../../.cargo/katex-header.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
// LICENSE file in the root directory of this source tree.

use alloc::vec::Vec;
use core::{
    fmt::{Debug, Display},
    ops::{
        Add, AddAssign, BitAnd, Div, DivAssign, Mul, MulAssign, Neg, Shl, Shr, ShrAssign, Sub,
        SubAssign,
    },
};

use utils::{AsBytes, Deserializable, DeserializationError, Randomizable, Serializable};

// FIELD ELEMENT
// ================================================================================================
/// Defines an element in a finite field.
///
/// This trait defines basic arithmetic operations for elements in
/// [finite fields](https://en.wikipedia.org/wiki/Finite_field) (e.g. addition subtraction,
/// multiplication, division) as well as several convenience functions (e.g. double, square cube).
/// Moreover, it defines interfaces for serializing and deserializing field elements.
///
/// The elements could be in a prime field or an extension of a prime field. Currently, only
/// quadratic and cubic field extensions are supported.
pub trait FieldElement:
    Copy
    + Clone
    + Debug
    + Display
    + Default
    + Send
    + Sync
    + Eq
    + PartialEq
    + Sized
    + Add<Self, Output = Self>
    + Sub<Self, Output = Self>
    + Mul<Self, Output = Self>
    + Div<Self, Output = Self>
    + AddAssign<Self>
    + SubAssign<Self>
    + MulAssign<Self>
    + DivAssign<Self>
    + Neg<Output = Self>
    + From<u32>
    + From<u16>
    + From<u8>
    + TryFrom<u64>
    + TryFrom<u128>
    + for<'a> TryFrom<&'a [u8]>
    + ExtensionOf<<Self as FieldElement>::BaseField>
    + AsBytes
    + Randomizable
    + Serializable
    + Deserializable
{
    /// A type defining positive integers big enough to describe a field modulus for
    /// `Self::BaseField` with no loss of precision.
    type PositiveInteger: Debug
        + Copy
        + PartialEq
        + PartialOrd
        + ShrAssign
        + Shl<u32, Output = Self::PositiveInteger>
        + Shr<u32, Output = Self::PositiveInteger>
        + BitAnd<Output = Self::PositiveInteger>
        + From<u32>
        + From<u64>;

    /// Base field type for this finite field. For prime fields, `BaseField` should be set
    /// to `Self`.
    type BaseField: StarkField;

    /// Extension degree of this field with respect to `Self::BaseField`. For prime fields,
    /// extension degree should be set to 1.
    const EXTENSION_DEGREE: usize;

    /// Number of bytes needed to encode an element
    const ELEMENT_BYTES: usize;

    /// True if internal representation of the element is the same as its canonical representation.
    const IS_CANONICAL: bool;

    /// The additive identity.
    const ZERO: Self;

    /// The multiplicative identity.
    const ONE: Self;

    // ALGEBRA
    // --------------------------------------------------------------------------------------------

    /// Returns this field element added to itself.
    #[inline]
    #[must_use]
    fn double(self) -> Self {
        self + self
    }

    /// Returns this field element raised to power 2.
    #[inline]
    #[must_use]
    fn square(self) -> Self {
        self * self
    }

    /// Returns this field element raised to power 3.
    #[inline]
    #[must_use]
    fn cube(self) -> Self {
        self * self * self
    }

    /// Exponentiates this field element by `power` parameter.
    #[must_use]
    fn exp(self, power: Self::PositiveInteger) -> Self {
        self.exp_vartime(power)
    }

    /// Exponentiates this field element by `power` parameter.
    /// This function is expressly variable time, to speed-up verifier computations.
    #[must_use]
    fn exp_vartime(self, power: Self::PositiveInteger) -> Self {
        let mut r = Self::ONE;
        let mut b = self;
        let mut p = power;

        let int_zero = Self::PositiveInteger::from(0u32);
        let int_one = Self::PositiveInteger::from(1u32);

        if p == int_zero {
            return Self::ONE;
        } else if b == Self::ZERO {
            return Self::ZERO;
        }

        while p > int_zero {
            if p & int_one == int_one {
                r *= b;
            }
            p >>= int_one;
            b = b.square();
        }

        r
    }

    /// Returns a multiplicative inverse of this field element. If this element is ZERO, ZERO is
    /// returned.
    #[must_use]
    fn inv(self) -> Self;

    /// Returns a conjugate of this field element.
    #[must_use]
    fn conjugate(&self) -> Self;

    // BASE ELEMENT CONVERSIONS
    // --------------------------------------------------------------------------------------------

    /// Return base filed element component of this field element at the specified index `i`.
    ///
    /// # Panics
    /// Panics if the specified index is greater than or equal to `Self::EXTENSION_DEGREE`.
    fn base_element(&self, i: usize) -> Self::BaseField;

    /// Converts a slice of field elements into a slice of elements in the underlying base field.
    ///
    /// For base STARK fields, the input and output slices are the same. For extension fields, the
    /// output slice will contain decompositions of each extension element into underlying base
    /// field elements.
    fn slice_as_base_elements(elements: &[Self]) -> &[Self::BaseField];

    /// Convert a slice of base field elements into a slice of field elements.
    ///
    /// For base STARK fields, the input and output slices are the same. For extension fields, the
    /// output slice will contain a composition of base field elements into extension field
    /// elements.
    ///
    /// # Panics
    /// Panics if the the length of the provided slice is not divisible by `Self::EXTENSION_DEGREE`.
    fn slice_from_base_elements(elements: &[Self::BaseField]) -> &[Self];

    // SERIALIZATION / DESERIALIZATION
    // --------------------------------------------------------------------------------------------

    /// Converts a list of elements into a list of bytes.
    ///
    /// The elements may be in the internal representation rather than in the canonical
    /// representation. This conversion is intended to be zero-copy (i.e. by re-interpreting the
    /// underlying memory).
    fn elements_as_bytes(elements: &[Self]) -> &[u8];

    /// Converts a list of bytes into a list of field elements.
    ///
    /// The elements are assumed to encoded in the internal representation rather than in the
    /// canonical representation. The conversion is intended to be zero-copy (i.e. by
    /// re-interpreting the underlying memory).
    ///
    /// # Errors
    /// An error is returned if:
    /// * Memory alignment of `bytes` does not match memory alignment of field element data.
    /// * Length of `bytes` does not divide into whole number of elements.
    ///
    /// # Safety
    /// This function is unsafe because it does not check whether underlying bytes represent valid
    /// field elements according to their internal representation.
    unsafe fn bytes_as_elements(bytes: &[u8]) -> Result<&[Self], DeserializationError>;
}

// STARK FIELD
// ================================================================================================

/// Defines an element in a STARK-friendly finite field.
///
/// A STARK-friendly field is defined as a prime field with high two-addicity. That is, the
/// the modulus of the field should be a prime number of the form `k` * 2^`n` + 1 (a Proth prime),
/// where `n` is relatively large (e.g., greater than 32).
pub trait StarkField: FieldElement<BaseField = Self> {
    // CONSTANTS
    //----------------------------------------------------------------------------------------------

    /// Prime modulus of the field. Must be of the form `k` * 2^`n` + 1 (a Proth prime).
    /// This ensures that the field has high 2-adicity.
    const MODULUS: Self::PositiveInteger;

    /// The number of bits needed to represents `Self::MODULUS`.
    const MODULUS_BITS: u32;

    /// A multiplicative generator of the field.
    const GENERATOR: Self;

    /// Let Self::MODULUS = `k` * 2^`n` + 1; then, TWO_ADICITY is `n`.
    const TWO_ADICITY: u32;

    /// Let Self::MODULUS = `k` * 2^`n` + 1; then, TWO_ADIC_ROOT_OF_UNITY is 2^`n` root of unity
    /// computed as Self::GENERATOR^`k`.
    const TWO_ADIC_ROOT_OF_UNITY: Self;

    // REQUIRED METHODS
    //----------------------------------------------------------------------------------------------

    /// Returns byte representation of the field modulus in little-endian byte order.
    fn get_modulus_le_bytes() -> Vec<u8>;

    /// Returns a canonical integer representation of this field element.
    fn as_int(&self) -> Self::PositiveInteger;

    // PROVIDED METHODS
    //----------------------------------------------------------------------------------------------

    /// Returns the root of unity of order 2^`n`.
    ///
    /// # Panics
    /// Panics if the root of unity for the specified order does not exist in this field.
    fn get_root_of_unity(n: u32) -> Self {
        assert!(n != 0, "cannot get root of unity for n = 0");
        assert!(n <= Self::TWO_ADICITY, "order cannot exceed 2^{}", Self::TWO_ADICITY);
        let power = Self::PositiveInteger::from(1u32) << (Self::TWO_ADICITY - n);
        Self::TWO_ADIC_ROOT_OF_UNITY.exp(power)
    }

    /// Converts a slice of bytes into a field element. Pads the slice if it is smaller than the number
    /// of bytes needed to represent an element.
    ///
    /// # Panics
    /// Panics if
    /// - the length of `bytes` is greater than the number of bytes needed to encode an element.
    /// - the value of the bytes is not a valid field element after padding
    fn from_bytes_with_padding(bytes: &[u8]) -> Self {
        assert!(bytes.len() < Self::ELEMENT_BYTES);

        let mut buf = bytes.to_vec();
        buf.resize(Self::ELEMENT_BYTES, 0);

        let element = match Self::try_from(buf.as_slice()) {
            Ok(element) => element,
            Err(_) => panic!("element deserialization failed"),
        };

        element
    }
}

// EXTENSIBLE FIELD
// ================================================================================================

/// Defines basic arithmetic in an extension of a [StarkField] of a given degree.
///
/// This trait defines how to perform multiplication and compute a Frobenius automorphisms of an
/// element in an extension of degree N for a given [StarkField]. It as assumed that an element in
/// degree N extension field can be represented by N field elements in the base field.
///
/// Implementation of this trait implicitly defines the irreducible polynomial over which the
/// extension field is defined.
pub trait ExtensibleField<const N: usize>: StarkField {
    /// Returns a product of `a` and `b` in the field defined by this extension.
    fn mul(a: [Self; N], b: [Self; N]) -> [Self; N];

    /// Returns the square of `a` in the field defined by this extension.
    fn square(a: [Self; N]) -> [Self; N] {
        <Self as ExtensibleField<N>>::mul(a, a)
    }

    /// Returns a product of `a` and `b` in the field defined by this extension. `b` represents
    /// an element in the base field.
    fn mul_base(a: [Self; N], b: Self) -> [Self; N];

    /// Returns Frobenius automorphisms for `x` in the field defined by this extension.
    fn frobenius(x: [Self; N]) -> [Self; N];

    /// Returns true if this extension is supported for the underlying base field.
    fn is_supported() -> bool {
        true
    }
}

// EXTENSION OF
// ================================================================================================

/// Specifies that a field is an extension of another field.
///
/// Currently, this implies the following:
/// - An element in the base field can be converted into an element in the extension field.
/// - An element in the extension field can be multiplied by a base field element directly. This
///   can be used for optimization purposes as such multiplication could be much more efficient
///   than multiplication of two extension field elements.
pub trait ExtensionOf<E: FieldElement>: From<E> {
    fn mul_base(self, other: E) -> Self;
}

/// A field is always an extension of itself.
impl<E: FieldElement> ExtensionOf<E> for E {
    #[inline(always)]
    fn mul_base(self, other: E) -> Self {
        self * other
    }
}

// TO ELEMENTS
// ================================================================================================

/// Defines how to convert a struct to a vector of field elements.
pub trait ToElements<E: FieldElement> {
    fn to_elements(&self) -> Vec<E>;
}

impl<E: FieldElement> ToElements<E> for () {
    fn to_elements(&self) -> Vec<E> {
        Vec::new()
    }
}

impl<E: FieldElement> ToElements<E> for E {
    fn to_elements(&self) -> Vec<E> {
        vec![*self]
    }
}