1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
//! # Wigner 3nj Symbols
//!
//! `wigner_3nj_symbols` is a library to calculate 3n-j symbols for arbitrary positive integer n.
//!
//! This crate does not support arbitrary-precision arithmetic.
//!
//! Definitions of 3n-j symbols are based on equations (17.1) and (17.2) of the following textbook.
//!
//! A. P. Yutsis, I. B. Levinson, and V. V. Vanagas, Mathematical Apparatus of the Theory of Angular Momentum (Israel Program for Scientific Translations, Jerusalem, 1962).
use factorial::Factorial;

/// Wigner 3n-j Symobols of the first kind
///
/// # Examples
///
/// ```
/// use wigner_3nj_symbols::Wigner3nj1st;
///
/// let w = Wigner3nj1st {
///     js: vec!(1,1,1),
///     ls: vec!(2,2,2),
///     ks: vec!(1,1,1)
/// };
///
/// assert_eq!(w.value(), 0.1388888888888889)
/// ```
pub struct Wigner3nj1st {
    pub js: Vec<u128>,
    pub ls: Vec<u128>,
    pub ks: Vec<u128>,
}

/// Wigner 3n-j Symobols of the second kind
///
/// # Examples
///
/// ```
/// use wigner_3nj_symbols::Wigner3nj2nd;
///
/// let w = Wigner3nj2nd {
///     js: vec!(1,1,1),
///     ls: vec!(2,2,2),
///     ks: vec!(1,1,1)
/// };
///
/// assert_eq!(w.value(), 0.1111111111111111)
/// ```
pub struct Wigner3nj2nd {
    pub js: Vec<u128>,
    pub ls: Vec<u128>,
    pub ks: Vec<u128>,
}

impl Wigner3nj1st {
    pub fn value(self) -> f64 {
        let Wigner3nj1st { js, ls, ks } = self;

        let kmin = 0;
        let kmax = js[0] + ks[0];
        let n = ls.len();
        let overall_phase = phase(
            (js.iter().sum::<u128>() + ls.iter().sum::<u128>() + ks.iter().sum::<u128>()) / 2,
        );
        let mut value = 0.0;
        for i in 0..(kmax - kmin) / 2 + 1 {
            let x = kmin + 2 * i;
            let mut wprd = 1.0;
            for i in 0..n - 1 {
                let w = Wigner6j {
                    j1: js[i],
                    j2: ks[i],
                    j3: x,
                    j4: ks[i + 1],
                    j5: js[i + 1],
                    j6: ls[i],
                };
                wprd *= w.value();
            }
            let w = Wigner6j {
                j1: js[n - 1],
                j2: ks[n - 1],
                j3: x,
                j4: js[0],
                j5: ks[0],
                j6: ls[n - 1],
            };
            wprd *= w.value();
            value += (x + 1) as f64 * phase((n as u128 - 1) * x / 2) * wprd;
        }
        value * overall_phase
    }
}

impl Wigner3nj2nd {
    pub fn value(self) -> f64 {
        let Wigner3nj2nd { js, ls, ks } = self;

        let kmin = 0;
        let kmax = js[0] + ks[0];
        let n = ls.len();
        let overall_phase = phase(
            (js.iter().sum::<u128>() + ls.iter().sum::<u128>() + ks.iter().sum::<u128>()) / 2,
        );
        let mut value = 0.0;
        for i in 0..(kmax - kmin) / 2 + 1 {
            let x = kmin + 2 * i;
            let mut wprd = 1.0;
            for i in 0..n - 1 {
                let w = Wigner6j {
                    j1: js[i],
                    j2: ks[i],
                    j3: x,
                    j4: ks[i + 1],
                    j5: js[i + 1],
                    j6: ls[i],
                };
                wprd *= w.value();
            }
            let w = Wigner6j {
                j1: js[n - 1],
                j2: ks[n - 1],
                j3: x,
                j4: ks[0],
                j5: js[0],
                j6: ls[n - 1],
            };
            wprd *= w.value();
            value += (x + 1) as f64 * phase(n as u128 * x / 2) * wprd;
        }
        value * overall_phase
    }
}

/// Wigner 6j Symobols
///
/// # Examples
///
/// ```
/// use wigner_3nj_symbols::Wigner6j;
///
/// let w = Wigner6j {
///     j1: 1,
///     j2: 1,
///     j3: 0,
///     j4: 1,
///     j5: 1,
///     j6: 2,
/// };
///
/// assert_eq!(w.value(), 0.5)
/// ```
pub struct Wigner6j {
    pub j1: u128,
    pub j2: u128,
    pub j3: u128,
    pub j4: u128,
    pub j5: u128,
    pub j6: u128,
}

impl Wigner6j {
    pub fn value(self) -> f64 {
        let Wigner6j {
            j1,
            j2,
            j3,
            j4,
            j5,
            j6,
        } = self;
        if violate_triad_conditions(j1, j2, j3) {
            return 0.0;
        }

        if violate_triad_conditions(j1, j5, j6) {
            return 0.0;
        }

        if violate_triad_conditions(j4, j2, j6) {
            return 0.0;
        }

        if violate_triad_conditions(j4, j5, j3) {
            return 0.0;
        }

        let prod_delta =
            delta(j1, j2, j3) * delta(j4, j5, j3) * delta(j1, j5, j6) * delta(j4, j2, j6);
        let mut sum = 0.0;
        let mut numerator;
        let mut denominator;
        let kmin = [j1 + j2 + j3, j4 + j5 + j3, j1 + j5 + j6, j4 + j2 + j6]
            .iter()
            .fold(0, |m, v| *v.max(&m));
        let kmax = [j1 + j2 + j4 + j5, j1 + j3 + j4 + j6, j2 + j3 + j5 + j6]
            .iter()
            .fold(u128::MAX, |m, v| *v.min(&m));
        let mut k;
        for i in 0..(kmax - kmin) / 2 + 1 {
            k = kmin + i * 2;
            numerator = phase(k / 2) * (k / 2 + 1).factorial() as f64;
            denominator = ((k - j1 - j2 - j3) / 2).factorial()
                * ((k - j4 - j5 - j3) / 2).factorial()
                * ((k - j1 - j5 - j6) / 2).factorial()
                * ((k - j4 - j2 - j6) / 2).factorial()
                * ((j1 + j2 + j4 + j5 - k) / 2).factorial()
                * ((j1 + j3 + j4 + j6 - k) / 2).factorial()
                * ((j2 + j3 + j5 + j6 - k) / 2).factorial();
            sum += numerator / denominator as f64
        }

        prod_delta.sqrt() * sum
    }
}

fn violate_triad_conditions(j1: u128, j2: u128, j3: u128) -> bool {
    if j2 > j3 {
        j1 < j2 - j3 || j2 + j3 < j1 || (j1 + j2 + j3) % 2 == 1
    } else {
        j1 < j3 - j2 || j2 + j3 < j1 || (j1 + j2 + j3) % 2 == 1
    }
}

fn phase(j: u128) -> f64 {
    if j % 2 == 0 {
        1.0
    } else {
        -1.0
    }
}

fn delta(j1: u128, j2: u128, j3: u128) -> f64 {
    let numerator = ((j1 + j2 - j3) / 2).factorial()
        * ((j3 + j1 - j2) / 2).factorial()
        * ((j2 + j3 - j1) / 2).factorial();
    let denominator = ((j1 + j2 + j3) / 2 + 1).factorial() as f64;
    (numerator as f64) / denominator
}