
        |env: &mut Env, _argc: usize| {
            Ok(VVal::new_str_mv(
                env.arg_ref(0).unwrap().with_s_ref(|s: &str| s.to_uppercase()))) },
        Some(1), Some(1), false);
    func!(st, "str:trim",
        |env: &mut Env, _argc: usize| {
            Ok(VVal::new_str_mv(
                env.arg_ref(0).unwrap().with_s_ref(|s: &str| s.trim().to_string()))) },
        Some(1), Some(1), false);
    func!(st, "str:trim_start",
        |env: &mut Env, _argc: usize| {
            Ok(VVal::new_str_mv(
                env.arg_ref(0).unwrap().with_s_ref(|s: &str| s.trim_start().to_string()))) },
        Some(1), Some(1), false);
    func!(st, "str:trim_end",
        |env: &mut Env, _argc: usize| {
            Ok(VVal::new_str_mv(
                env.arg_ref(0).unwrap().with_s_ref(|s: &str| s.trim_end().to_string()))) },
        Some(1), Some(1), false);
    func!(st, "str:find",
        |env: &mut Env, _argc: usize| {
            Ok(env.arg_ref(1).unwrap()
               .find(env.arg_ref(0).unwrap(),
                     env.arg_ref(2).unwrap_or(&VVal::Int(0)).i() as usize,
                     false))
        }, Some(2), Some(3), false);
    func!(st, "bytes:find",
        |env: &mut Env, _argc: usize| {
            Ok(env.arg_ref(1).unwrap()
               .find(env.arg_ref(0).unwrap(),
                     env.arg_ref(2).unwrap_or(&VVal::Int(0)).i() as usize,
                     true))
        }, Some(2), Some(3), false);
    func!(st, "str:pad_start",
        |env: &mut Env, _argc: usize| {
            let len   = env.arg(0).i() as usize;
            let pads  = env.arg(1).s_raw();
            let mut s = env.arg(2).s_raw();

            let mut src_len = s.chars().count();
            let pad_len     = pads.chars().count();

            if pad_len == 0 {
                return Ok(VVal::new_str_mv(s));
            }

            while src_len < len {
                if len - src_len < pad_len {
                    for c in pads.chars().rev() {
                        s.insert(0, c);
                        src_len += 1;
                        if src_len >= len {
                            break;
                        }
                    }
                } else {
                    s.insert_str(0, &pads);
                }
                src_len += pad_len;
            }

            Ok(VVal::new_str_mv(s))
        }, Some(3), Some(3), false);

    func!(st, "str:pad_end",
        |env: &mut Env, _argc: usize| {
            let len   = env.arg(0).i() as usize;
            let pads  = env.arg(1).s_raw();
            let mut s = env.arg(2).s_raw();

            let mut src_len = s.chars().count();
            let pad_len     = pads.chars().count();

            if pad_len == 0 {
                return Ok(VVal::new_str_mv(s));
            }

            while src_len < len {
                if len - src_len < pad_len {
                    for c in pads.chars() {
                        s.push(c);
                        src_len += 1;
                        if src_len >= len {
                            break;
                        }
                    }
                } else {
                    s.push_str(&pads);
                }
                src_len += pad_len;
            }

            Ok(VVal::new_str_mv(s))
        }, Some(3), Some(3), false);
    func!(st, "str:cat",
        |env: &mut Env, argc: usize| {
            let mut s = String::from("");
            for i in 0..argc {
                let aref = env.arg_ref(i).unwrap();
                if let VVal::Lst(l) = aref {
                    for v in l.borrow().iter() {
                        v.with_s_ref(|vs: &str| s.push_str(vs));
                    }
                } else {
                    env.arg_ref(i).unwrap()
                       .with_s_ref(|vs: &str| s.push_str(vs))
                }
            }
            Ok(VVal::new_str_mv(s))
        }, None, None, false);
    func!(st, "str:replace_n",
        |env: &mut Env, _argc: usize| {
            let cnt  = env.arg(2).i() as usize;
            env.arg_ref(0).unwrap().with_s_ref(|pat: &str|
                env.arg_ref(1).unwrap().with_s_ref(|to: &str|
                    env.arg_ref(3).unwrap().with_s_ref(|data: &str|
                        Ok(VVal::new_str_mv(data.replacen(pat, to, cnt))))))
        }, Some(4), Some(4), false);
    func!(st, "str:replace",
        |env: &mut Env, _argc: usize| {
            env.arg_ref(0).unwrap().with_s_ref(|pat: &str|
                env.arg_ref(1).unwrap().with_s_ref(|to: &str|
                    env.arg_ref(2).unwrap().with_s_ref(|data: &str|
                        Ok(VVal::new_str_mv(data.replace(pat, to))))))
        }, Some(3), Some(3), false);
    func!(st, "str:join",
        |env: &mut Env, _argc: usize| {
            let sep = env.arg(0);
            let lst = env.arg(1);
            if let VVal::Lst(l) = lst {
                let mut s = VVal::new_str("");
                let mut first = true;
                for item in l.borrow().iter() {
                    if !first {
                        s.accum(&sep);
                    } else {
                        first = false;
                    }
                    s.accum(item);
                }
                Ok(s)

            } else {
                Ok(env.new_err(
                    format!(
                        "str:join only works with lists as second argument, got '{}'",
                        lst.s())))
            }
        }, Some(2), Some(2), false);
    func!(st, "str:from_utf8_lossy",
        |env: &mut Env, _argc: usize| {
            let b = env.arg(0);
            Ok(
                if let VVal::Byt(u) = b {
                    VVal::new_str_mv(String::from_utf8_lossy(u.as_ref()).to_string())
                } else {
                    VVal::None
                })
        }, Some(1), Some(1), false);
    func!(st, "str:from_utf8",
        |env: &mut Env, _argc: usize| {
            let b = env.arg(0);
            if let VVal::Byt(u) = b {
                match String::from_utf8(u.to_vec()) {
                    Ok(s) => Ok(VVal::new_str_mv(s)),
                    Err(e) => {
                        Ok(env.new_err(
                            format!("str:from_utf8 decoding error: {}", e)))
                    }
                }
            } else {
                Ok(VVal::None)
            }
        }, Some(1), Some(1), false);
    func!(st, "str:from_latin1",
        |env: &mut Env, _argc: usize| {
            let b = env.arg(0);
            if let VVal::Byt(u) = b {
                let new_str =
                    u.iter()
                     .map(|byte| std::char::from_u32(*byte as u32).unwrap_or('?'))
                     .collect();

                Ok(VVal::new_str_mv(new_str))
            } else {
                Ok(VVal::None)
            }
        }, Some(1), Some(1), false);
    func!(st, "str:to_char_vec",
        |env: &mut Env, _argc: usize| {
            Ok(VVal::vec_mv(
                env.arg_ref(0).unwrap().with_s_ref(|arg: &str|
                    arg.chars()
                    .map(|c| VVal::Int(i64::from(c as u32)))
                    .collect())))
        }, Some(1), Some(1), false);

    func!(st, "str:from_char_vec",
        |env: &mut Env, _argc: usize| {
            env.arg(0).with_iter(move |iter| {
                let mut s = String::new();

                for (vc, _) in iter {
                    s.push(std::char::from_u32(vc.i() as u32).unwrap_or('?'));
                }

                Ok(VVal::new_str_mv(s))
            })
        }, Some(1), Some(1), false);

    func!(st, "str:to_bytes_latin1",
        |env: &mut Env, _argc: usize| {
            env.arg(0).with_s_ref(|s| {
                Ok(VVal::new_byt(
                    s.chars()
                     .map(|c| {
                         let c = c as u32;
                         if c > 0xFF { '?' as u32 as u8 } else { c as u8 }
                     })
                     .collect()))
            })
        }, Some(1), Some(1), false);

    func!(st, "str:to_bytes",
        |env: &mut Env, _argc: usize| {
            Ok(VVal::new_byt(env.arg(0).as_bytes()))
        }, Some(1), Some(1), false);

    func!(st, "str:edit_distance",
        |env: &mut Env, _argc: usize| {
            env.arg_ref(0).unwrap().with_s_ref(|a: &str| {
                env.arg_ref(1).unwrap().with_s_ref(|b: &str| {
                    Ok(VVal::Int(util::edit_distance(a, b) as i64))
                })
            })
        }, Some(2), Some(2), false);

    func!(st, "char:to_lowercase",
        |env: &mut Env, _argc: usize| {
            Ok(VVal::Chr(VValChr::Char(
                env.arg(0).c().to_lowercase().next().unwrap_or('\0'))))
        }, Some(1), Some(1), false);

    func!(st, "char:to_uppercase",
        |env: &mut Env, _argc: usize| {
            Ok(VVal::Chr(VValChr::Char(
                env.arg(0).c().to_uppercase().next().unwrap_or('\0'))))
        }, Some(1), Some(1), false);

    func!(st, "bytes:replace",
        |env: &mut Env, _argc: usize| {
            let bv   = env.arg(0);
            let pat  = env.arg(1);
            let repl = env.arg(2);

            Ok(bv.bytes_replace(&pat, &repl))
        }, Some(3), Some(3), false);

    func!(st, "bytes:from_vec",
        |env: &mut Env, _argc: usize| {
            if let VVal::Lst(u) = env.arg(0) {
                Ok(VVal::new_byt(u.borrow().iter().map(|v| v.i() as u8).collect()))

            } else {
                Ok(VVal::None)
            }
        }, Some(1), Some(1), false);

    func!(st, "bytes:to_vec",
        |env: &mut Env, _argc: usize| {
            if let VVal::Byt(u) = env.arg(0) {
                Ok(VVal::vec_mv(
                    u.iter()
                     .map(|u| VVal::Int(i64::from(*u)))
                     .collect()))
            } else {
                Ok(VVal::vec_mv(
                    env.arg(0).as_bytes().iter()
                        .map(|u| VVal::Int(i64::from(*u)))
                        .collect()))
            }
        }, Some(1), Some(1), false);

    func!(st, "bytes:pack",
        |env: &mut Env, _argc: usize| {
            use crate::packer;
            let data = env.arg(1);
            env.arg_ref(0).unwrap().with_s_ref(|s: &str| {
                match packer::do_pack(s, &data) {
                    Ok(v) => Ok(v),
                    Err(e) => {
                        Ok(env.new_err(
                            format!("Bad pack '{}': {}", s, e)))
                    },
                }
            })
        }, Some(2), Some(2), false);

    func!(st, "bytes:unpack",
        |env: &mut Env, _argc: usize| {
            use crate::packer;
            let data = env.arg(1);
            env.arg_ref(0).unwrap().with_s_ref(|s: &str| {
                match packer::do_unpack(s, &data) {
                    Ok(v) => Ok(v),
                    Err(e) => {
                        Ok(env.new_err(
                            format!("Bad (un)pack '{}': {}", s, e)))
                    },
                }
            })
        }, Some(2), Some(2), false);

    func!(st, "bytes:from_hex",
        |env: &mut Env, _argc: usize| {
            env.arg_ref(0).unwrap().with_s_ref(|s: &str| {
                let out : Vec<u8> = Vec::with_capacity((s.len() + 1) / 2);
                Ok(VVal::new_byt(
                    s.chars()
                     .map(|c|
                         match c { '0'..='9' => i16::from( 9 - (b'9' - (c as u8))),
                                   'a'..='f' => i16::from(15 - (b'f' - (c as u8))),
                                   'A'..='F' => i16::from(15 - (b'F' - (c as u8))),
                                   _ => -1 })
                     .fold((256, out), |(last, mut out), c: i16|
                         if c == -1 { (last, out) }
                         else if last == 256 { (c, out) }
                         else {
                             out.push((((last << 4) | (c & 0x0F)) & 0xFF) as u8);
                             (256, out)
                         }).1))
            })
        }, Some(1), Some(1), false);

    func!(st, "bytes:to_hex",
        |env: &mut Env, argc: usize| {
            static HEXCHARS : &[char] =
                &['0', '1', '2', '3', '4', '5', '6', '7',
                  '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'];

            if let VVal::Byt(u) = env.arg(0) {
                let mut out : String =
                    String::with_capacity(u.len() * 2);

                if argc == 1 {
                    for (a, b) in u.iter().map(|u|
                                        (HEXCHARS[(u >> 4) as usize],
                                         HEXCHARS[(u & 0x0F) as usize])) {
                        out.push(a);
                        out.push(b);
                    }
                } else {
                    let group_len = env.arg(1).i();
                    let group_sep =
                        if env.arg(2).is_none() { String::from(" ") }
                        else { env.arg(2).s_raw() };

                    let mut len_counter = 0;
                    for (a, b) in u.iter().map(|u|
                                        (HEXCHARS[(u >> 4) as usize],
                                         HEXCHARS[(u & 0x0F) as usize])) {
                        if len_counter >= group_len { out.push_str(&group_sep); len_counter = 0; }
                        out.push(a);
                        len_counter += 1;
                        if len_counter >= group_len { out.push_str(&group_sep); len_counter = 0; }
                        out.push(b);
                        len_counter += 1;
                    }
                }

                Ok(VVal::new_str_mv(out))

            } else {
                Ok(VVal::None)
            }
        }, Some(1), Some(3), false);

    func!(st, "to_no_arity",
        |env: &mut Env, _argc: usize| {
            let v = env.arg(0);
            Ok(v.disable_function_arity())
        }, Some(1), Some(1), false);

    func!(st, "to_drop",
        |env: &mut Env, _argc: usize| {
            let fun = env.arg(0).disable_function_arity();

            Ok(VVal::DropFun(Rc::new(DropFun { fun })))
        }, Some(1), Some(1), false);

    func!(st, "fold",
        |env: &mut Env, _argc: usize| {
            let f       = env.arg(1);
            let lst     = env.arg(2);

            lst.with_iter(move |iter| {
                let mut acc = env.arg(0);

                for (i, _) in iter {
                    env.push(i);
                    env.push(acc.clone());
                    let rv = f.call_internal(env, 2);
                    env.popn(2);

                    match rv {
                        Ok(v)                      => { acc = v;  },
                        Err(StackAction::Break(v)) => { acc = *v; break; },
                        Err(StackAction::Next)     => { },
                        Err(e)                     => { return Err(e); },
                    }
                }

                Ok(acc)
            })
        }, Some(3), Some(3), false);

    func!(st, "enumerate",
        |env: &mut Env, _argc: usize| {
            let f = env.arg(0);
            let i = Rc::new(std::cell::RefCell::new(0));

            Ok(VValFun::new_fun(
                move |env: &mut Env, argc: usize| {
                    env.push(VVal::Int(*i.borrow() as i64));
                    let r = f.call_internal(env, 1 + argc);
                    *i.borrow_mut() += 1;
                    env.popn(1);
                    r
                }, None, None, false))
        }, Some(1), Some(1), false);

    func!(st, "zip",
        |env: &mut Env, _argc: usize| {
            let o = env.arg(0);
            let f = env.arg(1);
            let i = Rc::new(std::cell::RefCell::new(0));

            Ok(VValFun::new_fun(
                move |env: &mut Env, argc: usize| {
                    env.push(o.at(*i.borrow()).unwrap_or(VVal::None));
                    let r = f.call_internal(env, 1 + argc);
                    *i.borrow_mut() += 1;
                    env.popn(1);
                    r
                }, None, None, false))
        }, Some(2), Some(2), false);

    add_num_fun_flt!(st, "num:ceil",       ceil);
    add_num_fun_flt!(st, "num:sqrt",       sqrt);
    add_num_fun_flt!(st, "num:cbrt",       cbrt);
    add_num_fun_flt!(st, "num:floor",      floor);
    add_num_fun_flt!(st, "num:round",      round);
    add_num_fun_flt!(st, "num:abs",        abs);
    add_num_fun_flt!(st, "num:trunc",      trunc);
    add_num_fun_flt!(st, "num:to_degrees", to_degrees);
    add_num_fun_flt!(st, "num:to_radians", to_radians);
    add_num_fun_flt!(st, "num:tan",        tan);
    add_num_fun_flt!(st, "num:tanh",       tanh);
    add_num_fun_flt!(st, "num:sin",        sin);
    add_num_fun_flt!(st, "num:sinh",       sinh);
    add_num_fun_flt!(st, "num:cos",        cos);
    add_num_fun_flt!(st, "num:cosh",       cosh);
    add_num_fun_flt!(st, "num:asin",       asin);
    add_num_fun_flt!(st, "num:asinh",      asinh);
    add_num_fun_flt!(st, "num:acos",       acos);
    add_num_fun_flt!(st, "num:acosh",      acosh);
    add_num_fun_flt!(st, "num:recip",      recip);
    add_num_fun_flt!(st, "num:log2",       log2);
    add_num_fun_flt!(st, "num:log10",      log10);
    add_num_fun_flt!(st, "num:ln",         ln);
    add_num_fun_flt!(st, "num:exp_m1",     exp_m1);
    add_num_fun_flt!(st, "num:exp",        exp);
    add_num_fun_flt!(st, "num:exp2",       exp2);
    add_num_fun_flt!(st, "num:atan",       atan);
    add_num_fun_flt!(st, "num:atanh",      atanh);

    add_num_fun!(st, "num:signum",     signum);

    add_num_fun_flt2!(st, "num:log",        log);
    add_num_fun_flt2!(st, "num:atan2",      atan2);
    add_num_fun_flt2!(st, "num:hypot",      hypot);
    add_num_fun_flt2!(st, "num:pow",        powf);

    func!(st, "num:abs",
        |env: &mut Env, _argc: usize| {
            Ok(match env.arg(0) {
                VVal::Int(i) => VVal::Int(i.abs()),
                VVal::Flt(i) => VVal::Flt(i.abs()),
                _ => VVal::Int(env.arg(0).i().abs())
            })
        }, Some(1), Some(1), false);

    func!(st, "num:fract",
        |env: &mut Env, _argc: usize| {
            Ok(VVal::Flt(env.arg(0).f().fract()))
        }, Some(1), Some(1), false);

    func!(st, "num:lerp",
        |env: &mut Env, _argc: usize| {
            let a = env.arg(0).f();
            let b = env.arg(1).f();
            let x = env.arg(2).f();
            Ok(VVal::Flt(a * (1.0 - x) + b * x))
        }, Some(3), Some(3), false);

    func!(st, "num:smoothstep",
        |env: &mut Env, _argc: usize| {
            let a = env.arg(0).f();
            let b = env.arg(1).f();
            let x = env.arg(2).f();
            let x = (x - a) / (b - a);
            let x = x.max(0.0).min(1.0);
            Ok(VVal::Flt(x * x * (3.0 - (2.0 * x))))
        }, Some(3), Some(3), false);

    func!(st, "fs:read_dir",
        |env: &mut Env, _argc: usize| {
            let path = env.arg(0);
            let f    = env.arg(1);

            path.with_s_ref(|path| {
                let mut ret = VVal::None;

                let mut stack = vec![path.to_string()];
                while !stack.is_empty() {
                    let path = stack.pop().unwrap();

                    match std::fs::read_dir(&path) {
                        Ok(iter) => {
                            for entry in iter {
                                let ve = dir_entry_to_vval(env, &path, entry)?;
                                let is_dir =
                                    ve.get_key("type")
                                      .unwrap_or(VVal::None)
                                      .with_s_ref(|s| s == "d");
                                let entry_path =
                                    if is_dir {
                                        Some(
                                            ve.get_key("path")
                                              .unwrap_or(VVal::None)
                                              .s_raw())
                                    } else { None };
                                env.push(ve);
                                match f.call_internal(env, 1) {
                                    Ok(v)                      => { ret = v; },
                                    Err(StackAction::Break(v)) => { env.popn(1); return Ok(*v); },
                                    Err(StackAction::Next)     => { },
                                    Err(e)                     => { env.popn(1); return Err(e); }
                                }
                                env.popn(1);

                                if is_dir && ret.b() {
                                    if let Some(ep) = entry_path {
                                        stack.push(ep);
                                    }
                                }
                            }
                        },
                        Err(e) => {
                            return Ok(env.new_err(
                                format!(
                                    "Couldn't read directory '{}': {}",
                                    path, e)))
                        },
                    }
                }

                Ok(ret)
            })
        }, Some(2), Some(2), false);

    func!(st, "fs:copy",
        |env: &mut Env, _argc: usize| {
            let from = env.arg(0).s_raw();
            let to   = env.arg(1).s_raw();

            use std::path::Path;

            match std::fs::copy(Path::new(&from), Path::new(&to)) {
                Ok(_) => Ok(VVal::Bol(true)),
                Err(e) => {
                    Ok(env.new_err(
                        format!(
                            "Couldn't copy file '{}' to file '{}': {}",
                            from, to, e)))
                },
            }
        }, Some(2), Some(2), false);

    func!(st, "fs:rename",
        |env: &mut Env, _argc: usize| {
            let from = env.arg(0);
            let to   = env.arg(1);
            from.with_s_ref(|from| to.with_s_ref(|to| {
                if let Err(e) = std::fs::rename(&from, &to) {
                    return Ok(env.new_err(
                        format!(
                            "Couldn't rename file '{}' to file '{}': {}",
                            from, to, e)));
                }

                Ok(VVal::Bol(true))
            }))
        }, Some(2), Some(2), false);

    func!(st, "fs:remove_file",
        |env: &mut Env, _argc: usize| {
            let path = env.arg(0);
            path.with_s_ref(|path| {
                if let Err(e) = std::fs::remove_file(&path) {
                    return Ok(env.new_err(
                        format!(
                            "Couldn't remove file '{}': {}",
                            path, e)));
                }

                Ok(VVal::Bol(true))
            })
        }, Some(1), Some(1), false);

    func!(st, "fs:remove_dir",
        |env: &mut Env, _argc: usize| {
            let path = env.arg(0);
            path.with_s_ref(|path| {
                if let Err(e) = std::fs::remove_dir(&path) {
                    return Ok(env.new_err(
                        format!(
                            "Couldn't remove dir '{}': {}",
                            path, e)));
                }

                Ok(VVal::Bol(true))
            })
        }, Some(1), Some(1), false);

    func!(st, "fs:remove_dir_all",
        |env: &mut Env, _argc: usize| {
            let path = env.arg(0);
            path.with_s_ref(|path| {
                if let Err(e) = std::fs::remove_dir_all(&path) {
                    return Ok(env.new_err(
                        format!(
                            "Couldn't remove dir (recursively) '{}': {}",
                            path, e)));
                }

                Ok(VVal::Bol(true))
            })
        }, Some(1), Some(1), false);

    func!(st, "io:line",
        |env: &mut Env, _argc: usize| {
            let mut line = String::new();

            let mut read = env.stdio.read.borrow_mut();
            match read.read_line(&mut line) {
                Ok(n) => {
                    if n == 0 {
                        return Ok(VVal::None);
                    }
                },
                Err(e) => {
                    return Ok(env.new_err(
                        format!("IO-Error on std:io:line: {}", e)))
                },
            }

            Ok(VVal::new_str_mv(line))
        }, Some(0), Some(0), false);

    func!(st, "io:lines",
        |env: &mut Env, argc: usize| {
            let (f, mut ret) =
                if argc == 0 {
                    let vec = VVal::vec();
                    (vec.clone(), vec)
                } else {
                    (env.arg(0), VVal::None)
                };

            loop {
                let mut line = String::new();
                {
                    let mut read = env.stdio.read.borrow_mut();
                    match read.read_line(&mut line) {
                        Ok(n) => { if n == 0 { break; } },
                        Err(e) => {
                            return Ok(env.new_err(
                                format!("IO-Error on std:io:lines: {}", e)))
                        },
                    }
                }

                if f.is_vec() {
                    f.push(VVal::new_str_mv(line));
                } else {
                    env.push(VVal::new_str_mv(line));
                    match f.call_internal(env, 1) {
                        Ok(v)                      => { ret = v; },
                        Err(StackAction::Break(v)) => { env.popn(1); return Ok(*v); },
                        Err(StackAction::Next)     => { },
                        Err(e)                     => { env.popn(1); return Err(e); }
                    }
                    env.popn(1);
                }
            }

            Ok(ret)
        }, Some(0), Some(1), false);

    func!(st, "io:stdout:flush",
        |env: &mut Env, _argc: usize| {
            if let Err(e) = env.stdio.write.borrow_mut().flush() {
                Ok(env.new_err(
                    format!("IO-Error on std:io:stdout:flush: {}", e)))
            } else {
                Ok(VVal::Bol(true))
            }
        }, Some(0), Some(0), false);

    func!(st, "io:stdout:newline",
        |env: &mut Env, _argc: usize| {
            if let Err(e) = writeln!(*env.stdio.write.borrow_mut(), "") {
                Ok(env.new_err(
                    format!("IO-Error on std:io:stdout:newline: {}", e)))
            } else {
                Ok(VVal::Bol(true))
            }
        }, Some(0), Some(0), false);

    func!(st, "io:stdout:write",
        |env: &mut Env, _argc: usize| {
            let v = env.arg(0);
            if let Err(e) = write!(*env.stdio.write.borrow_mut(), "{}", v.s()) {
                Ok(env.new_err(
                    format!("IO-Error on std:io:stdout:write: {}", e)))
            } else {
                Ok(v)
            }
        }, Some(1), Some(1), false);

    func!(st, "io:stdout:print",
        |env: &mut Env, _argc: usize| {
            let v = env.arg(0);
            env.arg_ref(0).unwrap().with_s_ref(|vs: &str| {
                if let Err(e) = write!(*env.stdio.write.borrow_mut(), "{}", vs) {
                    Ok(env.new_err(
                       format!("IO-Error on std:io:stdout:print: {}", e)))
                } else {
                    Ok(v)
                }
            })
        }, Some(1), Some(1), false);

    func!(st, "io:file:read_text",
        |env: &mut Env, _argc: usize| {
            let filename = env.arg(0).s_raw();

            use std::io::prelude::*;
            use std::fs::OpenOptions;

            let file =
                OpenOptions::new()
                .write(false)
                .create(false)
                .read(true)
                .open(&filename);

            match file {
                Err(e) => {
                    Ok(env.new_err(
                        format!("Couldn't open file '{}': {}", filename, e)))
                },
                Ok(mut f) => {
                    let mut contents = String::new();
                    if let Err(e) = f.read_to_string(&mut contents) {
                        Ok(env.new_err(
                            format!(
                                "Couldn't read text from file '{}': {}",
                                filename, e)))
                    } else {
                        Ok(VVal::new_str_mv(contents))
                    }
                },
            }
        }, Some(1), Some(1), false);

    func!(st, "io:file:read",
        |env: &mut Env, _argc: usize| {
            let filename = env.arg(0).s_raw();

            use std::io::prelude::*;
            use std::fs::OpenOptions;

            let file =
                OpenOptions::new()
                .write(false)
                .create(false)
                .read(true)
                .open(&filename);

            match file {
                Err(e) => {
                    Ok(env.new_err(
                        format!("Couldn't open file '{}': {}", filename, e)))
                },
                Ok(mut f) => {
                    let mut contents : Vec<u8> = Vec::new();
                    if let Err(e) = f.read_to_end(&mut contents) {
                        Ok(env.new_err(
                            format!(
                                "Couldn't read text from file '{}': {}",
                                filename, e)))
                    } else {
                        Ok(VVal::new_byt(contents))
                    }
                },
            }
        }, Some(1), Some(1), false);

    func!(st, "io:file:write_safe",
        |env: &mut Env, _argc: usize| {
            let filename     = env.arg(0).s_raw();
            let tmp_filename = format!("{}~", filename);
            let contents     = env.arg(1);
            let buf = match contents {
                VVal::Byt(b) => b.as_ref().clone(), // TODO: Remove clone
                v            => v.with_s_ref(|v: &str| v.as_bytes().to_vec()),
            };

            use std::io::prelude::*;
            use std::fs::OpenOptions;

            let file =
                OpenOptions::new()
                .create(true)
                .write(true)
                .truncate(true)
                .open(&tmp_filename);

            match file {
                Err(e) => {
                    Ok(env.new_err(
                        format!(
                            "Couldn't open file '{}': {}",
                            filename, e)))
                },
                Ok(mut f) => {
                    if let Err(e) = f.write_all(&buf) {
                        return Ok(env.new_err(
                            format!(
                                "Couldn't write to file '{}': {}",
                                tmp_filename, e)));
                    }

                    if let Err(e) = std::fs::rename(&tmp_filename, &filename) {
                        return Ok(env.new_err(
                            format!(
                                "Couldn't rename file '{}' to file '{}': {}",
                                tmp_filename, filename, e)));
                    }

                    Ok(VVal::Bol(true))
                },
            }
        }, Some(2), Some(2), false);

    func!(st, "io:file:append",
        |env: &mut Env, _argc: usize| {
            let filename     = env.arg(0).s_raw();
            let contents     = env.arg(1);
            let buf = match contents {
                VVal::Byt(b) => b.as_ref().clone(), // TODO: Remove clone
                v            => v.with_s_ref(|v: &str| v.as_bytes().to_vec()),
            };

            use std::io::prelude::*;
            use std::fs::OpenOptions;

            let file =
                OpenOptions::new()
                .create(true)
                .write(true)
                .append(true)
                .open(&filename);

            match file {
                Err(e) => {
                    Ok(env.new_err(
                        format!(
                            "Couldn't open file '{}': {}",
                            filename, e)))
                },
                Ok(mut f) => {
                    if let Err(e) = f.write_all(&buf) {
                        Ok(env.new_err(
                            format!(
                                "Couldn't write to file '{}': {}",
                                filename, e)))
                    } else {
                        Ok(VVal::Bol(true))
                    }
                },
            }
        }, Some(2), Some(2), false);

    func!(st, "writeln",
        |env: &mut Env, argc: usize| {
            print_value(env, argc, false)
        }, None, None, false);

    func!(st, "displayln",
        |env: &mut Env, argc: usize| {
            print_value(env, argc, true)
        }, None, None, false);

    func!(st, "write_str",
        |env: &mut Env, _argc: usize| {
            Ok(VVal::new_str_mv(env.arg_ref(0).unwrap().s()))
        }, Some(1), Some(1), false);

    func!(st, "dump_upvals",
        |env: &mut Env, _argc: usize| {
            if let VVal::Fun(f) = env.arg(0).deref() {
                return Ok(f.dump_upvals());
            }
            Ok(VVal::None)
        }, Some(1), Some(1), false);

    func!(st, "wlambda:sizes",
        |env: &mut Env, _argc: usize| {
            let mut write = env.stdio.write.borrow_mut();
            use crate::compiler::*;
            use crate::ops::*;
            use crate::vval::*;
            use crate::str_int::*;
            sizeof_writeln!(write, VVal);
            sizeof_writeln!(write, Op);
            sizeof_writeln!(write, Builtin);
            sizeof_writeln!(write, NVecPos);
            sizeof_writeln!(write, Prog);
            sizeof_writeln!(write, ResPos);
            sizeof_writeln!(write, (ResPos, Box<Symbol>, ResPos));
            sizeof_writeln!(write, (ResPos, Box<String>, u16, ResPos));
            sizeof_writeln!(write, (ResPos, ResPos, u16, ResPos));
            sizeof_writeln!(write, (ResPos, ResPos, ResPos, ResPos));
            sizeof_writeln!(write, (ResPos, DirectFun, ResPos));
            sizeof_writeln!(write, (DirectFun, ResPos, ResPos));
            sizeof_writeln!(write, (Box<String>, ResPos, ResPos, u16));
            sizeof_writeln!(write, SynPos);
            sizeof_writeln!(write, Symbol);
            sizeof_writeln!(write, Option<Rc<VVal>>);
            sizeof_writeln!(write, crate::nvec::NVec<f64>);
            sizeof_writeln!(write, Box<crate::nvec::NVec<f64>>);
            sizeof_writeln!(write, Result<VVal, StackAction>);
            sizeof_writeln!(write, StackAction);
            sizeof_writeln!(write, Box<String>);
            sizeof_writeln!(write, Box<Vec<VVal>>);
            sizeof_writeln!(write, Vec<VVal>);
            sizeof_writeln!(write, Box<dyn VValUserData>);
            sizeof_writeln!(write, std::rc::Weak<std::cell::RefCell<VVal>>);
            Ok(VVal::None)
        }, Some(0), Some(0), false);

////    println!("sizeof OP:{} bytes", std::mem::size_of::<(ResPos, Box<String>, Box<String>, Box<String>, ResPos)>());

    func!(st, "wlambda:version",
        |_env: &mut Env, _argc: usize| {
            Ok(VVal::new_str(VERSION))
        }, Some(0), Some(0), false);

    func!(st, "wlambda:parse",
        |env: &mut Env, argc: usize| {
            let filename =
                if argc == 2 { env.arg(1).s_raw() }
                else { "<wlambda:parse:input>".to_string() };
            let res =
                env.arg(0).with_s_ref(|s| { crate::parser::parse(s, &filename) });
            match res {
                Ok(ast) => Ok(ast),
                Err(e)  => Ok(env.new_err(e))
            }
        }, Some(1), Some(2), false);

    func!(st, "syn:type",
        |env: &mut Env, _argc: usize| {
            Ok(VVal::new_sym(env.arg(0).syntax_type()))
        }, Some(1), Some(1), false);

    func!(st, "syn:pos",
        |env: &mut Env, _argc: usize| {
            if let VVal::Syn(sp) = env.arg(0) {
                if let Some(name) = sp.info.name.as_ref() {
                    Ok(VVal::vec4(
                        VVal::new_str(sp.info.file.s()),
                        VVal::Int(sp.info.line as i64),
                        VVal::Int(sp.info.col as i64),
                        VVal::new_str(name)))
                } else {
                    Ok(VVal::vec3(
                        VVal::new_str(sp.info.file.s()),
                        VVal::Int(sp.info.line as i64),
                        VVal::Int(sp.info.col as i64)))
                }
            } else {
                Ok(VVal::None)
            }
        }, Some(1), Some(1), false);

    func!(st, "measure_time",
        |env: &mut Env, _argc: usize| {
            let t = std::time::Instant::now();
            let unit = env.arg(0).s_raw();
            match env.arg(1).call_no_args(env) {
                Ok(v) => {
                    let ret = VVal::vec();
                    ret.push(duration_to_vval(t.elapsed(), &unit[..]));
                    ret.push(v);
                    Ok(ret)
                },
                Err(e) => Err(e),
            }
        }, Some(2), Some(2), false);

    func!(st, "assert_eq",
        |env: &mut Env, _argc: usize| {
            let a = env.arg(0);
            let b = env.arg(1);
            if !a.eqv(&b) {
                if env.arg(2).is_none() {
                    Err(StackAction::panic_msg(
                        format!(
                            "assertion failed: expected: '{}', got: '{}'",
                            b.s(), a.s())))
                } else {
                    Err(StackAction::panic_msg(
                        format!(
                            "assertion '{}' failed: expected: '{}', got: '{}'",
                            env.arg(2).s_raw(), b.s(), a.s())))
                }
            } else {
                Ok(VVal::Bol(true))
            }
        }, Some(2), Some(3), true);

    func!(st, "assert_str_eq",
        |env: &mut Env, _argc: usize| {
            let a = env.arg(0).s();
            let b = env.arg(1).s();

            if a != b {
                if env.arg(2).is_none() {
                    Err(StackAction::panic_msg(
                        format!(
                            "assertion failed: expected: '{}', got: '{}'",
                            b, a)))
                } else {
                    Err(StackAction::panic_msg(
                        format!(
                            "assertion '{}' failed: expected: '{}', got: '{}'",
                            env.arg(2).s_raw(), b, a)))
                }
            } else {
                Ok(VVal::Bol(true))
            }
        }, Some(2), Some(3), true);

    func!(st, "assert_rel_eq",
        |env: &mut Env, _argc: usize| {
            let l = env.arg(0);
            let r = env.arg(1);
            let epsilon = env.arg(2).f();
            let delta = (l.f() - r.f()).abs();

            if delta < epsilon {
                Ok(VVal::Bol(true))
            } else {
                Err(StackAction::panic_msg(format!(
                    "assertion{}failed: delta[{}] was more than epsilon[{}],\
                        left['{}', f:'{}'], right['{}', f:'{}']",
                    if env.arg(3).is_none() {
                        " ".to_string()
                    } else {
                        format!(" '{}' ", env.arg(3).s_raw())
                    },
                    delta, epsilon, l.s(), l.f(), r.s(), r.f()
                )))
            }
        }, Some(3), Some(4), true);

    func!(st, "to_ref",
        |env: &mut Env, _argc: usize| {
            Ok(env.arg(0).to_ref())
        }, Some(1), Some(1), true);

    func!(st, "ref_id",
        |env: &mut Env, _argc: usize| {
            if let Some(id) = env.arg_ref(0).unwrap_or(&VVal::None).ref_id() {
                Ok(VVal::Int(id))
            } else {
                Ok(VVal::None)
            }
        }, Some(1), Some(1), true);

    func!(st, "ref:set",
        |env: &mut Env, _argc: usize| {
            Ok(env.arg(0).set_ref(env.arg(1)))
        }, Some(2), Some(2), false);

    func!(st, "ref:strengthen",
        |env: &mut Env, _argc: usize| {
            Ok(env.arg(0).upgrade())
        }, Some(1), Some(1), false);

    func!(st, "ref:hide",
        |env: &mut Env, _argc: usize| {
            Ok(env.arg(0).hide_ref())
        }, Some(1), Some(1), false);

    func!(st, "ref:weaken",
        |env: &mut Env, _argc: usize| {
            Ok(env.arg(0).downgrade())
        }, Some(1), Some(1), false);

    func!(st, "assert",
        |env: &mut Env, _argc: usize| {
            if !env.arg(0).b() {
                if env.arg(1).is_none() {
                    Err(StackAction::panic_msg("assertion failed".to_string()))
                } else {
                    Err(StackAction::panic_msg(format!("assertion failed '{}'", env.arg(1).s_raw())))
                }
            } else {
                Ok(env.arg(0))
            }
        }, Some(1), Some(2), true);

    func!(st, "pattern",
        |env: &mut Env, _argc: usize| {
            let pat_src = env.arg_ref(0).cloned().unwrap_or(VVal::None);
            let res_ref =
                env.global.borrow_mut()
                   .get_var_ref("\\")
                   .unwrap_or(VVal::None);
            let mode = env.arg(1).with_s_ref(RegexMode::from_str);
            pat_src.with_s_ref(|pat_src|
                match create_regex_find_function(pat_src, res_ref, mode) {
                    Ok(fun) => Ok(fun),
                    Err(e) => {
                        Ok(env.new_err(
                            format!("bad pattern: {}, pattern was: /{}/",
                                    e, pat_src)))
                    }
                })
        }, Some(1), Some(2), false);

    func!(st, "selector",
        |env: &mut Env, _argc: usize| {
            let pat_src = env.arg_ref(0).cloned().unwrap_or(VVal::None);
            let res_ref =
                env.global.borrow_mut()
                   .get_var_ref("\\")
                   .unwrap_or(VVal::None);
            pat_src.with_s_ref(|sel_src|
                match create_selector_function(sel_src, res_ref) {
                    Ok(fun) => Ok(fun),
                    Err(e) => {
                        Ok(env.new_err(
                            format!("bad selector: {}, selector was: /{}/",
                                    e, sel_src)))
                    }
                })
        }, Some(1), Some(1), false);

    func!(st, "formatter",
        |env: &mut Env, _argc: usize| {
            let fmt_src = env.arg(0);
            match create_formatter_fun(&fmt_src) {
                Ok(fun) => Ok(fun),
                Err(e) => {
                    Ok(env.new_err(
                        format!("bad formatter: {}, formatter was: /{}/",
                                e, fmt_src.s_raw())))
                }
            }
        }, Some(1), Some(1), false);



//    func!(st, "tree_select",
//        |env: &mut Env, _argc: usize| {
//            let slct = env.arg(0);
//            let tree = env.arg(1);
//            Ok(util::tree_select(&slct, &tree))
//        }, Some(2), Some(2), false);

    func!(st, "ser:csv",
        |env: &mut Env, _argc: usize| {
            use crate::csv;
            let delim =
                if env.arg(0).is_none() {
                    ",".to_string()
                } else {
                    env.arg(0).s_raw()
                };
            let row_sep =
                if env.arg(1).is_none() {
                    "\r\n".to_string()
                } else {
                    env.arg(1).s_raw()
                };
            let escape_all = env.arg(2).b();
            let val = env.arg(3);

            Ok(VVal::new_str_mv(csv::to_csv(
                delim.chars().next().unwrap_or(','),
                &row_sep,
                escape_all,
                val)))
        }, Some(4), Some(4), false);

    func!(st, "deser:csv",
        |env: &mut Env, _argc: usize| {
            use crate::csv;
            let delim =
                if env.arg(0).is_none() {
                    ",".to_string()
                } else {
                    env.arg(0).s_raw()
                };
            let row_sep =
                if env.arg(1).is_none() {
                    "\r\n".to_string()
                } else {
                    env.arg(1).s_raw()
                };

            env.arg_ref(2).unwrap().with_s_ref(|data: &str| {
                match csv::parse_csv(
                        delim.chars().next().unwrap_or(','),
                        &row_sep,
                        data)
                {
                    Ok(v) => Ok(v),
                    Err(e) => Ok(env.new_err(e)),
                }
            })
        }, Some(3), Some(3), false);

    #[cfg(feature="regex")]
    func!(st, "re:replace_all",
        |env: &mut Env, _argc: usize| {
            use regex::Regex;
            let re   = env.arg(0);
            let f    = env.arg(1);
            let text = env.arg(2);

            let rx = re.with_s_ref(Regex::new);
            if let Err(e) = rx {
                return Ok(env.new_err(
                    format!("Regex '{}' did not compile: {}", re.s_raw(), e)));
            }
            let rx = rx.unwrap();

            let mut finished = false;
            let mut ret = Ok(VVal::None);
            let ret_str = text.with_s_ref(|text: &str| {
                VVal::new_str_mv(String::from(
                    rx.replace_all(text, |capts: &regex::Captures| {
                        let captures = VVal::vec();
                        for cap in capts.iter() {
                            match cap {
                                None    => { captures.push(VVal::None); },
                                Some(c) => {
                                    captures.push(VVal::new_str(c.as_str()));
                                }
                            }
                        }

                        let repl = captures.at(0).unwrap_or(VVal::None).s_raw();
                        if finished { return repl; }

                        if f.is_fun() {
                            env.push(captures);
                            let rv = f.call_internal(env, 1);
                            env.popn(1);

                            match rv {
                                Ok(v)                      => v.s_raw(),
                                Err(StackAction::Break(v)) => { finished = true; v.s_raw() },
                                Err(StackAction::Next)     => { repl },
                                Err(e)                     => { finished = true; ret = Err(e); repl },
                            }
                        } else {
                            f.s_raw()
                        }
                    })))
            });
            if ret.is_err() { return ret; }
            Ok(ret_str)
        }, Some(3), Some(3), false);

    #[cfg(feature="regex")]
    func!(st, "re:match_compile",
        |env: &mut Env, _argc: usize| {
            use regex::Regex;
            let re   = env.arg(0);

            let rx = re.with_s_ref(Regex::new);
            if let Err(e) = rx {
                return Ok(env.new_err(
                    format!("Regex '{}' did not compile: {}", re.s_raw(), e)));
            }
            let rx = rx.unwrap();

            Ok(VValFun::new_fun(
                move |env: &mut Env, _argc: usize| {
                    let text = env.arg(0);
                    let f    = env.arg(1);

                    text.with_s_ref(|text: &str| {
                        match rx.captures(text) {
                            Some(c) => {
                                let captures = VVal::vec();
                                for cap in c.iter() {
                                    match cap {
                                        None    => { captures.push(VVal::None); },
                                        Some(c) => {
                                            captures.push(VVal::new_str(c.as_str()));
                                        }
                                    }
                                }
                                env.push(captures);
                                let rv = f.call_internal(env, 1);
                                env.popn(1);
                                rv
                            },
                            None => {
                                Ok(VVal::None)
                            }
                        }
                    })
                }, Some(2), Some(2), false))
        }, Some(1), Some(1), false);

    #[cfg(feature="regex")]
    func!(st, "re:match",
        |env: &mut Env, _argc: usize| {
            use regex::Regex;
            let re   = env.arg(0);
            let text = env.arg(1);
            let f    = env.arg(2);

            let rx = re.with_s_ref(Regex::new);
            if let Err(e) = rx {
                return Ok(env.new_err(
                    format!("Regex '{}' did not compile: {}", re.s_raw(), e)));
            }
            let rx = rx.unwrap();

            text.with_s_ref(|text: &str| {
                match rx.captures(text) {
                    Some(c) => {
                        let captures = VVal::vec();
                        for cap in c.iter() {
                            match cap {
                                None    => { captures.push(VVal::None); },
                                Some(c) => {
                                    captures.push(VVal::new_str(c.as_str()));
                                }
                            }
                        }
                        env.push(captures);
                        let rv = f.call_internal(env, 1);
                        env.popn(1);
                        rv
                    },
                    None => {
                        Ok(VVal::None)
                    }
                }
            })
        }, Some(3), Some(3), false);

    #[cfg(feature="regex")]
    func!(st, "re:map",
        |env: &mut Env, _argc: usize| {
            use regex::Regex;
            let re   = env.arg(0);
            let f    = env.arg(1);
            let text = env.arg(2);

            let rx = re.with_s_ref(Regex::new);
            if let Err(e) = rx {
                return Ok(env.new_err(
                    format!("Regex '{}' did not compile: {}", re.s_raw(), e)));
            }
            let rx = rx.unwrap();

            let mut ret = VVal::None;
            text.with_s_ref(|text: &str| {
                for capts in rx.captures_iter(text) {
                    let captures = VVal::vec();
                    for cap in capts.iter() {
                        match cap {
                            None    => { captures.push(VVal::None); },
                            Some(c) => {
                                captures.push(VVal::new_str(c.as_str()));
                            }
                        }
                    }
                    env.push(captures);
                    let rv = f.call_internal(env, 1);
                    env.popn(1);

                    match rv {
                        Ok(v)                      => { ret = v; },
                        Err(StackAction::Break(v)) => { ret = *v; break; },
                        Err(StackAction::Next)     => { },
                        Err(e)                     => { return Err(e); },
                    }
                }
                Ok(ret)
            })
        }, Some(3), Some(3), false);

    func!(st, "srand",
        |env: &mut Env, argc: usize| {
            if argc == 0 {
                use std::time::SystemTime;
                match SystemTime::now().duration_since(SystemTime::UNIX_EPOCH) {
                    Ok(n)  => util::srand(n.as_nanos() as i64),
                    Err(_) => util::srand(1_234_567_890),
                }
            } else {
                util::srand(env.arg(0).i());
            }
            Ok(VVal::None)
        }, Some(0), Some(1), false);

    func!(st, "rand",
        |env: &mut Env, argc: usize| {
            if argc == 0 {
                Ok(VVal::Flt(util::rand_closed_open01()))
            } else {
                match env.arg(0).deref() {
                    VVal::Flt(f)
                        => Ok(VVal::Flt(util::rand_closed_open01() * f)),
                    VVal::Int(i)
                        => Ok(VVal::Int(util::rand_i(i as u64))),
                    v   => {
                        if v.with_s_ref(|s| s == "i64") {
                            Ok(VVal::Int(util::rand_full_i()))
                        } else {
                            Ok(VVal::Int(util::rand_i(v.i() as u64)))
                        }
                    }
                }
            }
        }, Some(0), Some(1), false);

    func!(st, "sys:os",
        |_env: &mut Env, _argc: usize| {
            Ok(VVal::new_str(std::env::consts::OS))
        }, Some(0), Some(0), false);

    func!(st, "time:now",
        |env: &mut Env, _argc: usize| {
            use std::time::SystemTime;
            match SystemTime::now().duration_since(SystemTime::UNIX_EPOCH) {
                Ok(n) => {
                    Ok(env.arg(0).with_s_ref(|unit|
                        duration_to_vval(n, unit)))
                },
                Err(_) =>
                    Err(StackAction::panic_msg(
                        "SystemTime before UNIX EPOCH!".to_string()))
            }
        }, Some(0), Some(1), false);

    #[cfg(feature="chrono")]
    func!(st, "chrono:timestamp",
        |env: &mut Env, _argc: usize| {
            use chrono::prelude::*;
            let dt = Local::now();

            let fmt = env.arg(0);
            if fmt.is_str() {
                fmt.with_s_ref(|fmt: &str|
                    Ok(VVal::new_str_mv(dt.format(fmt).to_string())))
            } else {
                Ok(VVal::new_str_mv(dt.format("%Y-%m-%d %H:%M:%S.%f").to_string()))
            }

        }, Some(0), Some(1), false);

    #[cfg(feature="chrono")]
    func!(st, "chrono:format_utc",
        |env: &mut Env, _argc: usize| {
            use chrono::prelude::*;
            let dt = Utc.timestamp(env.arg(0).i(), 0);
            let fmt = env.arg(1);
            if fmt.is_str() {
                fmt.with_s_ref(|fmt: &str|
                    Ok(VVal::new_str_mv(dt.format(fmt).to_string())))
            } else {
                Ok(VVal::new_str_mv(dt.format("%Y-%m-%d %H:%M:%S.%f").to_string()))
            }

        }, Some(1), Some(2), false);

    #[cfg(feature="chrono")]
    func!(st, "chrono:format_local",
        |env: &mut Env, _argc: usize| {
            use chrono::prelude::*;
            let dt = Local.timestamp(env.arg(0).i(), 0);
            let fmt = env.arg(1);
            if fmt.is_str() {
                fmt.with_s_ref(|fmt: &str|
                    Ok(VVal::new_str_mv(dt.format(fmt).to_string())))
            } else {
                Ok(VVal::new_str_mv(dt.format("%Y-%m-%d %H:%M:%S.%f").to_string()))
            }

        }, Some(1), Some(2), false);

    #[cfg(feature="serde_json")]
    func!(st, "ser:json",
        |env: &mut Env, _argc: usize| {
            let v = env.arg(0);
            let pp = env.arg(1).b();

            match v.to_json(pp) {
                Ok(s) => Ok(VVal::new_str_mv(s)),
                Err(e) => Ok(env.new_err(e)),
            }
        }, Some(1), Some(2), false);

    #[cfg(feature="serde_json")]
    func!(st, "deser:json",
        |env: &mut Env, _argc: usize| {
            env.arg_ref(0).unwrap().with_s_ref(
                |json_txt: &str|
                    match VVal::from_json(json_txt) {
                        Ok(v) => Ok(v),
                        Err(e) => Ok(env.new_err(e)),
                    })
        }, Some(1), Some(1), false);

    #[cfg(feature="rmp-serde")]
    func!(st, "ser:msgpack",
        |env: &mut Env, _argc: usize| {
            let v = env.arg(0);
            match v.to_msgpack() {
                Ok(s) => Ok(VVal::new_byt(s)),
                Err(e) => Ok(env.new_err(e)),
            }
        }, Some(1), Some(1), false);

    #[cfg(feature="rmp-serde")]
    func!(st, "deser:msgpack",
        |env: &mut Env, _argc: usize| {
            if let VVal::Byt(u) = env.arg(0) {
                match VVal::from_msgpack(&u[..]) {
                    Ok(v) => Ok(v),
                    Err(e) => Ok(env.new_err(e)),
                }
            } else {
                Ok(env.new_err("deser:msgpack expects bytes".to_string()))
            }
        }, Some(1), Some(1), false);

    #[cfg(feature="base64")]
    func!(st, "bytes:to_base64",
        |env: &mut Env, _argc: usize| {
            let mut cfg = base64::STANDARD;
            let config = env.arg(1);
            if config.is_some() {
                cfg = config.with_s_ref(|s| match s {
                    "url"        => base64::URL_SAFE,
                    "url_no_pad" => base64::URL_SAFE_NO_PAD,
                    "std"        => base64::STANDARD,
                    "std_no_pad" => base64::STANDARD_NO_PAD,
                    _            => base64::STANDARD,
                })
            }

            env.arg(0).with_bv_ref(|bytes| {
                Ok(VVal::new_str_mv(base64::encode_config(bytes, cfg)))
            })
        }, Some(1), Some(2), false);

    #[cfg(feature="base64")]
    func!(st, "bytes:from_base64",
        |env: &mut Env, _argc: usize| {
            let mut cfg = base64::STANDARD;
            let config = env.arg(1);
            if config.is_some() {
                cfg = config.with_s_ref(|s| match s {
                    "url"        => base64::URL_SAFE,
                    "url_no_pad" => base64::URL_SAFE_NO_PAD,
                    "std"        => base64::STANDARD,
                    "std_no_pad" => base64::STANDARD_NO_PAD,
                    _            => base64::STANDARD,
                })
            }

            env.arg(0).with_bv_ref(|bytes| {
                match base64::decode_config(bytes, cfg) {
                    Ok(bytes) => Ok(VVal::new_byt(bytes)),
                    Err(e) =>
                        Ok(env.new_err(
                            format!("bytes:from_base64: {}", e)))
                }
            })
        }, Some(1), Some(2), false);

    func!(st, "copy",
        |env: &mut Env, _argc: usize| {
            Ok(env.arg(0).shallow_clone())
        }, Some(1), Some(1), false);

    func!(st, "cmp:num:asc",
        |env: &mut Env, _argc: usize| {
            match env.arg(0).compare_num(&env.arg(1)) {
                std::cmp::Ordering::Greater => Ok(VVal::Int(-1)),
                std::cmp::Ordering::Less    => Ok(VVal::Int(1)),
                std::cmp::Ordering::Equal   => Ok(VVal::Int(0)),
            }
        }, Some(2), Some(2), false);

    func!(st, "cmp:num:desc",
        |env: &mut Env, _argc: usize| {
            match env.arg(0).compare_num(&env.arg(1)) {
                std::cmp::Ordering::Greater => Ok(VVal::Int(1)),
                std::cmp::Ordering::Less    => Ok(VVal::Int(-1)),
                std::cmp::Ordering::Equal   => Ok(VVal::Int(0)),
            }
        }, Some(2), Some(2), false);

    func!(st, "cmp:str:asc",
        |env: &mut Env, _argc: usize| {
            match env.arg(0).compare_str(&env.arg(1)) {
                std::cmp::Ordering::Greater => Ok(VVal::Int(-1)),
                std::cmp::Ordering::Less    => Ok(VVal::Int(1)),
                std::cmp::Ordering::Equal   => Ok(VVal::Int(0)),
            }
        }, Some(2), Some(2), false);

    func!(st, "cmp:str:desc",
        |env: &mut Env, _argc: usize| {
            match env.arg(0).compare_str(&env.arg(1)) {
                std::cmp::Ordering::Greater => Ok(VVal::Int(1)),
                std::cmp::Ordering::Less    => Ok(VVal::Int(-1)),
                std::cmp::Ordering::Equal   => Ok(VVal::Int(0)),
            }
        }, Some(2), Some(2), false);


    func!(st, "v:dims",
        |env: &mut Env, _argc: usize| {
            Ok(VVal::Int(match env.arg(0) {
                VVal::FVec(fv) => fv.dims(),
                v => v.nvec::<i64>().dims(),
            } as i64))
        }, Some(1), Some(1), false);

    func!(st, "v:mag2",
        |env: &mut Env, _argc: usize| {
            Ok(VVal::Flt(match env.arg(0) {
                VVal::FVec(fv) => fv.mag2(),
                v => v.nvec::<i64>().mag2(),
            }))
        }, Some(1), Some(1), false);

    func!(st, "v:mag",
        |env: &mut Env, _argc: usize| {
            Ok(VVal::Flt(match env.arg(0) {
                VVal::FVec(fv) => fv.mag(),
                v => v.nvec::<i64>().mag(),
            }))
        }, Some(1), Some(1), false);

    func!(st, "v:norm",
        |env: &mut Env, _argc: usize| {
            Ok(match env.arg(0) {
                VVal::FVec(fv) => VVal::FVec(Box::new(fv.norm())),
                v => VVal::IVec(Box::new(v.nvec::<i64>().norm())),
            })
        }, Some(1), Some(1), false);

    func!(st, "v:dot",
        |env: &mut Env, _argc: usize| {
            Ok(match env.arg(0) {
                VVal::FVec(fv) => VVal::Flt(fv.dot(env.arg(1).nvec())),
                v => VVal::Int(v.nvec::<i64>().dot(env.arg(1).nvec())),
            })
        }, Some(2), Some(2), false);

    func!(st, "v:cross",
        |env: &mut Env, _argc: usize| {
            Ok(match env.arg(0) {
                VVal::FVec(fv) => VVal::FVec(Box::new(fv.cross(env.arg(1).nvec()))),
                v => VVal::IVec(Box::new(v.nvec::<i64>().cross(env.arg(1).nvec()))),
            })
        }, Some(2), Some(2), false);

    func!(st, "v:lerp",
        |env: &mut Env, _argc: usize| {
            Ok(match env.arg(0) {
                VVal::FVec(fv) => VVal::FVec(Box::new(fv.lerp(env.arg(1).nvec(), env.arg(2).f()))),
                v => VVal::IVec(Box::new(v.nvec::<i64>().lerp(env.arg(1).nvec(), env.arg(2).f()))),
            })
        }, Some(3), Some(3), false);

    func!(st, "v:slerp",
        |env: &mut Env, _argc: usize| {
            Ok(match env.arg(0) {
                VVal::FVec(fv) => VVal::FVec(Box::new(fv.slerp(env.arg(1).nvec(), env.arg(2).f()))),
                v => VVal::IVec(Box::new(v.nvec::<i64>().slerp(env.arg(1).nvec(), env.arg(2).f()))),
            })
        }, Some(3), Some(3), false);

    func!(st, "v:vec2rad",
        |env: &mut Env, _argc: usize| {
            Ok(VVal::Flt(match env.arg(0) {
                VVal::FVec(fv) => fv.vec2rad(),
                v => v.nvec::<i64>().vec2rad(),
            }))
        }, Some(1), Some(1), false);

    func!(st, "v:rad2vec",
        |env: &mut Env, _argc: usize| {
            Ok(VVal::FVec(Box::new(crate::nvec::NVec::rad2vec(env.arg(0).f()))))
        }, Some(1), Some(1), false);

    func!(st, "v:hex2hsva_i",
        |env: &mut Env, _argc: usize| {
            let hsvaf =
                env.arg_ref(0)
                   .unwrap()
                   .with_s_ref(util::hex2hsvaf);
            Ok(VVal::ivec4(
                hsvaf.0.round() as i64,
                hsvaf.1.round() as i64,
                hsvaf.2.round() as i64,
                hsvaf.3.round() as i64))
        }, Some(1), Some(1), false);

    func!(st, "v:hex2hsva_f",
        |env: &mut Env, _argc: usize| {
            let hsvaf =
                env.arg_ref(0)
                   .unwrap()
                   .with_s_ref(util::hex2hsvaf);
            Ok(VVal::fvec4(
                hsvaf.0,
                hsvaf.1,
                hsvaf.2,
                hsvaf.3))
        }, Some(1), Some(1), false);

    func!(st, "v:hex2rgba_i",
        |env: &mut Env, _argc: usize| {
            let (r, g, b, a) =
                env.arg(0).with_s_ref(util::hex2rgba);
            Ok(VVal::ivec_from_tpl4((r as i64, g as i64, b as i64, a as i64)))
        }, Some(1), Some(1), false);

    func!(st, "v:hex2rgba_f",
        |env: &mut Env, _argc: usize| {
            let (r, g, b, a) =
                env.arg(0).with_s_ref(util::hex2rgbaf);
            Ok(VVal::fvec_from_tpl4((r, g, b, a)))
        }, Some(1), Some(1), false);

    func!(st, "v:rgba2hex",
        |env: &mut Env, _argc: usize| {
            let arg = env.arg_ref(0).unwrap().deref();
            process_vec_input!(env, arg, v, x, y, z, w, {
                Ok(VVal::new_str_mv(util::rgba2hex( (x as u8, y as u8, z as u8, 255))))
            }, {
                Ok(VVal::new_str_mv(util::rgba2hexf((x, y, z, 1.0))))
            }, {
                Ok(VVal::new_str_mv(util::rgba2hex( (x as u8, y as u8, z as u8, w as u8))))
            }, {
                Ok(VVal::new_str_mv(util::rgba2hexf((x, y, z, w))))
            })
        }, Some(1), Some(1), false);

    func!(st, "v:hsv2rgb",
        |env: &mut Env, _argc: usize| {
            let arg = env.arg_ref(0).unwrap().deref();
            process_vec_input!(env, arg, v, x, y, z, w, {
                let c =
                    util::hsv2rgb(
                        x as f64,
                        y as f64 / 100.0,
                        z as f64 / 100.0);
                Ok(VVal::ivec_from_tpl3((
                    (c.0 * 255.0).round() as i64,
                    (c.1 * 255.0).round() as i64,
                    (c.2 * 255.0).round() as i64)))
            }, {
                let c = util::hsv2rgb(x, y, z);
                Ok(VVal::fvec_from_tpl3(c))
            }, {
                let c =
                    util::hsva2rgba((
                        x as f64,
                        (y as f64 / 100.0),
                        (z as f64 / 100.0),
                        (w as f64 / 100.0)));
                Ok(VVal::ivec_from_tpl4((
                    (c.0 * 255.0).round() as i64,
                    (c.1 * 255.0).round() as i64,
                    (c.2 * 255.0).round() as i64,
                    (c.3 * 255.0).round() as i64)))
            }, {
                let c = util::hsva2rgba((x, y, z, w));
                Ok(VVal::fvec_from_tpl4(c))
            })
        }, Some(1), Some(1), false);

    func!(st, "v:rgb2hsv",
        |env: &mut Env, _argc: usize| {
            let arg = env.arg_ref(0).unwrap().deref();
            process_vec_input!(env, arg, v, x, y, z, w, {
                let c =
                    util::rgb2hsv(
                        (x as f64) / 255.0,
                        (y as f64) / 255.0,
                        (z as f64) / 255.0);
                Ok(VVal::ivec_from_tpl3((
                    c.0.round() as i64,
                    (c.1 * 100.0).round() as i64,
                    (c.2 * 100.0).round() as i64)))
            }, {
                let c = util::rgb2hsv(x, y, z);
                Ok(VVal::fvec_from_tpl3(c))
            }, {
                let c =
                    util::rgb2hsv(
                        (x as f64) / 255.0,
                        (y as f64) / 255.0,
                        (z as f64) / 255.0);
                Ok(VVal::ivec_from_tpl4((
                    c.0.round() as i64,
                    (c.1 * 100.0).round() as i64,
                    (c.2 * 100.0).round() as i64,
                    ((w as f64 / 255.0) * 100.0).round() as i64)))
            }, {
                let c = util::rgba2hsvaf((x, y, z, w));
                Ok(VVal::fvec_from_tpl4(c))
            })
        }, Some(1), Some(1), false);

    func!(st, "sort",
        |env: &mut Env, argc: usize| {
            if argc == 1 {
                let list = env.arg(0);
                list.sort(|a: &VVal, b: &VVal| {
                    if a.is_int() || a.is_float() {
                        a.compare_num(b)
                    } else {
                        a.compare_str(b)
                    }
                });
                Ok(list)
            } else {
                let fun = env.arg(0);
                let list = env.arg(1);
                let mut ret = Ok(VVal::None);
                list.sort(|a: &VVal, b: &VVal| {
                    env.push(b.clone());
                    env.push(a.clone());
                    let i =
                        match fun.call_internal(env, 2) {
                            Ok(v)  => { v.i() },
                            Err(e) => { ret = Err(e); 1 },
                        };
                    env.popn(2);
                    match i {
                        _ if i == 0 => std::cmp::Ordering::Equal,
                        _ if i >  0 => std::cmp::Ordering::Greater,
                        _           => std::cmp::Ordering::Less,
                    }
                });
                if ret.is_ok() { ret = Ok(list); }
                ret
            }
        }, Some(1), Some(2), false);

    func!(st, "shuffle",
        |env: &mut Env, _argc: usize| {
            let fun = env.arg(0);
            let mut list = env.arg(1);
            list.fisher_yates_shuffle(|| {
                fun.call_no_args(env).unwrap_or(VVal::None).i()
            });
            Ok(list)
        }, Some(2), Some(2), false);

    func!(st, "hash:fnv1a",
        |env: &mut Env, argc: usize| {
            let mut hash = util::FnvHasher::default();
            for i in 0..argc {
                match env.arg(i) {
                    VVal::Int(i) => hash.write_i64(i),
                    VVal::Flt(f) => hash.write_f64(f),
                    _ => {
                        env.arg(i).with_s_ref(|s: &str|
                            hash.write(s.as_bytes()));
                    }
                }
            }
            Ok(VVal::Int(hash.finish_i64()))
        }, Some(1), None, false);

    func!(st, "rand:split_mix64_new",
        |_env: &mut Env, _argc: usize| {
            let v = VVal::vec();
            v.push(VVal::Int(util::now_timestamp() as i64));
            Ok(v)
        }, Some(0), Some(0), false);

    func!(st, "rand:split_mix64_new_from",
        |env: &mut Env, _argc: usize| {
            let v = VVal::vec();
            v.push(VVal::Int(env.arg(0).i()));
            Ok(v)
        }, Some(1), Some(1), false);

    func!(st, "rand:split_mix64_next",
        |env: &mut Env, argc: usize| {
            let mut sm =
                util::SplitMix64::new_from_i64(
                    env.arg(0).at(0).unwrap_or(VVal::Int(0)).i());

            let ret =
                if argc == 2 {
                    let v = VVal::vec();
                    for _i in 0..env.arg(1).i() {
                        v.push(VVal::Int(sm.next_i64()));
                    }
                    v
                } else {
                    VVal::Int(sm.next_i64())
                };
            env.arg(0).set_at(0,
                VVal::Int(i64::from_be_bytes(sm.0.to_be_bytes())));
            Ok(ret)
        }, Some(1), Some(2), false);

    func!(st, "num:int_to_open01", |env: &mut Env, _argc: usize| {
        Ok(VVal::Flt(util::u64_to_open01(env.arg(0).i() as u64)))
    }, Some(1), Some(1), false);

    func!(st, "num:int_to_open_closed01", |env: &mut Env, _argc: usize| {
        Ok(VVal::Flt(util::u64_to_open_closed01(env.arg(0).i() as u64)))
    }, Some(1), Some(1), false);

    func!(st, "num:int_to_closed_open01", |env: &mut Env, _argc: usize| {
        Ok(VVal::Flt(util::u64_to_closed_open01(env.arg(0).i() as u64)))
    }, Some(1), Some(1), false);

    func!(st, "symbols:collect", |_env: &mut Env, _argc: usize| {
        Ok(VVal::Int(crate::str_int::string_interner_collect()))
    }, Some(0), Some(0), false);

    func!(st, "rand:split_mix64_next_closed_open01",
        |env: &mut Env, argc: usize| {
            let mut sm =
                util::SplitMix64::new_from_i64(
                    env.arg(0).at(0).unwrap_or(VVal::Int(0)).i());
            let ret =
                if argc == 2 {
                    let v = VVal::vec();
                    for _i in 0..env.arg(1).i() {
                        v.push(VVal::Flt(util::u64_to_closed_open01(sm.next_u64())));
                    }
                    v
                } else {
                    VVal::Flt(util::u64_to_closed_open01(sm.next_u64()))
                };
            env.arg(0).set_at(0,
                VVal::Int(i64::from_be_bytes(sm.0.to_be_bytes())));
            Ok(ret)
        }, Some(1), Some(2), false);

    func!(st, "rand:split_mix64_next_open_closed01",
        |env: &mut Env, argc: usize| {
            let mut sm =
                util::SplitMix64::new_from_i64(
                    env.arg(0).at(0).unwrap_or(VVal::Int(0)).i());
            let ret =
                if argc == 2 {
                    let v = VVal::vec();
                    for _i in 0..env.arg(1).i() {
                        v.push(VVal::Flt(util::u64_to_open_closed01(sm.next_u64())));
                    }
                    v
                } else {
                    VVal::Flt(util::u64_to_open_closed01(sm.next_u64()))
                };
            env.arg(0).set_at(0,
                VVal::Int(i64::from_be_bytes(sm.0.to_be_bytes())));
            Ok(ret)
        }, Some(1), Some(2), false);

    func!(st, "rand:split_mix64_next_open01",
        |env: &mut Env, argc: usize| {
            let mut sm =
                util::SplitMix64::new_from_i64(
                    env.arg(0).at(0).unwrap_or(VVal::Int(0)).i());
            let ret =
                if argc == 2 {
                    let v = VVal::vec();
                    for _i in 0..env.arg(1).i() {
                        v.push(VVal::Flt(util::u64_to_open01(sm.next_u64())));
                    }
                    v
                } else {
                    VVal::Flt(util::u64_to_open01(sm.next_u64()))
                };
            env.arg(0).set_at(0,
                VVal::Int(i64::from_be_bytes(sm.0.to_be_bytes())));
            Ok(ret)
        }, Some(1), Some(2), false);

    func!(st, "sync:atom:new",
        |env: &mut Env, _argc: usize| {
            let v = env.arg(0);
            let av = AtomicAVal::new();
            av.write(&v);
            Ok(VVal::Usr(Box::new(av)))
        }, Some(1), Some(1), false);

    func!(st, "sync:mpsc:new",
        |_env: &mut Env, _argc: usize| {
            Ok(AValChannel::new_vval())
        }, Some(0), Some(0), false);

    func!(st, "sync:slot:new",
        |_env: &mut Env, _argc: usize| {
            Ok(VVal::Usr(Box::new(AtomicAValSlot::new())))
        }, Some(0), Some(0), false);

    func!(st, "thread:sleep",
        |env: &mut Env, _argc: usize| {
            match env.arg(0).to_duration() {
                Ok(dur) => std::thread::sleep(dur),
                Err(v)  => { return Ok(v); },
            }
            Ok(VVal::Bol(true))
        }, Some(1), Some(1), false);

    func!(st, "thread:spawn",
        move |env: &mut Env, argc: usize| {
            let avs =
                if argc > 1 {
                    let mut avs = vec![];
                    for (i, (v, k)) in env.arg(1).iter().enumerate() {
                        let av = AtomicAVal::new();
                        av.write(&v);

                        if let Some(k) = k {
                            avs.push((k.s_raw(), av));
                        } else {
                            avs.push((format!("THREAD_ARG{}", i), av));
                        }
                    }
                    Some(avs)
                } else {
                    None
                };

            let tc = env.global.borrow().get_thread_creator();
            if let Some(tc) = &tc {
                let ntc = tc.clone();
                match tc.lock() {
                    Ok(mut tcg) => {
                        env.arg(0).with_s_ref(|code: &str|
                            Ok(tcg.spawn(ntc, code.to_string(), avs)))
                    },
                    Err(e) => {
                        Err(StackAction::panic_str(
                            format!("Couldn't create thread: {}", e),
                            None,
                            env.argv()))
                    },
                }

            } else {
                Err(StackAction::panic_str(
                    "This global environment does not provide threads.".to_string(),
                    None,
                    env.argv()))
            }
        }, Some(1), Some(2), false);

    crate::stdlib::add_to_symtable(&mut st);

    st
}