1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
// Copyright 2019 Palantir Technologies, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use crate::Clock;
use parking_lot::Mutex;
use std::convert::TryFrom;
use std::sync::atomic::{AtomicI64, AtomicU64, Ordering};
use std::sync::Arc;
use std::time::Instant;

const INTERVAL_SECS: u64 = 5;
const SECONDS_PER_MINUTE: f64 = 60.;

struct State {
    count: i64,
    rate_1m: Ewma,
    rate_5m: Ewma,
    rate_15m: Ewma,
}

/// A metric tracking the rate of occurrence of an event.
///
/// The meter tracks rolling average rates in the same manner as the Linux kernel's load factor measurement.
pub struct Meter {
    uncounted: AtomicI64,
    last_tick: AtomicU64,
    start_time: Instant,
    clock: Arc<dyn Clock>,
    state: Mutex<State>,
}

impl Default for Meter {
    fn default() -> Meter {
        Meter::new()
    }
}

impl Meter {
    /// Creates a new meter with a [`SystemClock`](crate::SystemClock).
    pub fn new() -> Meter {
        Meter::new_with(crate::SYSTEM_CLOCK.clone())
    }

    /// Creates a new meter using the provided [`Clock`] as its time source.
    pub fn new_with(clock: Arc<dyn Clock>) -> Meter {
        Meter {
            uncounted: AtomicI64::new(0),
            last_tick: AtomicU64::new(0),
            start_time: clock.now(),
            clock,
            state: Mutex::new(State {
                count: 0,
                rate_1m: Ewma::new(1.),
                rate_5m: Ewma::new(5.),
                rate_15m: Ewma::new(15.),
            }),
        }
    }

    /// Mark the occurrence of `n` event(s).
    pub fn mark(&self, n: i64) {
        self.tick_if_necessary();
        self.uncounted.fetch_add(n, Ordering::SeqCst);
    }

    /// Returns the number of events registered by the meter.
    pub fn count(&self) -> i64 {
        self.state.lock().count + self.uncounted.load(Ordering::SeqCst)
    }

    /// Returns the one minute rolling average rate of the occurrence of events measured in events per second.
    pub fn one_minute_rate(&self) -> f64 {
        self.tick_if_necessary();
        self.state.lock().rate_1m.get()
    }

    /// Returns the five minute rolling average rate of the occurrence of events measured in events per second.
    pub fn five_minute_rate(&self) -> f64 {
        self.tick_if_necessary();
        self.state.lock().rate_5m.get()
    }

    /// Returns the fifteen minute rolling average rate of the occurrence of events measured in events per second.
    pub fn fifteen_minute_rate(&self) -> f64 {
        self.tick_if_necessary();
        self.state.lock().rate_15m.get()
    }

    /// Returns the mean rate of the occurrence of events since the creation of the meter measured in events per second.
    pub fn mean_rate(&self) -> f64 {
        let count = self.count() as f64;
        if count == 0. {
            0.
        } else {
            let time = (self.clock.now() - self.start_time).as_secs_f64();
            count / time
        }
    }

    fn tick_if_necessary(&self) {
        let time = self.clock.now();
        let old_tick = self.last_tick.load(Ordering::SeqCst);
        let new_tick = (time - self.start_time).as_secs();
        let age = new_tick - old_tick;

        if age < INTERVAL_SECS {
            return;
        }

        let new_interval_start_tick = new_tick - age % INTERVAL_SECS;
        if self
            .last_tick
            .compare_exchange(
                old_tick,
                new_interval_start_tick,
                Ordering::SeqCst,
                Ordering::SeqCst,
            )
            .is_err()
        {
            // another thread has already ticked for us
            return;
        }

        let required_ticks = age / INTERVAL_SECS;
        let mut state = self.state.lock();

        let uncounted = self.uncounted.swap(0, Ordering::SeqCst);
        state.count += uncounted;

        state.rate_1m.tick(uncounted);
        state.rate_1m.decay(required_ticks - 1);

        state.rate_5m.tick(uncounted);
        state.rate_5m.decay(required_ticks - 1);

        state.rate_15m.tick(uncounted);
        state.rate_15m.decay(required_ticks - 1);
    }
}

// Modeled after Java metrics-core's EWMA.java
struct Ewma {
    rate: f64,
    alpha: f64,
    initialized: bool,
}

impl Ewma {
    fn new(minutes: f64) -> Ewma {
        Ewma {
            rate: 0.,
            alpha: 1. - (-(INTERVAL_SECS as f64) / SECONDS_PER_MINUTE / minutes).exp(),
            initialized: false,
        }
    }

    fn tick(&mut self, count: i64) {
        let instant_rate = count as f64 / INTERVAL_SECS as f64;
        if self.initialized {
            self.rate += self.alpha * (instant_rate - self.rate);
        } else {
            self.rate = instant_rate;
            self.initialized = true;
        }
    }

    /// Equivalent to calling ewma.tick(0) `ticks` times, but isn't linear in `ticks`.
    ///
    /// x1 = x0 + alpha * (0 - x0)
    /// x1 = x0 - alpha * x0
    /// x1 = x0 * (1 - alpha)
    ///
    /// x2 = x1 * (1 - alpha)
    /// x2 = x0 * (1 - alpha) * (1 - alpha)
    fn decay(&mut self, ticks: u64) {
        match i32::try_from(ticks) {
            Ok(ticks) => self.rate *= (1. - self.alpha).powi(ticks),
            Err(_) => self.rate = 0.,
        }
    }

    fn get(&self) -> f64 {
        self.rate
    }
}

#[cfg(test)]
mod test {
    use crate::clock::test::TestClock;
    use crate::Meter;
    use assert_approx_eq::assert_approx_eq;
    use std::sync::Arc;
    use std::time::Duration;

    #[test]
    #[allow(clippy::float_cmp)]
    fn starts_out_with_no_rates_or_count() {
        let clock = Arc::new(TestClock::new());
        let meter = Meter::new_with(clock);

        assert_eq!(meter.count(), 0);
        assert_eq!(meter.one_minute_rate(), 0.);
        assert_eq!(meter.five_minute_rate(), 0.);
        assert_eq!(meter.fifteen_minute_rate(), 0.);
        assert_eq!(meter.mean_rate(), 0.)
    }

    #[test]
    fn marks_events_and_updates_rate_and_count() {
        let clock = Arc::new(TestClock::new());
        let meter = Meter::new_with(clock.clone());

        meter.mark(1);

        clock.advance(Duration::from_secs(10));
        meter.mark(2);

        assert_approx_eq!(meter.mean_rate(), 0.3, 0.001);
        assert_approx_eq!(meter.one_minute_rate(), 0.1840, 0.001);
        assert_approx_eq!(meter.five_minute_rate(), 0.1966, 0.001);
        assert_approx_eq!(meter.fifteen_minute_rate(), 0.1988, 0.001);
    }
}