1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
// LICENSE file in the root directory of this source tree.

//! This crate contains Winterfell STARK prover.
//!
//! This prover can be used to generate proofs of computational integrity using the
//! [STARK](https://eprint.iacr.org/2018/046) (Scalable Transparent ARguments of Knowledge)
//! protocol.
//!
//! When the crate is compiled with `concurrent` feature enabled, proof generation will be
//! performed in multiple threads (usually, as many threads as there are logical cores on the
//! machine). The number of threads can be configured via `RAYON_NUM_THREADS` environment
//! variable.
//!
//! # Usage
//! To generate a proof that a computation was executed correctly, you'll need to do the
//! following:
//!
//! 1. Define an *algebraic intermediate representation* (AIR) for your computation. This can
//!    be done by implementing [Air] trait.
//! 2. Define an execution trace for your computation. This can be done by implementing [Trace]
//!    trait. Alternatively, you can use [TraceTable] struct which already implements [Trace]
//!    trait in cases when this generic implementation works for your use case.
//! 3. Execute your computation and record its execution trace.
//! 4. Define your prover by implementing [Prover] trait. Then execute [Prover::prove()] function
//!    passing the trace generated in the previous step into it as a parameter. The function will
//!    return a instance of [StarkProof].
//!
//! This [StarkProof] can be serialized and sent to a STARK verifier for verification. The size
//! of proof depends on the specifics of a given computation, but for most computations it should
//! be in the range between 15 KB (for very small computations) and 300 KB (for very large
//! computations).
//!
//! Proof generation time is also highly dependent on the specifics of a given computation, but
//! also depends on the capabilities of the machine used to generate the proofs (i.e. on number
//! of CPU cores and memory bandwidth).

#![cfg_attr(not(feature = "std"), no_std)]

#[cfg(not(feature = "std"))]
#[macro_use]
extern crate alloc;

pub use air::{
    proof::StarkProof, Air, AirContext, Assertion, BoundaryConstraint, BoundaryConstraintGroup,
    ConstraintCompositionCoefficients, ConstraintDivisor, DeepCompositionCoefficients,
    EvaluationFrame, FieldExtension, HashFunction, ProofOptions, TraceInfo,
    TransitionConstraintDegree, TransitionConstraintGroup,
};
pub use utils::{
    iterators, ByteReader, ByteWriter, Deserializable, DeserializationError, Serializable,
};

use fri::FriProver;
use utils::collections::Vec;

pub use math;
use math::{
    fft::infer_degree,
    fields::{CubeExtension, QuadExtension},
    ExtensibleField, FieldElement, StarkField,
};

pub use crypto;
use crypto::{
    hashers::{Blake3_192, Blake3_256, Sha3_256},
    ElementHasher,
};

#[cfg(feature = "std")]
use log::debug;
#[cfg(feature = "std")]
use math::log2;
#[cfg(feature = "std")]
use std::time::Instant;

mod domain;
use domain::StarkDomain;

mod constraints;
use constraints::{ConstraintCommitment, ConstraintEvaluator};

mod composer;
use composer::DeepCompositionPoly;

mod trace;
use trace::TracePolyTable;
pub use trace::{Trace, TraceTable, TraceTableFragment};

mod channel;
use channel::ProverChannel;

mod errors;
pub use errors::ProverError;

#[cfg(test)]
pub mod tests;

// PROVER
// ================================================================================================

/// Defines a STARK prover for a computation.
///
/// A STARK prover can be used to generate STARK proofs. The prover contains definitions of a
/// computation's AIR (specified via [Air](Prover::Air) associated type) and execution trace
/// (specified via [Trace](Prover::Trace) associated type), and exposes [prove()](Prover::prove)
/// method which can be used to build STARK proofs for provided execution traces.
///
/// Thus, once a prover is defined and instantiated, generating a STARK proof consists of two
/// steps:
/// 1. Build an execution trace for a specific instance of the computation.
/// 2. Invoke [Prover::prove()] method generate a proof using the trace from the previous step
///    as a witness.
///
/// The generated proof is built using protocol parameters defined by the [ProofOptions] struct
/// return from [Prover::options] method.
pub trait Prover {
    /// Base field for the computation described by this prover.
    type BaseField: StarkField + ExtensibleField<2> + ExtensibleField<3>;

    /// Algebraic intermediate representation (AIR) for the computation described by this prover.
    type Air: Air<BaseField = Self::BaseField>;

    /// Execution trace of the computation described by this prover.
    type Trace: Trace<BaseField = Self::BaseField>;

    // REQUIRED METHODS
    // --------------------------------------------------------------------------------------------

    /// Returns a set of public inputs for an instance of the computation defined by the provided
    /// trace.
    ///
    /// Public inputs need to be shared with the verifier in order for them to verify a proof.
    fn get_pub_inputs(&self, trace: &Self::Trace) -> <<Self as Prover>::Air as Air>::PublicInputs;

    /// Returns [ProofOptions] which this prover uses to generate STARK proofs.
    ///
    /// Proof options defines basic protocol parameters such as: number of queries, blowup factor,
    /// grinding factor, hash function to be used in the protocol etc. These properties directly
    /// inform such metrics as proof generation time, proof size, and proof security level.
    fn options(&self) -> &ProofOptions;

    // PROVIDED METHODS
    // --------------------------------------------------------------------------------------------

    /// Returns a STARK proof attesting to a correct execution of a computation defined by the
    /// provided trace.
    ///
    /// The returned [StarkProof] attests that the specified `trace` is a valid execution trace of
    /// the computation described by [Self::Air](Prover::Air) and generated using some set of
    /// secret and public inputs. Public inputs must match the value returned from
    /// [Self::get_pub_inputs()](Prover::get_pub_inputs) for the provided trace.
    #[rustfmt::skip]
    fn prove(&self, trace: Self::Trace) -> Result<StarkProof, ProverError> {
        // figure out which version of the generic proof generation procedure to run. this is a sort
        // of static dispatch for selecting two generic parameter: extension field and hash function.
        match self.options().field_extension() {
            FieldExtension::None => match self.options().hash_fn() {
                HashFunction::Blake3_256 => self.generate_proof::<Self::BaseField, Blake3_256<Self::BaseField>>(trace),
                HashFunction::Blake3_192 => self.generate_proof::<Self::BaseField, Blake3_192<Self::BaseField>>(trace),
                HashFunction::Sha3_256 => self.generate_proof::<Self::BaseField, Sha3_256<Self::BaseField>>(trace),
            },
            FieldExtension::Quadratic => {
                if !<QuadExtension<Self::BaseField>>::is_supported() {
                    return Err(ProverError::UnsupportedFieldExtension(2));
                }
                match self.options().hash_fn() {
                    HashFunction::Blake3_256 => self.generate_proof::<QuadExtension<Self::BaseField>, Blake3_256<Self::BaseField>>(trace),
                    HashFunction::Blake3_192 => self.generate_proof::<QuadExtension<Self::BaseField>, Blake3_192<Self::BaseField>>(trace),
                    HashFunction::Sha3_256 => self.generate_proof::<QuadExtension<Self::BaseField>, Sha3_256<Self::BaseField>>(trace),
                }
            }
            FieldExtension::Cubic => {
                if !<CubeExtension<Self::BaseField>>::is_supported() {
                    return Err(ProverError::UnsupportedFieldExtension(3));
                }
                match self.options().hash_fn() {
                    HashFunction::Blake3_256 => self.generate_proof::<CubeExtension<Self::BaseField>, Blake3_256<Self::BaseField>>(trace),
                    HashFunction::Blake3_192 => self.generate_proof::<CubeExtension<Self::BaseField>, Blake3_192<Self::BaseField>>(trace),
                    HashFunction::Sha3_256 => self.generate_proof::<CubeExtension<Self::BaseField>, Sha3_256<Self::BaseField>>(trace),
                }
            }
        }
    }

    // HELPER METHODS
    // --------------------------------------------------------------------------------------------

    /// Performs the actual proof generation procedure, generating the proof that the provided
    /// execution `trace` is valid against this prover's AIR.
    /// TODO: make this function un-callable externally?
    #[doc(hidden)]
    fn generate_proof<E, H>(&self, trace: Self::Trace) -> Result<StarkProof, ProverError>
    where
        E: FieldElement<BaseField = Self::BaseField>,
        H: ElementHasher<BaseField = Self::BaseField>,
    {
        // 0 ----- instantiate AIR and prover channel ---------------------------------------------

        // serialize public inputs; these will be included in the seed for the public coin
        let pub_inputs = self.get_pub_inputs(&trace);
        let mut pub_inputs_bytes = Vec::new();
        pub_inputs.write_into(&mut pub_inputs_bytes);

        // create an instance of AIR for the provided parameters. this takes a generic description
        // of the computation (provided via AIR type), and creates a description of a specific
        // execution of the computation for the provided public inputs.
        let air = Self::Air::new(trace.get_info(), pub_inputs, self.options().clone());

        // make sure the specified trace is valid against the AIR. This checks validity of both,
        // assertions and state transitions. we do this in debug mode only because this is a very
        // expensive operation.
        #[cfg(debug_assertions)]
        trace.validate(&air);

        // create a channel which is used to simulate interaction between the prover and the
        // verifier; the channel will be used to commit to values and to draw randomness that
        // should come from the verifier.
        let mut channel = ProverChannel::<Self::Air, E, H>::new(&air, pub_inputs_bytes);

        // 1 ----- extend execution trace ---------------------------------------------------------

        // build computation domain; this is used later for polynomial evaluations
        #[cfg(feature = "std")]
        let now = Instant::now();
        let domain = StarkDomain::new(&air);
        #[cfg(feature = "std")]
        debug!(
            "Built domain of 2^{} elements in {} ms",
            log2(domain.lde_domain_size()),
            now.elapsed().as_millis()
        );

        // extend the execution trace; this interpolates each register of the trace into a
        // polynomial, and then evaluates the polynomial over the LDE domain; each of the trace
        // polynomials has degree = trace_length - 1
        let (extended_trace, trace_polys) = trace.extend(&domain);
        #[cfg(feature = "std")]
        debug!(
        "Extended execution trace of {} registers from 2^{} to 2^{} steps ({}x blowup) in {} ms",
        extended_trace.width(),
        log2(trace_polys.poly_size()),
        log2(extended_trace.len()),
        extended_trace.blowup(),
        now.elapsed().as_millis()
    );

        // 2 ----- commit to the extended execution trace -----------------------------------------
        #[cfg(feature = "std")]
        let now = Instant::now();
        let trace_tree = extended_trace.build_commitment::<H>();
        channel.commit_trace(*trace_tree.root());
        #[cfg(feature = "std")]
        debug!(
            "Committed to extended execution trace by building a Merkle tree of depth {} in {} ms",
            trace_tree.depth(),
            now.elapsed().as_millis()
        );

        // 3 ----- evaluate constraints -----------------------------------------------------------
        // evaluate constraints specified by the AIR over the constraint evaluation domain, and
        // compute random linear combinations of these evaluations using coefficients drawn from
        // the channel; this step evaluates only constraint numerators, thus, only constraints with
        // identical denominators are merged together. the results are saved into a constraint
        // evaluation table where each column contains merged evaluations of constraints with
        // identical denominators.
        #[cfg(feature = "std")]
        let now = Instant::now();
        let constraint_coeffs = channel.get_constraint_composition_coeffs();
        let evaluator = ConstraintEvaluator::new(&air, constraint_coeffs);
        let constraint_evaluations = evaluator.evaluate(&extended_trace, &domain);
        #[cfg(feature = "std")]
        debug!(
            "Evaluated constraints over domain of 2^{} elements in {} ms",
            log2(constraint_evaluations.num_rows()),
            now.elapsed().as_millis()
        );

        // 4 ----- commit to constraint evaluations -----------------------------------------------

        // first, build constraint composition polynomial from the constraint evaluation table:
        // - divide all constraint evaluation columns by their respective divisors
        // - combine them into a single column of evaluations,
        // - interpolate the column into a polynomial in coefficient form
        // - "break" the polynomial into a set of column polynomials each of degree equal to
        //   trace_length - 1
        #[cfg(feature = "std")]
        let now = Instant::now();
        let composition_poly = constraint_evaluations.into_poly()?;
        #[cfg(feature = "std")]
        debug!(
        "Converted constraint evaluations into {} composition polynomial columns of degree {} in {} ms",
        composition_poly.num_columns(),
        composition_poly.column_degree(),
        now.elapsed().as_millis()
    );

        // then, evaluate composition polynomial columns over the LDE domain
        #[cfg(feature = "std")]
        let now = Instant::now();
        let composed_evaluations = composition_poly.evaluate(&domain);
        #[cfg(feature = "std")]
        debug!(
            "Evaluated composition polynomial columns over LDE domain (2^{} elements) in {} ms",
            log2(composed_evaluations[0].len()),
            now.elapsed().as_millis()
        );

        // finally, commit to the composition polynomial evaluations
        #[cfg(feature = "std")]
        let now = Instant::now();
        let constraint_commitment = ConstraintCommitment::<E, H>::new(composed_evaluations);
        channel.commit_constraints(constraint_commitment.root());
        #[cfg(feature = "std")]
        debug!(
            "Committed to composed evaluations by building a Merkle tree of depth {} in {} ms",
            constraint_commitment.tree_depth(),
            now.elapsed().as_millis()
        );

        // 5 ----- build DEEP composition polynomial ----------------------------------------------
        #[cfg(feature = "std")]
        let now = Instant::now();

        // draw an out-of-domain point z. Depending on the type of E, the point is drawn either
        // from the base field or from an extension field defined by E.
        //
        // The purpose of sampling from the extension field here (instead of the base field) is to
        // increase security. Soundness is limited by the size of the field that the random point
        // is drawn from, and we can potentially save on performance by only drawing this point
        // from an extension field, rather than increasing the size of the field overall.
        let z = channel.get_ood_point();

        // evaluate trace and constraint polynomials at the OOD point z, and send the results to
        // the verifier. the trace polynomials are actually evaluated over two points: z and z * g,
        // where g is the generator of the trace domain.
        let ood_frame = trace_polys.get_ood_frame(z);
        channel.send_ood_evaluation_frame(&ood_frame);

        let ood_evaluations = composition_poly.evaluate_at(z);
        channel.send_ood_constraint_evaluations(&ood_evaluations);

        // draw random coefficients to use during DEEP polynomial composition, and use them to
        // initialize the DEEP composition polynomial
        let deep_coefficients = channel.get_deep_composition_coeffs();
        let mut deep_composition_poly = DeepCompositionPoly::new(&air, z, deep_coefficients);

        // combine all trace polynomials together and merge them into the DEEP composition
        // polynomial
        deep_composition_poly.add_trace_polys(trace_polys, ood_frame);

        // merge columns of constraint composition polynomial into the DEEP composition polynomial;
        deep_composition_poly.add_composition_poly(composition_poly, ood_evaluations);

        // raise the degree of the DEEP composition polynomial by one to make sure it is equal to
        // trace_length - 1
        deep_composition_poly.adjust_degree();

        #[cfg(feature = "std")]
        debug!(
            "Built DEEP composition polynomial of degree {} in {} ms",
            deep_composition_poly.degree(),
            now.elapsed().as_millis()
        );

        // make sure the degree of the DEEP composition polynomial is equal to trace polynomial
        // degree
        assert_eq!(domain.trace_length() - 1, deep_composition_poly.degree());

        // 6 ----- evaluate DEEP composition polynomial over LDE domain ---------------------------
        #[cfg(feature = "std")]
        let now = Instant::now();
        let deep_evaluations = deep_composition_poly.evaluate(&domain);
        // we check the following condition in debug mode only because infer_degree is an expensive
        // operation
        debug_assert_eq!(
            domain.trace_length() - 1,
            infer_degree(&deep_evaluations, domain.offset())
        );
        #[cfg(feature = "std")]
        debug!(
            "Evaluated DEEP composition polynomial over LDE domain (2^{} elements) in {} ms",
            log2(domain.lde_domain_size()),
            now.elapsed().as_millis()
        );

        // 7 ----- compute FRI layers for the composition polynomial ------------------------------
        #[cfg(feature = "std")]
        let now = Instant::now();
        let mut fri_prover = FriProver::new(air.options().to_fri_options());
        fri_prover.build_layers(&mut channel, deep_evaluations);
        #[cfg(feature = "std")]
        debug!(
            "Computed {} FRI layers from composition polynomial evaluations in {} ms",
            fri_prover.num_layers(),
            now.elapsed().as_millis()
        );

        // 8 ----- determine query positions ------------------------------------------------------
        #[cfg(feature = "std")]
        let now = Instant::now();

        // apply proof-of-work to the query seed
        channel.grind_query_seed();

        // generate pseudo-random query positions
        let query_positions = channel.get_query_positions();
        #[cfg(feature = "std")]
        debug!(
            "Determined {} query positions in {} ms",
            query_positions.len(),
            now.elapsed().as_millis()
        );

        // 9 ----- build proof object -------------------------------------------------------------
        #[cfg(feature = "std")]
        let now = Instant::now();

        // generate FRI proof
        let fri_proof = fri_prover.build_proof(&query_positions);

        // query the execution trace at the selected position; for each query, we need the
        // state of the trace at that position + Merkle authentication path
        let trace_queries = extended_trace.query(trace_tree, &query_positions);

        // query the constraint commitment at the selected positions; for each query, we need just
        // a Merkle authentication path. this is because constraint evaluations for each step are
        // merged into a single value and Merkle authentication paths contain these values already
        let constraint_queries = constraint_commitment.query(&query_positions);

        // build the proof object
        let proof = channel.build_proof(trace_queries, constraint_queries, fri_proof);
        #[cfg(feature = "std")]
        debug!("Built proof object in {} ms", now.elapsed().as_millis());

        Ok(proof)
    }
}