1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
// LICENSE file in the root directory of this source tree.
use crate::errors::AssertionError;
use core::{
cmp::{Ord, Ordering, PartialOrd},
fmt::{Display, Formatter},
};
use math::FieldElement;
use utils::collections::Vec;
#[cfg(test)]
mod tests;
// CONSTANTS
// ================================================================================================
const MIN_STRIDE_LENGTH: usize = 2;
const NO_STRIDE: usize = 0;
// ASSERTION
// ================================================================================================
/// An assertion made against an execution trace.
///
/// An assertion is always placed against a single column of an execution trace, but can cover
/// multiple steps and multiple values. Specifically, there are three kinds of assertions:
///
/// 1. **Single** assertion - which requires that a value in a single cell of an execution trace
/// is equal to the specified value.
/// 2. **Periodic** assertion - which requires that values in multiple cells of a single column
/// are equal to the specified value. The cells must be evenly spaced at intervals with lengths
/// equal to powers of two. For example, we can specify that values in a column must be equal
/// to 0 at steps 0, 8, 16, 24, 32 etc. Steps can also start at some offset - e.g., 1, 9, 17,
/// 25, 33 is also a valid sequence of steps.
/// 3. **Sequence** assertion - which requires that multiple cells in a single column are equal
/// to the values from the provided list. The cells must be evenly spaced at intervals with
/// lengths equal to powers of two. For example, we can specify that values in a column must
/// be equal to a sequence 1, 2, 3, 4 at steps 0, 8, 16, 24. That is, value at step 0 should be
/// equal to 1, value at step 8 should be equal to 2 etc.
///
/// Note that single and periodic assertions are succinct. That is, a verifier can evaluate them
/// very efficiently. However, sequence assertions have liner complexity in the number of
/// asserted values. Though, unless many thousands of values are asserted, practical impact of
/// this linear complexity should be negligible.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Assertion<E: FieldElement> {
pub(super) column: usize,
pub(super) first_step: usize,
pub(super) stride: usize,
pub(super) values: Vec<E>,
}
impl<E: FieldElement> Assertion<E> {
// CONSTRUCTORS
// --------------------------------------------------------------------------------------------
/// Returns an assertion against a single cell of an execution trace.
///
/// The returned assertion requires that the value in the specified `column` at the specified
/// `step` is equal to the provided `value`.
pub fn single(column: usize, step: usize, value: E) -> Self {
Assertion {
column,
first_step: step,
stride: NO_STRIDE,
values: vec![value],
}
}
/// Returns an single-value assertion against multiple cells of a single column.
///
/// The returned assertion requires that values in the specified `column` must be equal to
/// the specified `value` at steps which start at `first_step` and repeat in equal intervals
/// specified by `stride`.
///
/// # Panics
/// Panics if:
/// * `stride` is not a power of two, or is smaller than 2.
/// * `first_step` is greater than `stride`.
pub fn periodic(column: usize, first_step: usize, stride: usize, value: E) -> Self {
validate_stride(stride, first_step, column);
Assertion {
column,
first_step,
stride,
values: vec![value],
}
}
/// Returns a multi-value assertion against multiple cells of a single column.
///
/// The returned assertion requires that values in the specified `column` must be equal to
/// the provided `values` at steps which start at `first_step` and repeat in equal intervals
/// specified by `stride` until all values have been consumed.
///
/// # Panics
/// Panics if:
/// * `stride` is not a power of two, or is smaller than 2.
/// * `first_step` is greater than `stride`.
/// * `values` is empty or number of values in not a power of two.
pub fn sequence(column: usize, first_step: usize, stride: usize, values: Vec<E>) -> Self {
validate_stride(stride, first_step, column);
assert!(
!values.is_empty(),
"invalid assertion for column {}: number of asserted values must be greater than zero",
column
);
assert!(
values.len().is_power_of_two(),
"invalid assertion for column {}: number of asserted values must be a power of two, but was {}",
column,
values.len()
);
Assertion {
column,
first_step,
stride: if values.len() == 1 { NO_STRIDE } else { stride },
values,
}
}
// PUBLIC ACCESSORS
// --------------------------------------------------------------------------------------------
/// Returns index of the column against which this assertion is placed.
pub fn column(&self) -> usize {
self.column
}
/// Returns the first step of the execution trace against which this assertion is placed.
///
/// For single value assertions this is equivalent to the assertion step.
pub fn first_step(&self) -> usize {
self.first_step
}
/// Returns the interval at which the assertion repeats in the execution trace.
///
/// For single value assertions, this will be 0.
pub fn stride(&self) -> usize {
self.stride
}
/// Returns asserted values.
///
/// For single value and periodic assertions this will be a slice containing one value.
pub fn values(&self) -> &[E] {
&self.values
}
/// Returns true if this is a single-value assertion (one value, one step).
pub fn is_single(&self) -> bool {
self.stride == NO_STRIDE
}
/// Returns true if this is a periodic assertion (one value, many steps).
pub fn is_periodic(&self) -> bool {
self.stride != NO_STRIDE && self.values.len() == 1
}
/// Returns true if this is a sequence assertion (many values, many steps).
pub fn is_sequence(&self) -> bool {
self.values.len() > 1
}
// PUBLIC METHODS
// --------------------------------------------------------------------------------------------
/// Checks if this assertion overlaps with the provided assertion.
///
/// Overlap is defined as asserting a value for the same step in the same column.
pub fn overlaps_with(&self, other: &Assertion<E>) -> bool {
if self.column != other.column {
return false;
}
if self.first_step == other.first_step {
return true;
}
if self.stride == other.stride {
return false;
}
// at this point we know that assertions are for the same column but they start
// on different steps and also have different strides
if self.first_step < other.first_step {
if self.is_single() {
return false;
}
if other.is_single() || self.stride < other.stride {
(other.first_step - self.first_step) % self.stride == 0
} else {
false
}
} else {
if other.is_single() {
return false;
}
if self.is_single() || other.stride < self.stride {
(self.first_step - other.first_step) % other.stride == 0
} else {
false
}
}
}
/// Panics if the assertion cannot be placed against an execution trace of the specified width.
pub fn validate_trace_width(&self, trace_width: usize) -> Result<(), AssertionError> {
if self.column >= trace_width {
return Err(AssertionError::TraceWidthTooShort(self.column, trace_width));
}
Ok(())
}
/// Checks if the assertion is valid against an execution trace of the specified length.
///
/// # Errors
/// Returns an error if:
/// * `trace_length` is not a power of two.
/// * For single assertion, `first_step` >= `trace_length`.
/// * For periodic assertion, `stride` > `trace_length`.
/// * For sequence assertion, `num_values` * `stride` != `trace_length`;
pub fn validate_trace_length(&self, trace_length: usize) -> Result<(), AssertionError> {
if !trace_length.is_power_of_two() {
return Err(AssertionError::TraceLengthNotPowerOfTwo(trace_length));
}
if self.is_single() {
if self.first_step >= trace_length {
return Err(AssertionError::TraceLengthTooShort(
(self.first_step + 1).next_power_of_two(),
trace_length,
));
}
} else if self.is_periodic() {
if self.stride > trace_length {
return Err(AssertionError::TraceLengthTooShort(
self.stride,
trace_length,
));
}
} else {
let expected_length = self.values.len() * self.stride;
if expected_length != trace_length {
return Err(AssertionError::TraceLengthNotExact(
expected_length,
trace_length,
));
}
}
Ok(())
}
/// Executes the provided closure for all possible instantiations of this assertions against
/// a execution trace of the specified length.
///
/// # Panics
/// Panics if the specified trace length is not valid for this assertion.
pub fn apply<F>(&self, trace_length: usize, mut f: F)
where
F: FnMut(usize, E),
{
self.validate_trace_length(trace_length)
.unwrap_or_else(|err| {
panic!("invalid trace length: {}", err);
});
if self.is_single() {
f(self.first_step, self.values[0]);
} else if self.is_periodic() {
for i in 0..(trace_length / self.stride) {
f(self.first_step + self.stride * i, self.values[0]);
}
} else {
for (i, &value) in self.values.iter().enumerate() {
f(self.first_step + self.stride * i, value);
}
}
}
/// Returns the number of steps against which this assertion will be applied given an
/// execution trace of the specified length.
///
/// * For single-value assertions, this will always be one.
/// * For periodic assertions this will be equal to `trace_length` / `stride`.
/// * For sequence assertions this will be equal to the number of asserted values.
///
/// # Panics
/// Panics if the specified trace length is not valid for this assertion.
pub fn get_num_steps(&self, trace_length: usize) -> usize {
self.validate_trace_length(trace_length)
.unwrap_or_else(|err| {
panic!("invalid trace length: {}", err);
});
if self.is_single() {
1
} else if self.is_periodic() {
trace_length / self.stride
} else {
self.values.len()
}
}
}
// OTHER TRAIT IMPLEMENTATIONS
// =================================================================================================
/// We define ordering of assertions to be first by stride, then by first_step, and finally by
/// column in ascending order.
impl<E: FieldElement> Ord for Assertion<E> {
fn cmp(&self, other: &Self) -> Ordering {
if self.stride == other.stride {
if self.first_step == other.first_step {
self.column.partial_cmp(&other.column).unwrap()
} else {
self.first_step.partial_cmp(&other.first_step).unwrap()
}
} else {
self.stride.partial_cmp(&other.stride).unwrap()
}
}
}
impl<E: FieldElement> PartialOrd for Assertion<E> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl<E: FieldElement> Display for Assertion<E> {
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
write!(f, "(column={}, ", self.column)?;
match self.stride {
0 => write!(f, "step={}, ", self.first_step)?,
_ => {
let second_step = self.first_step + self.stride;
write!(f, "steps=[{}, {}, ...], ", self.first_step, second_step)?;
}
}
match self.values.len() {
1 => write!(f, "value={})", self.values[0]),
2 => write!(f, "values=[{}, {}])", self.values[0], self.values[1]),
_ => write!(f, "values=[{}, {}, ...])", self.values[0], self.values[1]),
}
}
}
// HELPER FUNCTIONS
// =================================================================================================
fn validate_stride(stride: usize, first_step: usize, column: usize) {
assert!(
stride.is_power_of_two(),
"invalid assertion for column {}: stride must be a power of two, but was {}",
column,
stride
);
assert!(
stride >= MIN_STRIDE_LENGTH,
"invalid assertion for column {}: stride must be at least {}, but was {}",
column,
MIN_STRIDE_LENGTH,
stride
);
assert!(
first_step < stride,
"invalid assertion for column {}: first step must be smaller than stride ({} steps), but was {}",
column,
stride,
first_step
);
}