1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
#![doc = include_str!("../README.md")]
#![deny(missing_docs)]
#![deny(clippy::all)]

use std::fs::{File, OpenOptions};
use std::io::{self, Error, ErrorKind};
use std::marker::PhantomData;
use std::mem::{self, MaybeUninit};
use std::path::Path;
use std::ptr;

use memmap2::MmapMut;

/// Annotation over a leaf.
pub trait Annotation<T> {
    /// Return the annotation for the given leaf.
    fn compute(leaf: &T) -> Self;

    /// Combine multiple annotations into another annotation.
    fn combine<'a>(annotations: impl Iterator<Item = &'a Self>) -> Self
    where
        Self: 'a;
}

/// The unit struct annotates everything
impl<T> Annotation<T> for () {
    fn compute(_: &T) -> Self {}

    fn combine<'a>(_: impl Iterator<Item = &'a Self>) -> Self
    where
        Self: 'a,
    {
    }
}

/// Kept at the beginning of the mmap to speed up operations.
struct Header {
    filled: usize,
    cap: usize,
    levels: usize,
}

/// An annotated tree structure with an arity of `2N`, backed by an mmap.
///
/// Each leaf contained in the tree is decorated by an [`Annotation`], computed
/// on the [`push`] of said leaf. The change is then propagated up through the
/// tree, recursively combining the annotations of filled subtrees until the
/// [`root`] itself is computed.
///
/// Leaves can also be [`pop`]ped from tree, and annotations will be kept
/// updated.
///
/// # Safety
/// Using an `N` of 0 will result in a panic when trying to perform any
/// operation.
///
/// [`push`]: Tree::push
/// [`pop`]: Tree::pop
/// [`root`]: Tree::root
pub struct Tree<L, A = (), const N: usize = 1> {
    mmap: MmapMut,
    file: File,

    marker_t: PhantomData<*const L>,
    marker_a: PhantomData<*const A>,
}

impl<L, A, const N: usize> Tree<L, A, N>
where
    A: Annotation<L>,
{
    /// Creates a new tree, mmapped to the file at the given path.
    ///
    /// # Safety
    /// When a file of length smaller than the tree header (three [`usize`]s)
    /// exists at the given path, it will be assumed to contain a valid tree. If
    /// not, a new file will be created.
    pub fn new<P: AsRef<Path>>(path: P) -> io::Result<Self> {
        let file = OpenOptions::new()
            .create(true)
            .read(true)
            .write(true)
            .open(path)?;
        let meta = file.metadata()?;

        let unit_size = unit_tree_size::<L, A, N>() as u64;

        let file_len = meta.len();
        let header_size = header_size() as u64;

        // if the file is smaller than metadata length, grow the file and
        // write an empty tree header.
        if file_len < header_size {
            file.set_len(header_size + unit_size)?;
            unsafe {
                let mut mmap = MmapMut::map_mut(&file)?;

                let header_ptr = mmap.as_mut_ptr();
                let header_ptr = header_ptr as *mut Header;

                ptr::write(
                    header_ptr,
                    Header {
                        filled: 0,
                        cap: arity(N),
                        levels: 1,
                    },
                )
            };
        }

        let mmap = unsafe { MmapMut::map_mut(&file)? };

        let mut tree = Self {
            mmap,
            file,
            marker_a: Default::default(),
            marker_t: Default::default(),
        };

        let (tree_buf, header) = tree.mut_tree_buf_and_header();

        // if the tree is not the expected size error out since it is
        // undoubtedly corrupt
        if tree_buf.len() != tree_size::<L, A, N>(header.levels) {
            return Err(Error::new(ErrorKind::InvalidData, "corrupt tree"));
        }

        Ok(tree)
    }

    /// Push a leaf to the tree.
    pub fn push(&mut self, leaf: L) -> io::Result<()> {
        let (_, header) = self.tree_buf_and_header();

        if header.filled == header.cap {
            self.grow_tree()?;
        }

        let (tree, header) = self.mut_tree_buf_and_header();

        unsafe {
            let view = TreeViewMut::<L, A, N>::new(
                tree.as_mut_ptr(),
                header.filled,
                tree.len(),
                header.cap,
            );
            view.traverse(A::combine, |left_leaves, right_leaves, filled| {
                match filled < N {
                    true => {
                        left_leaves[filled].1 = A::compute(&leaf);
                        left_leaves[filled].0 = leaf;
                    }
                    false => {
                        let index = filled - N;
                        right_leaves[index].1 = A::compute(&leaf);
                        right_leaves[index].0 = leaf;
                    }
                };

                A::combine(leaf_iter(left_leaves, right_leaves, filled + 1))
            });
        }

        header.filled += 1;

        Ok(())
    }

    /// Pop the last leaf from the tree.
    pub fn pop(&mut self) -> io::Result<Option<L>> {
        let (_, header) = self.tree_buf_and_header();

        if header.filled == 0 {
            return Ok(None);
        }

        let (tree, header) = self.mut_tree_buf_and_header();

        let popped = unsafe {
            let mut popped: MaybeUninit<L> = MaybeUninit::uninit();

            let view = TreeViewMut::<L, A, N>::new(
                tree.as_mut_ptr(),
                header.filled - 1,
                tree.len(),
                header.cap,
            );
            view.traverse(A::combine, |left_leaves, right_leaves, filled| {
                match filled < N {
                    true => ptr::copy(
                        &left_leaves[filled].0,
                        popped.as_mut_ptr(),
                        1,
                    ),
                    false => ptr::copy(
                        &right_leaves[filled - N].0,
                        popped.as_mut_ptr(),
                        1,
                    ),
                };

                A::combine(leaf_iter(left_leaves, right_leaves, filled))
            });

            popped.assume_init()
        };

        header.filled -= 1;

        let shrunk_cap = header.cap / arity(N);

        // don't shrink if the capacity is as low as it gets
        if header.filled == shrunk_cap && header.cap != arity(N) {
            self.shrink_tree()?;
        }

        Ok(Some(popped))
    }

    /// Returns a reference to the root annotation
    pub fn root(&self) -> &A {
        let root_offset = self.root_offset();
        let (tree, _) = self.tree_buf_and_header();

        let ptr = tree[root_offset..].as_ptr();
        let ptr = ptr as *const A;

        unsafe { &*ptr }
    }

    /// Return the number of leaves in the tree
    pub fn len(&self) -> usize {
        let (_, header) = self.tree_buf_and_header();
        header.filled
    }

    /// Return the current capacity of the tree.
    pub fn cap(&self) -> usize {
        let (_, header) = self.tree_buf_and_header();
        header.cap
    }

    /// Return true if the tree is empty
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Double the growth of the tree and reserve space in the middle for an
    /// annotation
    fn grow_tree(&mut self) -> io::Result<()> {
        let (_, header) = self.tree_buf_and_header();

        let len = header_size() + tree_size::<L, A, N>(header.levels + 1);
        let len = len as u64;

        self.file.set_len(len)?;

        let (_, header) = self.mut_tree_buf_and_header();

        header.cap *= arity(N);
        header.levels += 1;

        self.mmap = unsafe { MmapMut::map_mut(&self.file)? };

        Ok(())
    }

    fn shrink_tree(&mut self) -> io::Result<()> {
        let (_, header) = self.tree_buf_and_header();

        let len = header_size() + tree_size::<L, A, N>(header.levels - 1);
        let len = len as u64;

        self.file.set_len(len)?;

        let (_, header) = self.mut_tree_buf_and_header();

        header.cap /= arity(N);
        header.levels -= 1;

        self.mmap = unsafe { MmapMut::map_mut(&self.file)? };

        Ok(())
    }

    /// Returns the offset of the root annotation in the tree buffer
    fn root_offset(&self) -> usize {
        let (tree, _) = self.tree_buf_and_header();
        (tree.len() - mem::size_of::<A>()) / 2
    }

    fn tree_buf_and_header(&self) -> (&[u8], &Header) {
        let (header, tree) = self.mmap.split_at(header_size());

        let ptr = header.as_ptr();
        let ptr = ptr as *const Header;

        unsafe { (tree, &*ptr) }
    }

    fn mut_tree_buf_and_header(&mut self) -> (&mut [u8], &mut Header) {
        let (header, tree) = self.mmap.split_at_mut(header_size());

        let ptr = header.as_mut_ptr();
        let ptr = ptr as *mut Header;

        unsafe { (tree, &mut *ptr) }
    }
}

struct TreeViewMut<'a, T, A, const N: usize> {
    tree: *mut u8,
    filled: usize,
    tree_len: usize,
    tree_cap: usize,

    marker_t: PhantomData<*const T>,
    marker_a: PhantomData<*const A>,
    marker_lifetime: PhantomData<&'a A>,
}

impl<'a, T, A, const N: usize> TreeViewMut<'a, T, A, N>
where
    A: Annotation<T>,
{
    fn new(
        tree: *mut u8,
        filled: usize,
        tree_len: usize,
        tree_cap: usize,
    ) -> Self {
        Self {
            tree,
            filled,
            tree_len,
            tree_cap,
            marker_a: Default::default(),
            marker_t: Default::default(),
            marker_lifetime: Default::default(),
        }
    }

    unsafe fn traverse<FA, FL>(&self, anno_closure: FA, leaves_closure: FL)
    where
        FL: FnOnce(&mut [(T, A); N], &mut [(T, A); N], usize) -> A,
        FA: Copy + Fn(AnnoIter<'a, A, N>) -> A,
    {
        let anno_size = mem::size_of::<A>();
        let anno_offset = (self.tree_len - anno_size) / 2;

        let anno = self.tree.add(anno_offset) as *mut A;

        match self.tree_len == unit_tree_size::<T, A, N>() {
            true => {
                let left = self.tree as *mut [(T, A); N];
                let right =
                    self.tree.add(anno_offset + anno_size) as *mut [(T, A); N];

                *anno = leaves_closure(&mut *left, &mut *right, self.filled);
            }
            false => {
                let subtree_len = (self.tree_len - anno_size) / arity(N);
                let subtree_cap = self.tree_cap / arity(N);

                let subtree_index = self.filled / subtree_cap;
                let subtree = match subtree_index < N {
                    true => {
                        let subtree_offset = subtree_index * subtree_len;
                        self.tree.add(subtree_offset)
                    }
                    false => {
                        let subtree_offset = anno_offset
                            + anno_size
                            + (subtree_index - N) * subtree_len;
                        self.tree.add(subtree_offset)
                    }
                };

                let subtree_filled = self.filled - subtree_index * subtree_cap;
                let view = TreeViewMut::<T, A, N>::new(
                    subtree,
                    subtree_filled,
                    subtree_len,
                    subtree_cap,
                );

                view.traverse(anno_closure, leaves_closure);

                *anno = anno_closure(AnnoIter::new(
                    self.tree,
                    subtree_len,
                    subtree_index,
                ));
            }
        }
    }
}

struct AnnoIter<'a, A, const N: usize> {
    tree: *const u8,
    subtree_len: usize,
    subtree_index: usize,
    index: usize,

    marker_a: PhantomData<*const A>,
    market_lifetime: PhantomData<&'a A>,
}

impl<'a, A, const N: usize> AnnoIter<'a, A, N> {
    fn new(tree: *const u8, subtree_len: usize, subtree_index: usize) -> Self {
        Self {
            tree,
            subtree_len,
            subtree_index,
            index: 0,
            marker_a: Default::default(),
            market_lifetime: Default::default(),
        }
    }
}

impl<'a, A, const N: usize> Iterator for AnnoIter<'a, A, N> {
    type Item = &'a A;

    fn next(&mut self) -> Option<Self::Item> {
        unsafe {
            if self.index > self.subtree_index {
                return None;
            }

            let anno_size = mem::size_of::<A>();
            let offset = (self.subtree_len - anno_size) / 2;
            let offset = offset + self.index * self.subtree_len;

            let anno = match self.index < N {
                true => self.tree.add(offset),
                false => self.tree.add(offset + anno_size),
            } as *const A;

            self.index += 1;

            Some(&*anno)
        }
    }
}

const fn header_size() -> usize {
    mem::size_of::<Header>()
}

const fn arity(n: usize) -> usize {
    2 * n
}

const fn tree_size<L, A, const N: usize>(levels: usize) -> usize {
    let anno_size = mem::size_of::<A>();
    let leaf_size = mem::size_of::<L>();

    let arity = arity(N);

    let mut size = arity * (leaf_size + anno_size) + anno_size;
    let mut i = 1;

    while i < levels {
        size = arity * size + anno_size;
        i += 1;
    }

    size
}

const fn unit_tree_size<L, A, const N: usize>() -> usize {
    tree_size::<L, A, N>(1)
}

fn leaf_iter<'a, T, A, const N: usize>(
    left_leaves: &'a [(T, A); N],
    right_leaves: &'a [(T, A); N],
    filled: usize,
) -> impl Iterator<Item = &'a A>
where
    A: Annotation<T>,
{
    left_leaves
        .iter()
        .chain(right_leaves.iter())
        .enumerate()
        .filter(move |(i, _)| *i < filled)
        .map(|(_, (_, a))| a)
}

#[cfg(test)]
mod tests {
    use crate::{Annotation, Tree};

    use tempfile::NamedTempFile;

    const N_ELEMS: usize = 2048;

    struct Cardinality(usize);

    impl<T> Annotation<T> for Cardinality {
        fn compute(_: &T) -> Self {
            Cardinality(1)
        }

        fn combine<'a>(annotations: impl Iterator<Item = &'a Self>) -> Self
        where
            Self: 'a,
        {
            Self(annotations.fold(0, |curr, c| curr + c.0))
        }
    }

    fn cardinality<const N: usize>() {
        let file = NamedTempFile::new().expect("there should be a tmp file");
        let path = file.into_temp_path();

        let mut tree = Tree::<usize, Cardinality, N>::new(path)
            .expect("should open the tree successfully");

        for i in 0..N_ELEMS {
            tree.push(i).expect("should push to the tree successfully");
        }

        assert_eq!(tree.len(), tree.root().0);

        for _ in 0..N_ELEMS {
            tree.pop().expect("should pop from the tree successfully");
        }

        assert_eq!(tree.len(), tree.root().0);
    }

    fn insert<const N: usize>() {
        let file = NamedTempFile::new().expect("there should be a tmp file");
        let path = file.into_temp_path();

        let mut tree = Tree::<usize, (), N>::new(path)
            .expect("creating a tree should go ok");

        for i in 0..N_ELEMS {
            tree.push(i).expect("push should succeed");
        }

        assert_eq!(tree.len(), N_ELEMS as usize);
    }

    fn insert_and_pop<const N: usize>() {
        let file = NamedTempFile::new().expect("there should be a tmp file");
        let path = file.into_temp_path();

        let mut tree = Tree::<usize, (), N>::new(path)
            .expect("creating a tree should go ok");

        for i in 0..N_ELEMS {
            tree.push(i).expect("push should succeed");
        }

        for i in (0..N_ELEMS).rev() {
            assert_eq!(
                i,
                tree.pop()
                    .expect("pop should succeed")
                    .expect("pop should yield a leaf")
            );
        }
        assert!(tree.is_empty());
    }

    macro_rules! tests {
        ( $( $n:literal ),* ) => {
            #[test]
            fn inserts_and_pops() {
                $(
                    insert_and_pop::<$n>();
                )*
            }

            #[test]
            fn inserts() {
                $(
                    insert::<$n>();
                )*
            }

            #[test]
            fn cardinalities() {
                $(
                    cardinality::<$n>();
                )*
            }
        };
    }

    tests!(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16);
}