1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
use std::cell::RefCell;
use std::collections::HashMap;
use wiggle::{BorrowHandle, GuestError, Region};

pub struct BorrowChecker {
    /// Unfortunately, since the terminology of std::cell and the problem domain of borrow checking
    /// overlap, the method calls on this member will be confusing.
    bc: RefCell<InnerBorrowChecker>,
}

impl BorrowChecker {
    /// A `BorrowChecker` manages run-time validation of borrows from a
    /// `GuestMemory`. It keeps track of regions of guest memory which are
    /// possible to alias with Rust references (via the `GuestSlice` and
    /// `GuestStr` structs, which implement `std::ops::Deref` and
    /// `std::ops::DerefMut`. It also enforces that `GuestPtr::read`
    /// does not access memory with an outstanding mutable borrow, and
    /// `GuestPtr::write` does not access memory with an outstanding
    /// shared or mutable borrow.
    pub fn new() -> Self {
        BorrowChecker {
            bc: RefCell::new(InnerBorrowChecker::new()),
        }
    }
    /// Indicates whether any outstanding shared or mutable borrows are known
    /// to the `BorrowChecker`. This function must be `false` in order for it
    /// to be safe to recursively call into a WebAssembly module, or to
    /// manipulate the WebAssembly memory by any other means.
    pub fn has_outstanding_borrows(&self) -> bool {
        self.bc.borrow().has_outstanding_borrows()
    }
    pub fn shared_borrow(&self, r: Region) -> Result<BorrowHandle, GuestError> {
        self.bc.borrow_mut().shared_borrow(r)
    }
    pub fn mut_borrow(&self, r: Region) -> Result<BorrowHandle, GuestError> {
        self.bc.borrow_mut().mut_borrow(r)
    }
    pub fn shared_unborrow(&self, h: BorrowHandle) {
        self.bc.borrow_mut().shared_unborrow(h)
    }
    pub fn mut_unborrow(&self, h: BorrowHandle) {
        self.bc.borrow_mut().mut_unborrow(h)
    }
    pub fn is_shared_borrowed(&self, r: Region) -> bool {
        self.bc.borrow().is_shared_borrowed(r)
    }
    pub fn is_mut_borrowed(&self, r: Region) -> bool {
        self.bc.borrow().is_mut_borrowed(r)
    }
}

#[derive(Debug)]
/// This is a pretty naive way to account for borrows. This datastructure
/// could be made a lot more efficient with some effort.
struct InnerBorrowChecker {
    /// Maps from handle to region borrowed. A HashMap is probably not ideal
    /// for this but it works. It would be more efficient if we could
    /// check `is_borrowed` without an O(n) iteration, by organizing borrows
    /// by an ordering of Region.
    shared_borrows: HashMap<BorrowHandle, Region>,
    mut_borrows: HashMap<BorrowHandle, Region>,
    /// Handle to give out for the next borrow. This is the bare minimum of
    /// bookkeeping of free handles, and in a pathological case we could run
    /// out, hence [`GuestError::BorrowCheckerOutOfHandles`]
    next_handle: BorrowHandle,
}

impl InnerBorrowChecker {
    fn new() -> Self {
        InnerBorrowChecker {
            shared_borrows: HashMap::new(),
            mut_borrows: HashMap::new(),
            next_handle: BorrowHandle(0),
        }
    }

    fn has_outstanding_borrows(&self) -> bool {
        !(self.shared_borrows.is_empty() && self.mut_borrows.is_empty())
    }

    fn is_shared_borrowed(&self, r: Region) -> bool {
        self.shared_borrows.values().any(|b| b.overlaps(r))
    }
    fn is_mut_borrowed(&self, r: Region) -> bool {
        self.mut_borrows.values().any(|b| b.overlaps(r))
    }

    fn new_handle(&mut self) -> Result<BorrowHandle, GuestError> {
        // Reset handles to 0 if all handles have been returned.
        if self.shared_borrows.is_empty() && self.mut_borrows.is_empty() {
            self.next_handle = BorrowHandle(0);
        }
        let h = self.next_handle;
        // Get the next handle. Since we don't recycle handles until all of
        // them have been returned, there is a pathological case where a user
        // may make a Very Large (usize::MAX) number of valid borrows and
        // unborrows while always keeping at least one borrow outstanding, and
        // we will run out of borrow handles.
        self.next_handle = BorrowHandle(
            h.0.checked_add(1)
                .ok_or_else(|| GuestError::BorrowCheckerOutOfHandles)?,
        );
        Ok(h)
    }

    fn shared_borrow(&mut self, r: Region) -> Result<BorrowHandle, GuestError> {
        if self.is_mut_borrowed(r) {
            return Err(GuestError::PtrBorrowed(r));
        }
        let h = self.new_handle()?;
        self.shared_borrows.insert(h, r);
        Ok(h)
    }

    fn mut_borrow(&mut self, r: Region) -> Result<BorrowHandle, GuestError> {
        if self.is_shared_borrowed(r) || self.is_mut_borrowed(r) {
            return Err(GuestError::PtrBorrowed(r));
        }
        let h = self.new_handle()?;
        self.mut_borrows.insert(h, r);
        Ok(h)
    }

    fn shared_unborrow(&mut self, h: BorrowHandle) {
        let removed = self.shared_borrows.remove(&h);
        debug_assert!(removed.is_some(), "double-freed shared borrow");
    }

    fn mut_unborrow(&mut self, h: BorrowHandle) {
        let removed = self.mut_borrows.remove(&h);
        debug_assert!(removed.is_some(), "double-freed mut borrow");
    }
}

#[cfg(test)]
mod test {
    use super::*;
    #[test]
    fn nonoverlapping() {
        let mut bs = InnerBorrowChecker::new();
        let r1 = Region::new(0, 10);
        let r2 = Region::new(10, 10);
        assert!(!r1.overlaps(r2));
        bs.mut_borrow(r1).expect("can borrow r1");
        bs.mut_borrow(r2).expect("can borrow r2");

        let mut bs = InnerBorrowChecker::new();
        let r1 = Region::new(10, 10);
        let r2 = Region::new(0, 10);
        assert!(!r1.overlaps(r2));
        bs.mut_borrow(r1).expect("can borrow r1");
        bs.mut_borrow(r2).expect("can borrow r2");
    }

    #[test]
    fn overlapping() {
        let mut bs = InnerBorrowChecker::new();
        let r1 = Region::new(0, 10);
        let r2 = Region::new(9, 10);
        assert!(r1.overlaps(r2));
        bs.shared_borrow(r1).expect("can borrow r1");
        assert!(bs.mut_borrow(r2).is_err(), "cant mut borrow r2");
        bs.shared_borrow(r2).expect("can shared borrow r2");

        let mut bs = InnerBorrowChecker::new();
        let r1 = Region::new(0, 10);
        let r2 = Region::new(2, 5);
        assert!(r1.overlaps(r2));
        bs.shared_borrow(r1).expect("can borrow r1");
        assert!(bs.mut_borrow(r2).is_err(), "cant borrow r2");
        bs.shared_borrow(r2).expect("can shared borrow r2");

        let mut bs = InnerBorrowChecker::new();
        let r1 = Region::new(9, 10);
        let r2 = Region::new(0, 10);
        assert!(r1.overlaps(r2));
        bs.shared_borrow(r1).expect("can borrow r1");
        assert!(bs.mut_borrow(r2).is_err(), "cant borrow r2");
        bs.shared_borrow(r2).expect("can shared borrow r2");

        let mut bs = InnerBorrowChecker::new();
        let r1 = Region::new(2, 5);
        let r2 = Region::new(0, 10);
        assert!(r1.overlaps(r2));
        bs.shared_borrow(r1).expect("can borrow r1");
        assert!(bs.mut_borrow(r2).is_err(), "cant borrow r2");
        bs.shared_borrow(r2).expect("can shared borrow r2");

        let mut bs = InnerBorrowChecker::new();
        let r1 = Region::new(2, 5);
        let r2 = Region::new(10, 5);
        let r3 = Region::new(15, 5);
        let r4 = Region::new(0, 10);
        assert!(r1.overlaps(r4));
        bs.shared_borrow(r1).expect("can borrow r1");
        bs.shared_borrow(r2).expect("can borrow r2");
        bs.shared_borrow(r3).expect("can borrow r3");
        assert!(bs.mut_borrow(r4).is_err(), "cant mut borrow r4");
        bs.shared_borrow(r4).expect("can shared borrow r4");
    }

    #[test]
    fn unborrowing() {
        let mut bs = InnerBorrowChecker::new();
        let r1 = Region::new(0, 10);
        let r2 = Region::new(10, 10);
        assert!(!r1.overlaps(r2));
        assert_eq!(bs.has_outstanding_borrows(), false, "start with no borrows");
        let h1 = bs.mut_borrow(r1).expect("can borrow r1");
        assert_eq!(bs.has_outstanding_borrows(), true, "h1 is outstanding");
        let h2 = bs.mut_borrow(r2).expect("can borrow r2");

        assert!(bs.mut_borrow(r2).is_err(), "can't borrow r2 twice");
        bs.mut_unborrow(h2);
        assert_eq!(
            bs.has_outstanding_borrows(),
            true,
            "h1 is still outstanding"
        );
        bs.mut_unborrow(h1);
        assert_eq!(bs.has_outstanding_borrows(), false, "no remaining borrows");

        let _h3 = bs
            .mut_borrow(r2)
            .expect("can borrow r2 again now that its been unborrowed");

        // Lets try again with shared:

        let mut bs = InnerBorrowChecker::new();
        let r1 = Region::new(0, 10);
        let r2 = Region::new(10, 10);
        assert!(!r1.overlaps(r2));
        assert_eq!(bs.has_outstanding_borrows(), false, "start with no borrows");
        let h1 = bs.shared_borrow(r1).expect("can borrow r1");
        assert_eq!(bs.has_outstanding_borrows(), true, "h1 is outstanding");
        let h2 = bs.shared_borrow(r2).expect("can borrow r2");
        let h3 = bs.shared_borrow(r2).expect("can shared borrow r2 twice");

        bs.shared_unborrow(h2);
        assert_eq!(
            bs.has_outstanding_borrows(),
            true,
            "h1, h3 still outstanding"
        );
        bs.shared_unborrow(h1);
        bs.shared_unborrow(h3);
        assert_eq!(bs.has_outstanding_borrows(), false, "no remaining borrows");
    }
}