1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
use super::*;
use events::ModifiersState;

pub unsafe fn select_xinput_events(
    xconn: &Arc<XConnection>,
    window: c_ulong,
    device_id: c_int,
    mask: i32,
) -> Flusher {
    let mut event_mask = ffi::XIEventMask {
        deviceid: device_id,
        mask: &mask as *const _ as *mut c_uchar,
        mask_len: mem::size_of_val(&mask) as c_int,
    };
    (xconn.xinput2.XISelectEvents)(
        xconn.display,
        window,
        &mut event_mask as *mut ffi::XIEventMask,
        1, // number of masks to read from pointer above
    );
    Flusher::new(xconn)
}

#[allow(dead_code)]
pub unsafe fn select_xkb_events(
    xconn: &Arc<XConnection>,
    device_id: c_uint,
    mask: c_ulong,
) -> Option<Flusher> {
    let status = (xconn.xlib.XkbSelectEvents)(
        xconn.display,
        device_id,
        mask,
        mask,
    );
    if status == ffi::True {
        Some(Flusher::new(xconn))
    } else {
        None
    }
}

impl From<ffi::XIModifierState> for ModifiersState {
    fn from(mods: ffi::XIModifierState) -> Self {
        let state = mods.effective as c_uint;
        ModifiersState {
            alt: state & ffi::Mod1Mask != 0,
            shift: state & ffi::ShiftMask != 0,
            ctrl: state & ffi::ControlMask != 0,
            logo: state & ffi::Mod4Mask != 0,
        }
    }
}

pub struct PointerState<'a> {
    xconn: &'a Arc<XConnection>,
    _root: ffi::Window,
    _child: ffi::Window,
    _root_x: c_double,
    _root_y: c_double,
    _win_x: c_double,
    _win_y: c_double,
    _buttons: ffi::XIButtonState,
    modifiers: ffi::XIModifierState,
    _group: ffi::XIGroupState,
    _relative_to_window: bool,
}

impl<'a> PointerState<'a> {
    pub fn get_modifier_state(&self) -> ModifiersState {
        self.modifiers.into()
    }
}

impl<'a> Drop for PointerState<'a> {
    fn drop(&mut self) {
        unsafe {
            // This is why you need to read the docs carefully...
            (self.xconn.xlib.XFree)(self._buttons.mask as _);
        }
    }
}

pub unsafe fn query_pointer(
    xconn: &Arc<XConnection>,
    window: ffi::Window,
    device_id: c_int,
) -> Result<PointerState, XError> {
    let mut root_return = mem::uninitialized();
    let mut child_return = mem::uninitialized();
    let mut root_x_return = mem::uninitialized();
    let mut root_y_return = mem::uninitialized();
    let mut win_x_return = mem::uninitialized();
    let mut win_y_return = mem::uninitialized();
    let mut buttons_return = mem::uninitialized();
    let mut modifiers_return = mem::uninitialized();
    let mut group_return = mem::uninitialized();

    let relative_to_window = (xconn.xinput2.XIQueryPointer)(
        xconn.display,
        device_id,
        window,
        &mut root_return,
        &mut child_return,
        &mut root_x_return,
        &mut root_y_return,
        &mut win_x_return,
        &mut win_y_return,
        &mut buttons_return,
        &mut modifiers_return,
        &mut group_return,
    ) == ffi::True;

    xconn.check_errors()?;

    Ok(PointerState {
        xconn,
        _root: root_return,
        _child: child_return,
        _root_x: root_x_return,
        _root_y: root_y_return,
        _win_x: win_x_return,
        _win_y: win_y_return,
        _buttons: buttons_return,
        modifiers: modifiers_return,
        _group: group_return,
        _relative_to_window: relative_to_window,
    })
}

unsafe fn lookup_utf8_inner(
    xconn: &Arc<XConnection>,
    ic: ffi::XIC,
    key_event: &mut ffi::XKeyEvent,
    buffer: &mut [u8],
) -> (ffi::KeySym, ffi::Status, c_int) {
    let mut keysym: ffi::KeySym = 0;
    let mut status: ffi::Status = 0;
    let count = (xconn.xlib.Xutf8LookupString)(
        ic,
        key_event,
        buffer.as_mut_ptr() as *mut c_char,
        buffer.len() as c_int,
        &mut keysym,
        &mut status,
    );
    (keysym, status, count)
}

// A base buffer size of 1kB uses a negligible amount of RAM while preventing us from having to
// re-allocate (and make another round-trip) in the *vast* majority of cases.
// To test if lookup_utf8 works correctly, set this to 1.
const TEXT_BUFFER_SIZE: usize = 1024;

pub unsafe fn lookup_utf8(
    xconn: &Arc<XConnection>,
    ic: ffi::XIC,
    key_event: &mut ffi::XKeyEvent,
) -> String {
    let mut buffer: [u8; TEXT_BUFFER_SIZE] = mem::uninitialized();
    let (_, status, count) = lookup_utf8_inner(
        xconn,
        ic,
        key_event,
        &mut buffer,
    );

    // The buffer overflowed, so we'll make a new one on the heap.
    if status == ffi::XBufferOverflow {
        let mut buffer = Vec::with_capacity(count as usize);
        buffer.set_len(count as usize);
        let (_, _, new_count) = lookup_utf8_inner(
            xconn,
            ic,
            key_event,
            &mut buffer,
        );
        debug_assert_eq!(count, new_count);
        str::from_utf8(&buffer[..count as usize])
            .unwrap_or("")
            .to_string()
    } else {
        str::from_utf8(&buffer[..count as usize])
            .unwrap_or("")
            .to_string()
    }
}