1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
#![cfg(target_feature="sse")]

use super::*;

/// A 128-bit SIMD value. Always used as `f32x4`.
///
/// * This documentation numbers the lanes based on the index you'd need to use
///   to access that lane if the value were cast to an array.
/// * This is also the way that the type is printed out using
///   [`Debug`](core::fmt::Debug), [`Display`](core::fmt::Display),
///   [`LowerExp`](core::fmt::LowerExp), and [`UpperExp`](core::fmt::UpperExp).
/// * This is not necessarily the ordering you'll see if you look an `xmm`
///   register in a debugger! Basically because of how little-endian works.
/// * Most operations work per-lane, "lanewise".
/// * Some operations work using lane 0 only. When appropriate, these have the
///   same name as the lanewise version but with a `0` on the end (example:
///   `cmp_eq` and `cmp_eq0`). With the 0 version the other lanes are simply
///   copied forward from `self`.
/// * Comparisons give "bool-ish" output, where all bits 1 in a lane is true,
///   and all bits 0 in a lane is false. Unfortunately, all bits 1 with an `f32`
///   is one of the `NaN` values, and `NaN != NaN`, so it can be a little tricky
///   to work with until you're used to it.
#[derive(Clone, Copy)]
#[allow(bad_style)]
#[repr(transparent)]
pub struct m128(pub __m128);

unsafe impl Zeroable for m128 {}
unsafe impl Pod for m128 {}

impl Default for m128 {
  #[inline(always)]
  #[must_use]
  fn default() -> Self {
    Self::zeroed()
  }
}

#[cfg(feature = "serde")]
impl serde::Serialize for m128 {
  #[inline(always)]
  fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
  where
    S: serde::Serializer,
  {
    let floats: [f32; 4] = cast(*self);
    floats.serialize(serializer)
  }
}

#[cfg(feature = "serde")]
impl<'de> serde::Deserialize<'de> for m128 {
  #[inline(always)]
  fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
  where
    D: serde::Deserializer<'de>,
  {
    let floats: [f32; 4] = <[f32; 4]>::deserialize(deserializer)?;
    Ok(cast(floats))
  }
}

impl core::fmt::Debug for m128 {
  /// Debug formats in offset order.
  ///
  /// All `Formatter` information is passed directly to each individual `f32`
  /// lane being formatted.
  fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
    let a: [f32; 4] = cast(self.0);
    f.write_str("m128(")?;
    core::fmt::Debug::fmt(&a[0], f)?;
    f.write_str(", ")?;
    core::fmt::Debug::fmt(&a[1], f)?;
    f.write_str(", ")?;
    core::fmt::Debug::fmt(&a[2], f)?;
    f.write_str(", ")?;
    core::fmt::Debug::fmt(&a[3], f)?;
    f.write_str(")")
  }
}

impl core::fmt::Display for m128 {
  /// Display formats in offset order.
  ///
  /// All `Formatter` information is passed directly to each individual `f32`
  /// lane being formatted.
  fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
    let a: [f32; 4] = cast(self.0);
    f.write_str("m128(")?;
    core::fmt::Display::fmt(&a[0], f)?;
    f.write_str(", ")?;
    core::fmt::Display::fmt(&a[1], f)?;
    f.write_str(", ")?;
    core::fmt::Display::fmt(&a[2], f)?;
    f.write_str(", ")?;
    core::fmt::Display::fmt(&a[3], f)?;
    f.write_str(")")
  }
}

impl core::fmt::LowerExp for m128 {
  /// LowerExp formats in offset order.
  ///
  /// All `Formatter` information is passed directly to each individual `f32`
  /// lane being formatted.
  fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
    let a: [f32; 4] = cast(self.0);
    f.write_str("m128(")?;
    core::fmt::LowerExp::fmt(&a[0], f)?;
    f.write_str(", ")?;
    core::fmt::LowerExp::fmt(&a[1], f)?;
    f.write_str(", ")?;
    core::fmt::LowerExp::fmt(&a[2], f)?;
    f.write_str(", ")?;
    core::fmt::LowerExp::fmt(&a[3], f)?;
    f.write_str(")")
  }
}

impl core::fmt::UpperExp for m128 {
  /// UpperExp formats in offset order.
  ///
  /// All `Formatter` information is passed directly to each individual `f32`
  /// lane being formatted.
  fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
    let a: [f32; 4] = cast(self.0);
    f.write_str("m128(")?;
    core::fmt::UpperExp::fmt(&a[0], f)?;
    f.write_str(", ")?;
    core::fmt::UpperExp::fmt(&a[1], f)?;
    f.write_str(", ")?;
    core::fmt::UpperExp::fmt(&a[2], f)?;
    f.write_str(", ")?;
    core::fmt::UpperExp::fmt(&a[3], f)?;
    f.write_str(")")
  }
}

impl Add for m128 {
  type Output = Self;
  /// Lanewise addition.
  #[inline(always)]
  #[must_use]
  fn add(self, rhs: Self) -> Self {
    Self(unsafe { _mm_add_ps(self.0, rhs.0) })
  }
}
impl AddAssign for m128 {
  /// Lanewise addition.
  #[inline(always)]
  fn add_assign(&mut self, rhs: Self) {
    self.0 = unsafe { _mm_add_ps(self.0, rhs.0) };
  }
}

impl BitAnd for m128 {
  type Output = Self;
  /// Bitwise AND.
  #[inline(always)]
  #[must_use]
  fn bitand(self, rhs: Self) -> Self {
    Self(unsafe { _mm_and_ps(self.0, rhs.0) })
  }
}
impl BitAndAssign for m128 {
  /// Bitwise AND.
  #[inline(always)]
  fn bitand_assign(&mut self, rhs: Self) {
    self.0 = unsafe { _mm_and_ps(self.0, rhs.0) };
  }
}

impl Div for m128 {
  type Output = Self;
  /// Lanewise division.
  #[inline(always)]
  #[must_use]
  fn div(self, rhs: Self) -> Self {
    Self(unsafe { _mm_div_ps(self.0, rhs.0) })
  }
}
impl DivAssign for m128 {
  /// Lanewise division.
  #[inline(always)]
  fn div_assign(&mut self, rhs: Self) {
    self.0 = unsafe { _mm_div_ps(self.0, rhs.0) };
  }
}

impl Mul for m128 {
  type Output = Self;
  /// Lanewise multiplication.
  #[inline(always)]
  #[must_use]
  fn mul(self, rhs: Self) -> Self {
    Self(unsafe { _mm_mul_ps(self.0, rhs.0) })
  }
}
impl MulAssign for m128 {
  /// Lanewise multiplication.
  #[inline(always)]
  fn mul_assign(&mut self, rhs: Self) {
    self.0 = unsafe { _mm_mul_ps(self.0, rhs.0) };
  }
}

impl Sub for m128 {
  type Output = Self;
  /// Lanewise subtraction.
  #[inline(always)]
  #[must_use]
  fn sub(self, rhs: Self) -> Self {
    Self(unsafe { _mm_sub_ps(self.0, rhs.0) })
  }
}
impl SubAssign for m128 {
  /// Lanewise subtraction.
  #[inline(always)]
  fn sub_assign(&mut self, rhs: Self) {
    self.0 = unsafe { _mm_sub_ps(self.0, rhs.0) };
  }
}

impl BitOr for m128 {
  type Output = Self;
  /// Bitwise OR.
  #[inline(always)]
  #[must_use]
  fn bitor(self, rhs: Self) -> Self {
    Self(unsafe { _mm_or_ps(self.0, rhs.0) })
  }
}
impl BitOrAssign for m128 {
  /// Bitwise OR.
  #[inline(always)]
  fn bitor_assign(&mut self, rhs: Self) {
    self.0 = unsafe { _mm_or_ps(self.0, rhs.0) };
  }
}

impl BitXor for m128 {
  type Output = Self;
  /// Bitwise XOR.
  #[inline(always)]
  #[must_use]
  fn bitxor(self, rhs: Self) -> Self {
    Self(unsafe { _mm_xor_ps(self.0, rhs.0) })
  }
}
impl BitXorAssign for m128 {
  /// Bitwise XOR.
  #[inline(always)]
  fn bitxor_assign(&mut self, rhs: Self) {
    self.0 = unsafe { _mm_xor_ps(self.0, rhs.0) };
  }
}

impl Neg for m128 {
  type Output = Self;
  /// Lanewise `0.0 - self`
  #[inline(always)]
  #[must_use]
  fn neg(self) -> Self {
    Self(unsafe { _mm_sub_ps(_mm_setzero_ps(), self.0) })
  }
}

impl Not for m128 {
  type Output = Self;
  /// Bitwise negation
  #[inline(always)]
  #[must_use]
  fn not(self) -> Self {
    let f: f32 = cast(-1_i32);
    let b = Self::splat(f);
    self ^ b
  }
}

/// # SSE Operations
impl m128 {
  /// Adds the 0th lanes without affecting the other lanes of `self.
  #[inline(always)]
  #[must_use]
  pub fn add0(self, rhs: Self) -> Self {
    Self(unsafe { _mm_add_ss(self.0, rhs.0) })
  }

  /// Bitwise `(!self) & rhs`
  #[inline(always)]
  #[must_use]
  pub fn andnot(self, rhs: Self) -> Self {
    Self(unsafe { _mm_andnot_ps(self.0, rhs.0) })
  }

  /// Lanewise `self == rhs` check, bool-ish output.
  #[inline(always)]
  #[must_use]
  pub fn cmp_eq(self, rhs: Self) -> Self {
    Self(unsafe { _mm_cmpeq_ps(self.0, rhs.0) })
  }

  /// Lane 0: `self == rhs`, bool-ish output.
  #[inline(always)]
  #[must_use]
  pub fn cmp_eq0(self, rhs: Self) -> Self {
    Self(unsafe { _mm_cmpeq_ss(self.0, rhs.0) })
  }

  /// Lanewise `self >= rhs` check, bool-ish output.
  #[inline(always)]
  #[must_use]
  pub fn cmp_ge(self, rhs: Self) -> Self {
    Self(unsafe { _mm_cmpge_ps(self.0, rhs.0) })
  }

  /// Lane 0: `self >= rhs`, bool-ish output.
  #[inline(always)]
  #[must_use]
  pub fn cmp_ge0(self, rhs: Self) -> Self {
    Self(unsafe { _mm_cmpge_ss(self.0, rhs.0) })
  }

  /// Lanewise `self > rhs` check, bool-ish output.
  #[inline(always)]
  #[must_use]
  pub fn cmp_gt(self, rhs: Self) -> Self {
    Self(unsafe { _mm_cmpgt_ps(self.0, rhs.0) })
  }

  /// Lane 0: `self > rhs`, bool-ish output.
  #[inline(always)]
  #[must_use]
  pub fn cmp_gt0(self, rhs: Self) -> Self {
    Self(unsafe { _mm_cmpgt_ss(self.0, rhs.0) })
  }

  /// Lanewise `self <= rhs` check, bool-ish output.
  #[inline(always)]
  #[must_use]
  pub fn cmp_le(self, rhs: Self) -> Self {
    Self(unsafe { _mm_cmple_ps(self.0, rhs.0) })
  }

  /// Lane 0: `self <= rhs`, bool-ish output.
  #[inline(always)]
  #[must_use]
  pub fn cmp_le0(self, rhs: Self) -> Self {
    Self(unsafe { _mm_cmple_ss(self.0, rhs.0) })
  }

  /// Lanewise `self < rhs` check, bool-ish output.
  #[inline(always)]
  #[must_use]
  pub fn cmp_lt(self, rhs: Self) -> Self {
    Self(unsafe { _mm_cmplt_ps(self.0, rhs.0) })
  }

  /// Lane 0: `self < rhs`, bool-ish output.
  #[inline(always)]
  #[must_use]
  pub fn cmp_lt0(self, rhs: Self) -> Self {
    Self(unsafe { _mm_cmplt_ss(self.0, rhs.0) })
  }

  /// Lanewise `self != rhs` check, bool-ish output.
  #[inline(always)]
  #[must_use]
  pub fn cmp_ne(self, rhs: Self) -> Self {
    Self(unsafe { _mm_cmpneq_ps(self.0, rhs.0) })
  }

  /// Lane 0: `self != rhs`, bool-ish output.
  #[inline(always)]
  #[must_use]
  pub fn cmp_ne0(self, rhs: Self) -> Self {
    Self(unsafe { _mm_cmpneq_ss(self.0, rhs.0) })
  }

  /// Lanewise `!(self >= rhs)` check, bool-ish output.
  ///
  /// Also, this triggers 3rd Impact.
  #[inline(always)]
  #[must_use]
  pub fn cmp_nge(self, rhs: Self) -> Self {
    Self(unsafe { _mm_cmpnge_ps(self.0, rhs.0) })
  }

  /// Lane 0: `!(self >= rhs)`, bool-ish output.
  #[inline(always)]
  #[must_use]
  pub fn cmp_nge0(self, rhs: Self) -> Self {
    Self(unsafe { _mm_cmpnge_ss(self.0, rhs.0) })
  }

  /// Lanewise `!(self > rhs)` check, bool-ish output.
  #[inline(always)]
  #[must_use]
  pub fn cmp_ngt(self, rhs: Self) -> Self {
    Self(unsafe { _mm_cmpngt_ps(self.0, rhs.0) })
  }

  /// Lane 0: `!(self > rhs)`, bool-ish output.
  #[inline(always)]
  #[must_use]
  pub fn cmp_ngt0(self, rhs: Self) -> Self {
    Self(unsafe { _mm_cmpngt_ss(self.0, rhs.0) })
  }

  /// Lanewise `!(self <= rhs)` check, bool-ish output.
  #[inline(always)]
  #[must_use]
  pub fn cmp_nle(self, rhs: Self) -> Self {
    Self(unsafe { _mm_cmpnle_ps(self.0, rhs.0) })
  }

  /// Lane 0: `!(self <= rhs)`, bool-ish output.
  #[inline(always)]
  #[must_use]
  pub fn cmp_nle0(self, rhs: Self) -> Self {
    Self(unsafe { _mm_cmpnle_ss(self.0, rhs.0) })
  }

  /// Lanewise `!(self < rhs)` check, bool-ish output.
  #[inline(always)]
  #[must_use]
  pub fn cmp_nlt(self, rhs: Self) -> Self {
    Self(unsafe { _mm_cmpnlt_ps(self.0, rhs.0) })
  }

  /// Lane 0: `!(self < rhs)`, bool-ish output.
  #[inline(always)]
  #[must_use]
  pub fn cmp_nlt0(self, rhs: Self) -> Self {
    Self(unsafe { _mm_cmpnlt_ss(self.0, rhs.0) })
  }

  /// Lanewise `self.not_nan() & rhs.not_nan()` check, bool-ish output.
  #[inline(always)]
  #[must_use]
  pub fn cmp_ordinary(self, rhs: Self) -> Self {
    Self(unsafe { _mm_cmpord_ps(self.0, rhs.0) })
  }

  /// Lane 0: `self.not_nan() & rhs.not_nan()`, bool-ish output.
  #[inline(always)]
  #[must_use]
  pub fn cmp_ordinary0(self, rhs: Self) -> Self {
    Self(unsafe { _mm_cmpord_ss(self.0, rhs.0) })
  }

  /// Lanewise `self.is_nan() | rhs.is_nan()` check, bool-ish output.
  #[inline(always)]
  #[must_use]
  pub fn cmp_nan(self, rhs: Self) -> Self {
    Self(unsafe { _mm_cmpunord_ps(self.0, rhs.0) })
  }

  /// Lane 0: `self.is_nan() | rhs.is_nan()`, bool-ish output.
  #[inline(always)]
  #[must_use]
  pub fn cmp_nan0(self, rhs: Self) -> Self {
    Self(unsafe { _mm_cmpunord_ss(self.0, rhs.0) })
  }

  /// Lane 0: `self == rhs`, 0 or 1 `i32` output.
  #[inline(always)]
  #[must_use]
  pub fn cmpi_eq0(self, rhs: Self) -> i32 {
    unsafe { _mm_comieq_ss(self.0, rhs.0) }
  }

  /// Lane 0: `self >= rhs`, 0 or 1 `i32` output.
  #[inline(always)]
  #[must_use]
  pub fn cmpi_ge0(self, rhs: Self) -> i32 {
    unsafe { _mm_comige_ss(self.0, rhs.0) }
  }

  /// Lane 0: `self > rhs`, 0 or 1 `i32` output.
  #[inline(always)]
  #[must_use]
  pub fn cmpi_gt0(self, rhs: Self) -> i32 {
    unsafe { _mm_comigt_ss(self.0, rhs.0) }
  }

  /// Lane 0: `self <= rhs`, 0 or 1 `i32` output.
  #[inline(always)]
  #[must_use]
  pub fn cmpi_le0(self, rhs: Self) -> i32 {
    unsafe { _mm_comile_ss(self.0, rhs.0) }
  }

  /// Lane 0: `self < rhs`, 0 or 1 `i32` output.
  #[inline(always)]
  #[must_use]
  pub fn cmpi_lt0(self, rhs: Self) -> i32 {
    unsafe { _mm_comilt_ss(self.0, rhs.0) }
  }

  /// Lane 0: `self != rhs`, 0 or 1 `i32` output.
  #[inline(always)]
  #[must_use]
  pub fn cmpi_ne0(self, rhs: Self) -> i32 {
    unsafe { _mm_comineq_ss(self.0, rhs.0) }
  }

  /// Round the `i32` to `f32` and replace lane 0.
  ///
  /// Subject to the current thread's [rounding
  /// mode](https://doc.rust-lang.org/core/arch/x86_64/fn._mm_setcsr.html#rounding-mode)
  #[inline(always)]
  #[must_use]
  pub fn round_replace0_i32(self, rhs: i32) -> Self {
    Self(unsafe { _mm_cvt_si2ss(self.0, rhs) })
  }

  /// Round lane 0 to `i32` and return.
  ///
  /// Subject to the current thread's [rounding
  /// mode](https://doc.rust-lang.org/core/arch/x86_64/fn._mm_setcsr.html#rounding-mode)
  #[inline(always)]
  #[must_use]
  pub fn round_extract0_i32(self) -> i32 {
    unsafe { _mm_cvt_ss2si(self.0) }
  }

  /// Round the `i64` to `f32` and replace lane 0.
  ///
  /// Subject to the current thread's [rounding
  /// mode](https://doc.rust-lang.org/core/arch/x86_64/fn._mm_setcsr.html#rounding-mode)
  ///
  /// Not available to `x86`
  #[inline(always)]
  #[cfg(target_arch = "x86_64")]
  #[must_use]
  pub fn round_replace0_i64(self, rhs: i64) -> Self {
    Self(unsafe { _mm_cvtsi64_ss(self.0, rhs) })
  }

  /// Directly extracts lane 0 as `f32`.
  #[inline(always)]
  #[must_use]
  pub fn extract0(self) -> f32 {
    unsafe { _mm_cvtss_f32(self.0) }
  }

  /// Round lane 0 to `i64` and return.
  ///
  /// Subject to the current thread's [rounding
  /// mode](https://doc.rust-lang.org/core/arch/x86_64/fn._mm_setcsr.html#rounding-mode)
  #[inline(always)]
  #[cfg(target_arch = "x86_64")]
  #[must_use]
  pub fn round_extract0_i64(self) -> i64 {
    unsafe { _mm_cvtss_si64(self.0) }
  }

  /// Truncate lane 0 to `i32` and return.
  #[inline(always)]
  #[must_use]
  pub fn truncate_extract0_i32(self) -> i32 {
    unsafe { _mm_cvtt_ss2si(self.0) }
  }

  /// Truncate lane 0 to `i64` and return.
  #[inline(always)]
  #[must_use]
  #[cfg(target_arch = "x86_64")]
  pub fn truncate_extract0_i64(self) -> i64 {
    unsafe { _mm_cvttss_si64(self.0) }
  }

  /// Divides the 0th lanes without affecting the other lanes of `self.
  #[inline(always)]
  #[must_use]
  pub fn div0(self, rhs: Self) -> Self {
    Self(unsafe { _mm_div_ss(self.0, rhs.0) })
  }

  /// Loads a 16-byte aligned `f32` array address into an `m128`.
  ///
  /// This produces the same lane order as you'd get if you de-referenced the
  /// pointed to array and then used `transmute`.
  #[inline(always)]
  #[must_use]
  pub fn load(addr: &Align16<[f32; 4]>) -> Self {
    let ptr: *const f32 = addr as *const Align16<[f32; 4]> as *const f32;
    Self(unsafe { _mm_load_ps(ptr) })
  }

  /// Loads the `f32` address into all lanes.
  #[allow(clippy::trivially_copy_pass_by_ref)]
  #[inline(always)]
  #[must_use]
  pub fn load_splat(addr: &f32) -> Self {
    Self(unsafe { _mm_load_ps1(addr) })
  }

  /// Loads the `f32` address into lane 0, other lanes are `0.0`.
  #[allow(clippy::trivially_copy_pass_by_ref)]
  #[inline(always)]
  #[must_use]
  pub fn load0(addr: &f32) -> Self {
    Self(unsafe { _mm_load_ss(addr) })
  }

  /// Loads 16-byte aligned `f32`s into an `m128`.
  ///
  /// This produces the **reverse** lane order as you'd get if you used a
  /// `transmute` on the pointed to array.
  #[inline(always)]
  #[must_use]
  pub fn load_reverse(addr: &Align16<[f32; 4]>) -> Self {
    let ptr: *const f32 = addr as *const Align16<[f32; 4]> as *const f32;
    Self(unsafe { _mm_loadr_ps(ptr) })
  }

  /// Loads 16-byte `f32`s into an `m128`.
  ///
  /// This doesn't have the alignment requirements of [`load`](m128::load), but
  /// the lane ordering is the same.
  #[inline(always)]
  #[must_use]
  pub fn load_unaligned(addr: &[f32; 4]) -> Self {
    let ptr: *const f32 = addr as *const [f32; 4] as *const f32;
    Self(unsafe { _mm_loadu_ps(ptr) })
  }

  /// Lanewise maximum.
  #[inline(always)]
  #[must_use]
  pub fn max(self, rhs: Self) -> Self {
    Self(unsafe { _mm_max_ps(self.0, rhs.0) })
  }

  /// Lane 0 maximum, other lanes are `self`.
  #[inline(always)]
  #[must_use]
  pub fn max0(self, rhs: Self) -> Self {
    Self(unsafe { _mm_max_ss(self.0, rhs.0) })
  }

  /// Lanewise minimum.
  #[inline(always)]
  #[must_use]
  pub fn min(self, rhs: Self) -> Self {
    Self(unsafe { _mm_min_ps(self.0, rhs.0) })
  }

  /// Lane 0 minimum, other lanes are `self`.
  #[inline(always)]
  #[must_use]
  pub fn min0(self, rhs: Self) -> Self {
    Self(unsafe { _mm_min_ss(self.0, rhs.0) })
  }

  /// Copies lane 0 from `rhs`, other lanes are `self`.
  #[inline(always)]
  #[must_use]
  pub fn copy0(self, rhs: Self) -> Self {
    Self(unsafe { _mm_move_ss(self.0, rhs.0) })
  }

  /// Copy the high two lanes of `rhs` over top of the low two lanes of `self`,
  /// other lanes unchanged.
  ///
  /// ```txt
  /// out[0] = rhs[2]
  /// out[1] = rhs[3]
  /// out[2] = self[2]
  /// out[3] = self[3]
  /// ```
  #[inline(always)]
  #[must_use]
  pub fn copy_high_low(self, rhs: Self) -> Self {
    Self(unsafe { _mm_movehl_ps(self.0, rhs.0) })
  }

  /// Copy the low two lanes of `rhs` over top of the high two lanes of `self`,
  /// other lanes unchanged.
  ///
  /// ```txt
  /// out[0] = self[0]
  /// out[1] = self[1]
  /// out[2] = rhs[0]
  /// out[3] = rhs[1]
  /// ```
  #[inline(always)]
  #[must_use]
  pub fn copy_low_high(self, rhs: Self) -> Self {
    Self(unsafe { _mm_movelh_ps(self.0, rhs.0) })
  }

  /// Assumes that this is a bool-ish mask and packs it into an `i32`.
  ///
  /// Specifically, the output `i32` has bits 0/1/2/3 set to be the same as the
  /// most significant bit in lanes 0/1/2/3 of `self`.
  ///
  /// (Yes, this name is kinda stupid but I couldn't come up with a better thing
  /// to rename it to, oh well.)
  #[inline(always)]
  #[must_use]
  pub fn move_mask(self) -> i32 {
    unsafe { _mm_movemask_ps(self.0) }
  }

  /// Lanewise approximate reciprocal.
  ///
  /// The maximum relative error for this approximation is less than
  /// 1.5*2.0e-12.
  #[inline(always)]
  #[must_use]
  pub fn reciprocal(self) -> Self {
    Self(unsafe { _mm_rcp_ps(self.0) })
  }

  /// Lane 0 approximate reciprocal, other lanes are `self`.
  ///
  /// The maximum relative error for this approximation is less than
  /// 1.5*2.0e-12.
  #[inline(always)]
  #[must_use]
  pub fn reciprocal0(self) -> Self {
    Self(unsafe { _mm_rcp_ss(self.0) })
  }

  /// Lanewise approximate reciprocal of the square root.
  ///
  /// The maximum relative error for this approximation is less than
  /// 1.5*2.0e-12.
  #[inline(always)]
  #[must_use]
  pub fn reciprocal_sqrt(self) -> Self {
    Self(unsafe { _mm_rsqrt_ps(self.0) })
  }

  /// Lane 0 approximate reciprocal of the square root, other lanes are `self`.
  ///
  /// The maximum relative error for this approximation is less than
  /// 1.5*2.0e-12.
  #[inline(always)]
  #[must_use]
  pub fn reciprocal_sqrt0(self) -> Self {
    Self(unsafe { _mm_rsqrt_ss(self.0) })
  }

  /// Set four `f32` values into an `m128`.
  ///
  /// Because of how little-endian works, this produces the **opposite** lane
  /// order as you'd get compared to putting the arguments in to an array and
  /// then using [`load`](m128::load) on that array. Same with using `transmute`
  /// or similar.
  #[inline(always)]
  #[must_use]
  pub fn set(a: f32, b: f32, c: f32, d: f32) -> Self {
    Self(unsafe { _mm_set_ps(a, b, c, d) })
  }

  /// Set the `f32` into all lanes.
  #[inline(always)]
  #[must_use]
  pub fn splat(a: f32) -> Self {
    Self(unsafe { _mm_set1_ps(a) })
  }

  /// Set the value into lane 0, other lanes `0.0`.
  #[inline(always)]
  #[must_use]
  pub fn set0(a: f32) -> Self {
    Self(unsafe { _mm_set_ss(a) })
  }

  /// Set four `f32` values into an `m128`, order reversed from normal
  /// [`set`](m128::set).
  #[inline(always)]
  #[must_use]
  pub fn set_reverse(a: f32, b: f32, c: f32, d: f32) -> Self {
    Self(unsafe { _mm_setr_ps(a, b, c, d) })
  }

  /// Lanewise square root.
  #[inline(always)]
  #[must_use]
  pub fn sqrt(self) -> Self {
    Self(unsafe { _mm_sqrt_ps(self.0) })
  }

  /// Lane 0 square root, other lanes are `self`.
  #[inline(always)]
  #[must_use]
  pub fn sqrt0(self) -> Self {
    Self(unsafe { _mm_sqrt_ss(self.0) })
  }

  /// Stores an `m128` into a 16-byte aligned `f32` array address.
  ///
  /// This uses the same lane order as [`load`](m128::load).
  #[inline(always)]
  pub fn store(self, addr: &mut Align16<[f32; 4]>) {
    let ptr: *mut f32 = addr as *mut Align16<[f32; 4]> as *mut f32;
    unsafe { _mm_store_ps(ptr, self.0) }
  }

  /// Stores lane 0 to all indexes of the array.
  #[inline(always)]
  pub fn store0_all(self, addr: &mut Align16<[f32; 4]>) {
    let ptr: *mut f32 = addr as *mut Align16<[f32; 4]> as *mut f32;
    unsafe { _mm_store_ps1(ptr, self.0) }
  }

  /// Stores lane 0 to the address given.
  #[inline(always)]
  pub fn store0(self, addr: &mut f32) {
    unsafe { _mm_store_ss(addr, self.0) }
  }

  /// Stores an `m128` into a 16-byte aligned `f32` array address.
  ///
  /// This uses the same lane order as [`load_reverse`](m128::load_reverse).
  #[inline(always)]
  pub fn store_reverse(self, addr: &mut Align16<[f32; 4]>) {
    let ptr: *mut f32 = addr as *mut Align16<[f32; 4]> as *mut f32;
    unsafe { _mm_storer_ps(ptr, self.0) }
  }

  /// Stores an `m128` into a `f32` array address.
  ///
  /// This doesn't have the alignment requirements of [`store`](m128::store),
  /// but the lane ordering is the same.
  #[inline(always)]
  pub fn store_unaligned(self, addr: &mut [f32; 4]) {
    let ptr: *mut f32 = addr as *mut [f32; 4] as *mut f32;
    unsafe { _mm_storeu_ps(ptr, self.0) }
  }

  /// Subtracts the 0th lanes without affecting the other lanes of `self.
  #[inline(always)]
  #[must_use]
  pub fn sub0(self, rhs: Self) -> Self {
    Self(unsafe { _mm_sub_ss(self.0, rhs.0) })
  }

  /// Unpack and interleave the high lanes of `self` and `rhs`.
  ///
  /// ```txt
  /// out[0] = self[2]
  /// out[1] = rhs[2]
  /// out[2] = self[3]
  /// out[3] = rhs[3]
  /// ```
  #[inline(always)]
  #[must_use]
  pub fn unpack_high(self, rhs: Self) -> Self {
    Self(unsafe { _mm_unpackhi_ps(self.0, rhs.0) })
  }

  /// Unpack and interleave the low lanes of `self` and `rhs`.
  ///
  /// ```txt
  /// out[0] = self[0]
  /// out[1] = rhs[0]
  /// out[2] = self[1]
  /// out[3] = rhs[1]
  /// ```
  #[inline(always)]
  #[must_use]
  pub fn unpack_low(self, rhs: Self) -> Self {
    Self(unsafe { _mm_unpacklo_ps(self.0, rhs.0) })
  }
}

/// Prefetch the cache line into all cache levels.
///
/// A prefetch is just a hint to the CPU and has no effect on the correctness
/// (or not) of a program. In other words, you can prefetch literally any
/// address and it's never UB. However, if you prefetch an invalid address the
/// CPU can actually slow down for a moment as it figures out that your address
/// isn't valid. So, don't go silly with this.
///
/// See Also: [`_mm_prefetch`](core::arch::x86_64::_mm_prefetch)
#[inline(always)]
pub fn prefetch0(ptr: *const impl Sized) {
  unsafe { _mm_prefetch(ptr as *const i8, _MM_HINT_T0) }
}

/// Prefetch the cache line into L2 and higher.
///
/// A prefetch is just a hint to the CPU and has no effect on the correctness
/// (or not) of a program. In other words, you can prefetch literally any
/// address and it's never UB. However, if you prefetch an invalid address the
/// CPU can actually slow down for a moment as it figures out that your address
/// isn't valid. So, don't go silly with this.
///
/// See Also: [`_mm_prefetch`](core::arch::x86_64::_mm_prefetch)
#[inline(always)]
pub fn prefetch1(ptr: *const impl Sized) {
  unsafe { _mm_prefetch(ptr as *const i8, _MM_HINT_T1) }
}

/// Prefetch the cache line into L3 and higher (or best effort).
///
/// A prefetch is just a hint to the CPU and has no effect on the correctness
/// (or not) of a program. In other words, you can prefetch literally any
/// address and it's never UB. However, if you prefetch an invalid address the
/// CPU can actually slow down for a moment as it figures out that your address
/// isn't valid. So, don't go silly with this.
///
/// See Also: [`_mm_prefetch`](core::arch::x86_64::_mm_prefetch)
#[inline(always)]
pub fn prefetch2(ptr: *const impl Sized) {
  unsafe { _mm_prefetch(ptr as *const i8, _MM_HINT_T2) }
}

/// Prefetch with non-temporal hint.
///
/// Non-temporal access is inherently spooky with respect to the rest of the
/// memory model. When I asked a member of the Rust Language Team how they felt
/// about non-temporal access, they simply replied with [the confounded
/// emoji]https://emojipedia.org/confounded-face/). I don't expose actual
/// non-temporal store/load methods as safe operations, but a non-temporal
/// _prefetch_ is still fine to do.
#[inline(always)]
pub fn prefetch_nta(ptr: *const impl Sized) {
  unsafe { _mm_prefetch(ptr as *const i8, _MM_HINT_NTA) }
}

/// Transposes, in place, the four `m128` values as if they formed a 4x4 Matrix.
///
/// The Intel guide lists the official implementation of this as being:
/// ```txt
/// __m128 tmp3, tmp2, tmp1, tmp0;
/// tmp0 := _mm_unpacklo_ps(row0, row1);
/// tmp2 := _mm_unpacklo_ps(row2, row3);
/// tmp1 := _mm_unpackhi_ps(row0, row1);
/// tmp3 := _mm_unpackhi_ps(row2, row3);
/// row0 := _mm_movelh_ps(tmp0, tmp2);
/// row1 := _mm_movehl_ps(tmp2, tmp0);
/// row2 := _mm_movelh_ps(tmp1, tmp3);
/// row3 := _mm_movehl_ps(tmp3, tmp1);
/// ```
#[inline(always)]
pub fn transpose4(r0: &mut m128, r1: &mut m128, r2: &mut m128, r3: &mut m128) {
  unsafe { _MM_TRANSPOSE4_PS(&mut r0.0, &mut r1.0, &mut r2.0, &mut r3.0) }
}

/// Shuffles around some `f32` lanes into a new `m128`
///
/// This is a macro and not a function because the shuffle pattern must be a
/// compile time constant. The macro takes some requested indexes and then makes
/// the correct shuffle pattern constant for you.
///
/// * `$a` and `$b` are any `m128` expressions.
/// * `$i0a`, `$i1a`, `$i2b`, and `$i3b` must each be `0`, `1`, `2`, or `3`.
///   Technically any `u32` literal will work, but only the lowest two bits are
///   used so stick to `0`, `1`, `2`, or `3`.
/// * Each lane in the output uses one of the lanes from an input. Like the
///   names hint, indexes 0 and 1 will come from somewhere in `$a`, and indexes
///   2 and 3 will come from somewhere in `$b`.
///
/// ```txt
/// shuffle128!(a, b, [0, 2, 1, 3])
/// ```
///
/// Would give an output of: `a[0], a[2], b[1], b[3]`
#[macro_export]
macro_rules! shuffle128 {
  ($a:expr, $b:expr, [$i0a:literal,$i1a:literal,$i2b:literal,$i3b:literal]) => {{
    // Keep only 2 bits per index
    const I0A: u32 = $i0a & 0b11;
    const I1A: u32 = $i1a & 0b11;
    const I2B: u32 = $i2b & 0b11;
    const I3B: u32 = $i3b & 0b11;
    // pack it up little-endian
    const IMM: i32 = (I0A | I1A << 2 | I2B << 4 | I3B << 6) as i32;
    //
    #[cfg(target_arch = "x86")]
    use core::arch::x86::_mm_shuffle_ps;
    #[cfg(target_arch = "x86")]
    use $crate::arch::x86::m128;
    //
    #[cfg(target_arch = "x86_64")]
    use core::arch::x86_64::_mm_shuffle_ps;
    #[cfg(target_arch = "x86_64")]
    use $crate::arch::x86_64::m128;
    //
    m128(unsafe { _mm_shuffle_ps($a.0, $b.0, IMM) })
  }};
}

//
// EXTRA FUNCTIONS THAT COMBINE INTRINSICS TO MAKE A USEFUL OP
//

/// # SSE Extras
impl m128 {
  /// `[non-intrinsic]` Lanewise absolute value.
  ///
  /// This is not an official Intel intrinsic, instead it's a `bitand` operation
  /// with a mask so that the sign bit is cleared in all lanes.
  #[inline(always)]
  #[must_use]
  pub fn abs(self) -> Self {
    self & Self::splat(cast(i32::max_value()))
  }
}