1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
// LICENSE file in the root directory of this source tree.

use crate::{errors::RandomCoinError, Digest, Hasher};
use core::{convert::TryInto, marker::PhantomData};
use math::{FieldElement, StarkField};
use utils::collections::Vec;

// RANDOM COIN
// ================================================================================================

/// Pseudo-random element generator for finite fields.
///
/// A random coin can be used to draws elements uniformly at random from the specified base field
// (which is specified via the `B` type parameter) or from any extension of the base field.
///
/// Internally we use a cryptographic hash function (which is specified via the `H` type parameter),
/// to draw elements from the field. The coin works roughly as follows:
/// - The internal state of the coin consists of a `seed` and a `counter`. At instantiation
///   time, the `seed` is set to a hash of the provided bytes, and the `counter` is set to 0.
/// - To draw the next element, we increment the `counter` and compute hash(`seed` || `counter`).
///   If the resulting value is a valid field element, we return the result; otherwise we try
///   again until a valid element is found or the number of allowed tries is exceeded.
/// - We can also re-seed the coin with a new value. During the reseeding procedure, the
///   seed is set to hash(`old_seed` || `new_seed`), and the counter is reset to 0.
///
/// # Examples
/// ```
/// # use winter_crypto::{RandomCoin, hashers::Blake3_256};
/// # use math::fields::f128::BaseElement;
/// // instantiate a random coin using BLAKE3 as the hash function
/// let mut coin = RandomCoin::<BaseElement, Blake3_256<BaseElement>>::new(&[1, 2, 3, 4]);
///
/// // should draw different elements each time
/// let e1 = coin.draw::<BaseElement>().unwrap();;
/// let e2 = coin.draw::<BaseElement>().unwrap();;
/// assert_ne!(e1, e2);
///
/// let e3 = coin.draw::<BaseElement>().unwrap();;
/// assert_ne!(e1, e3);
/// assert_ne!(e2, e3);
///
/// // should draw same elements for the same seed
/// let mut coin1 = RandomCoin::<BaseElement, Blake3_256<BaseElement>>::new(&[1, 2, 3, 4]);
/// let mut coin2 = RandomCoin::<BaseElement, Blake3_256<BaseElement>>::new(&[1, 2, 3, 4]);
/// let e1 = coin1.draw::<BaseElement>().unwrap();;
/// let e2 = coin2.draw::<BaseElement>().unwrap();;
/// assert_eq!(e1, e2);
///
/// // should draw different elements based on seed
/// let mut coin1 = RandomCoin::<BaseElement, Blake3_256<BaseElement>>::new(&[1, 2, 3, 4]);
/// let mut coin2 = RandomCoin::<BaseElement, Blake3_256<BaseElement>>::new(&[2, 3, 4, 5]);
/// let e1 = coin1.draw::<BaseElement>().unwrap();;
/// let e2 = coin2.draw::<BaseElement>().unwrap();;
/// assert_ne!(e1, e2);
/// ```
pub struct RandomCoin<B, H>
where
    B: StarkField,
    H: Hasher,
{
    seed: H::Digest,
    counter: u64,
    _base_field: PhantomData<B>,
}

impl<B: StarkField, H: Hasher> RandomCoin<B, H> {
    // CONSTRUCTOR
    // --------------------------------------------------------------------------------------------
    /// Returns a new random coin instantiated with the provided `seed`.
    pub fn new(seed: &[u8]) -> Self {
        let seed = H::hash(seed);
        RandomCoin {
            seed,
            counter: 0,
            _base_field: PhantomData,
        }
    }

    // RESEEDING
    // --------------------------------------------------------------------------------------------

    /// Reseeds the coin with the specified data by setting the new seed to hash(`seed` || `data`).
    ///
    /// # Examples
    /// ```
    /// # use winter_crypto::{RandomCoin, Hasher, hashers::Blake3_256};
    /// # use math::fields::f128::BaseElement;
    /// let mut coin1 = RandomCoin::<BaseElement, Blake3_256<BaseElement>>::new(&[1, 2, 3, 4]);
    /// let mut coin2 = RandomCoin::<BaseElement, Blake3_256<BaseElement>>::new(&[1, 2, 3, 4]);
    ///
    /// // should draw the same element form both coins
    /// let e1 = coin1.draw::<BaseElement>().unwrap();
    /// let e2 = coin2.draw::<BaseElement>().unwrap();;
    /// assert_eq!(e1, e2);
    ///
    /// // after reseeding should draw different elements
    /// coin2.reseed(Blake3_256::<BaseElement>::hash(&[2, 3, 4, 5]));
    /// let e1 = coin1.draw::<BaseElement>().unwrap();;
    /// let e2 = coin2.draw::<BaseElement>().unwrap();;
    /// assert_ne!(e1, e2);
    /// ```
    pub fn reseed(&mut self, data: H::Digest) {
        self.seed = H::merge(&[self.seed, data]);
        self.counter = 0;
    }

    /// Reseeds the coin with the specified value by setting the new seed to hash(`seed` ||
    /// `value`).
    ///
    /// # Examples
    /// ```
    /// # use winter_crypto::{RandomCoin, Hasher, hashers::Blake3_256};
    /// # use math::fields::f128::BaseElement;
    /// let mut coin1 = RandomCoin::<BaseElement, Blake3_256<BaseElement>>::new(&[1, 2, 3, 4]);
    /// let mut coin2 = RandomCoin::<BaseElement, Blake3_256<BaseElement>>::new(&[1, 2, 3, 4]);
    ///
    /// // should draw the same element form both coins
    /// let e1 = coin1.draw::<BaseElement>().unwrap();;
    /// let e2 = coin2.draw::<BaseElement>().unwrap();;
    /// assert_eq!(e1, e2);
    ///
    /// // after reseeding should draw different elements
    /// coin2.reseed_with_int(42);
    /// let e1 = coin1.draw::<BaseElement>().unwrap();;
    /// let e2 = coin2.draw::<BaseElement>().unwrap();;
    /// assert_ne!(e1, e2);
    /// ```
    pub fn reseed_with_int(&mut self, value: u64) {
        self.seed = H::merge_with_int(self.seed, value);
        self.counter = 0;
    }

    // PUBLIC ACCESSORS
    // --------------------------------------------------------------------------------------------

    /// Returns the number of leading zeros in the seed if it is interpreted as an integer in
    /// big-endian byte order.
    ///
    /// # Examples
    /// ```
    /// # use winter_crypto::{RandomCoin, hashers::Blake3_256};
    /// # use math::fields::f128::BaseElement;
    /// let mut coin = RandomCoin::<BaseElement, Blake3_256<BaseElement>>::new(&[1, 2, 3, 4]);
    ///
    /// let mut value = 0;
    /// while coin.check_leading_zeros(value) < 2 {
    ///     value += 1;
    /// }
    ///
    /// coin.reseed_with_int(value);
    /// assert!(coin.leading_zeros() >= 2);
    /// ```
    pub fn leading_zeros(&self) -> u32 {
        let bytes = self.seed.as_bytes();
        let seed_head = u64::from_le_bytes(bytes[..8].try_into().unwrap());
        seed_head.trailing_zeros()
    }

    /// Computes hash(`seed` || `value`) and returns the number of leading zeros in the resulting
    /// value if it is interpreted as an integer in big-endian byte order.
    pub fn check_leading_zeros(&self, value: u64) -> u32 {
        let new_seed = H::merge_with_int(self.seed, value);
        let bytes = new_seed.as_bytes();
        let seed_head = u64::from_le_bytes(bytes[..8].try_into().unwrap());
        seed_head.trailing_zeros()
    }

    // DRAW METHODS
    // --------------------------------------------------------------------------------------------

    /// Returns the next pseudo-random field element.
    ///
    /// # Errors
    /// Returns an error if a valid field element could not be generated after 1000 calls to the
    /// PRNG.
    pub fn draw<E>(&mut self) -> Result<E, RandomCoinError>
    where
        E: FieldElement<BaseField = B>,
    {
        for _ in 0..1000 {
            // get the next pseudo-random value and take the first ELEMENT_BYTES from it
            let value = self.next();
            let bytes = &value.as_bytes()[..E::ELEMENT_BYTES];

            // check if the bytes can be converted into a valid field element; if they can,
            // return; otherwise try again
            if let Some(element) = E::from_random_bytes(bytes) {
                return Ok(element);
            }
        }

        Err(RandomCoinError::FailedToDrawFieldElement(1000))
    }

    /// Returns the next pair of pseudo-random field elements.
    ///
    /// # Errors
    /// Returns an error if any of the field elements could not be generated after 100 calls to
    /// the PRNG;
    pub fn draw_pair<E>(&mut self) -> Result<(E, E), RandomCoinError>
    where
        E: FieldElement<BaseField = B>,
    {
        Ok((self.draw()?, self.draw()?))
    }

    /// Returns the next triplet of pseudo-random field elements.
    ///
    /// # Errors
    /// Returns an error if any of the field elements could not be generated after 100 calls to
    /// the PRNG;
    pub fn draw_triple<E>(&mut self) -> Result<(E, E, E), RandomCoinError>
    where
        E: FieldElement<BaseField = B>,
    {
        Ok((self.draw()?, self.draw()?, self.draw()?))
    }

    /// Returns a vector of unique integers selected from the range [0, domain_size).
    ///
    /// # Errors
    /// Returns an error if the specified number of unique integers could not be generated
    /// after 1000 calls to the PRNG.
    ///
    /// # Panics
    /// Panics if:
    /// - `domain_size` is not a power of two.
    /// - `num_values` is greater than or equal to `domain_size`.
    ///
    /// # Examples
    /// ```
    /// # use std::collections::HashSet;
    /// # use winter_crypto::{RandomCoin, hashers::Blake3_256};
    /// # use math::fields::f128::BaseElement;
    /// let mut coin = RandomCoin::<BaseElement, Blake3_256<BaseElement>>::new(&[1, 2, 3, 4]);
    ///
    /// let num_values = 20;
    /// let domain_size = 64;
    /// let values = coin.draw_integers(num_values, domain_size).unwrap();
    ///
    /// assert_eq!(num_values, values.len());
    ///
    /// let mut value_set = HashSet::new();
    /// for value in values {
    ///     assert!(value < domain_size);
    ///     assert!(value_set.insert(value));
    /// }
    /// ```
    pub fn draw_integers(
        &mut self,
        num_values: usize,
        domain_size: usize,
    ) -> Result<Vec<usize>, RandomCoinError> {
        assert!(
            domain_size.is_power_of_two(),
            "domain size must be a power of two"
        );
        assert!(
            num_values < domain_size,
            "number of values must be smaller than domain size"
        );

        // determine how many bits are needed to represent valid values in the domain
        let v_mask = (domain_size - 1) as u64;

        // draw values from PRNG until we get as many unique values as specified by num_queries
        let mut values = Vec::new();
        for _ in 0..1000 {
            // get the next pseudo-random value and read the first 8 bytes from it
            let bytes: [u8; 8] = self.next().as_bytes()[..8].try_into().unwrap();

            // convert to integer and limit the integer to the number of bits which can fit
            // into the specified domain
            let value = (u64::from_le_bytes(bytes) & v_mask) as usize;

            if values.contains(&value) {
                continue;
            }
            values.push(value);
            if values.len() == num_values {
                break;
            }
        }

        if values.len() < num_values {
            return Err(RandomCoinError::FailedToDrawIntegers(
                num_values,
                values.len(),
                1000,
            ));
        }

        Ok(values)
    }

    // HELPER METHODS
    // --------------------------------------------------------------------------------------------

    /// Updates the state by incrementing the counter and returns hash(seed || counter)
    fn next(&mut self) -> H::Digest {
        self.counter += 1;
        H::merge_with_int(self.seed, self.counter)
    }
}