1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
/*! This library safely implements WebGPU on native platforms.
 *  It is designed for integration into browsers, as well as wrapping
 *  into other language-specific user-friendly libraries.
 */

#![allow(
    // It is much clearer to assert negative conditions with eq! false
    clippy::bool_assert_comparison,
    // We use loops for getting early-out of scope without closures.
    clippy::never_loop,
    // We don't use syntax sugar where it's not necessary.
    clippy::match_like_matches_macro,
    // Redundant matching is more explicit.
    clippy::redundant_pattern_matching,
    // Explicit lifetimes are often easier to reason about.
    clippy::needless_lifetimes,
    // No need for defaults in the internal types.
    clippy::new_without_default,
    // Needless updates are more scaleable, easier to play with features.
    clippy::needless_update,
    // Need many arguments for some core functions to be able to re-use code in many situations.
    clippy::too_many_arguments,
    // For some reason `rustc` can warn about these in const generics even
    // though they are required.
    unused_braces,
)]
#![warn(
    trivial_casts,
    trivial_numeric_casts,
    unused_extern_crates,
    unused_qualifications,
    // We don't match on a reference, unless required.
    clippy::pattern_type_mismatch,
)]

pub mod binding_model;
pub mod command;
mod conv;
pub mod device;
pub mod error;
pub mod hub;
pub mod id;
mod init_tracker;
pub mod instance;
pub mod pipeline;
pub mod present;
pub mod resource;
mod track;
mod validation;

pub use hal::{api, MAX_BIND_GROUPS, MAX_COLOR_ATTACHMENTS, MAX_VERTEX_BUFFERS};

use atomic::{AtomicUsize, Ordering};

use std::{borrow::Cow, os::raw::c_char, ptr, sync::atomic};

/// The index of a queue submission.
///
/// These are the values stored in `Device::fence`.
type SubmissionIndex = hal::FenceValue;

type Index = u32;
type Epoch = u32;

pub type RawString = *const c_char;
pub type Label<'a> = Option<Cow<'a, str>>;

trait LabelHelpers<'a> {
    fn borrow_option(&'a self) -> Option<&'a str>;
    fn borrow_or_default(&'a self) -> &'a str;
}
impl<'a> LabelHelpers<'a> for Label<'a> {
    fn borrow_option(&'a self) -> Option<&'a str> {
        self.as_ref().map(|cow| cow.as_ref())
    }
    fn borrow_or_default(&'a self) -> &'a str {
        self.borrow_option().unwrap_or_default()
    }
}

/// Reference count object that is 1:1 with each reference.
///
/// All the clones of a given `RefCount` point to the same
/// heap-allocated atomic reference count. When the count drops to
/// zero, only the count is freed. No other automatic cleanup takes
/// place; this is just a reference count, not a smart pointer.
///
/// `RefCount` values are created only by [`LifeGuard::new`] and by
/// `Clone`, so every `RefCount` is implicitly tied to some
/// [`LifeGuard`].
#[derive(Debug)]
struct RefCount(ptr::NonNull<AtomicUsize>);

unsafe impl Send for RefCount {}
unsafe impl Sync for RefCount {}

impl RefCount {
    const MAX: usize = 1 << 24;

    /// Construct a new `RefCount`, with an initial count of 1.
    fn new() -> RefCount {
        let bx = Box::new(AtomicUsize::new(1));
        Self(unsafe { ptr::NonNull::new_unchecked(Box::into_raw(bx)) })
    }

    fn load(&self) -> usize {
        unsafe { self.0.as_ref() }.load(Ordering::Acquire)
    }
}

impl Clone for RefCount {
    fn clone(&self) -> Self {
        let old_size = unsafe { self.0.as_ref() }.fetch_add(1, Ordering::AcqRel);
        assert!(old_size < Self::MAX);
        Self(self.0)
    }
}

impl Drop for RefCount {
    fn drop(&mut self) {
        unsafe {
            if self.0.as_ref().fetch_sub(1, Ordering::AcqRel) == 1 {
                drop(Box::from_raw(self.0.as_ptr()));
            }
        }
    }
}

/// Reference count object that tracks multiple references.
/// Unlike `RefCount`, it's manually inc()/dec() called.
#[derive(Debug)]
struct MultiRefCount(AtomicUsize);

impl MultiRefCount {
    fn new() -> Self {
        Self(AtomicUsize::new(1))
    }

    fn inc(&self) {
        self.0.fetch_add(1, Ordering::AcqRel);
    }

    fn dec_and_check_empty(&self) -> bool {
        self.0.fetch_sub(1, Ordering::AcqRel) == 1
    }
}

/// Information needed to decide when it's safe to free some wgpu-core
/// resource.
///
/// Each type representing a `wgpu-core` resource, like [`Device`],
/// [`Buffer`], etc., contains a `LifeGuard` which indicates whether
/// it is safe to free.
///
/// A resource may need to be retained for any of several reasons:
///
/// - The user may hold a reference to it (via a `wgpu::Buffer`, say).
///
/// - Other resources may depend on it (a texture view's backing
///   texture, for example).
///
/// - It may be used by commands sent to the GPU that have not yet
///   finished execution.
///
/// [`Device`]: device::Device
/// [`Buffer`]: resource::Buffer
#[derive(Debug)]
pub struct LifeGuard {
    /// `RefCount` for the user's reference to this resource.
    ///
    /// When the user first creates a `wgpu-core` resource, this `RefCount` is
    /// created along with the resource's `LifeGuard`. When the user drops the
    /// resource, we swap this out for `None`. Note that the resource may
    /// still be held alive by other resources.
    ///
    /// Any `Stored<T>` value holds a clone of this `RefCount` along with the id
    /// of a `T` resource.
    ref_count: Option<RefCount>,

    /// The index of the last queue submission in which the resource
    /// was used.
    ///
    /// Each queue submission is fenced and assigned an index number
    /// sequentially. Thus, when a queue submission completes, we know any
    /// resources used in that submission and any lower-numbered submissions are
    /// no longer in use by the GPU.
    submission_index: AtomicUsize,

    /// The `label` from the descriptor used to create the resource.
    #[cfg(debug_assertions)]
    pub(crate) label: String,
}

impl LifeGuard {
    #[allow(unused_variables)]
    fn new(label: &str) -> Self {
        Self {
            ref_count: Some(RefCount::new()),
            submission_index: AtomicUsize::new(0),
            #[cfg(debug_assertions)]
            label: label.to_string(),
        }
    }

    fn add_ref(&self) -> RefCount {
        self.ref_count.clone().unwrap()
    }

    /// Record that this resource will be used by the queue submission with the
    /// given index.
    ///
    /// Returns `true` if the resource is still held by the user.
    fn use_at(&self, submit_index: SubmissionIndex) -> bool {
        self.submission_index
            .store(submit_index as _, Ordering::Release);
        self.ref_count.is_some()
    }

    fn life_count(&self) -> SubmissionIndex {
        self.submission_index.load(Ordering::Acquire) as _
    }
}

#[derive(Clone, Debug)]
struct Stored<T> {
    value: id::Valid<T>,
    ref_count: RefCount,
}

const DOWNLEVEL_WARNING_MESSAGE: &str = "The underlying API or device in use does not \
support enough features to be a fully compliant implementation of WebGPU. A subset of the features can still be used. \
If you are running this program on native and not in a browser and wish to limit the features you use to the supported subset, \
call Adapter::downlevel_properties or Device::downlevel_properties to get a listing of the features the current \
platform supports.";
const DOWNLEVEL_ERROR_MESSAGE: &str = "This is not an invalid use of WebGPU: the underlying API or device does not \
support enough features to be a fully compliant implementation. A subset of the features can still be used. \
If you are running this program on native and not in a browser and wish to work around this issue, call \
Adapter::downlevel_properties or Device::downlevel_properties to get a listing of the features the current \
platform supports.";

/// Dispatch on an [`Id`]'s backend to a backend-generic method.
///
/// Uses of this macro have the form:
///
/// ```ignore
///
///     gfx_select!(id => value.method(args...))
///
/// ```
///
/// This expands to an expression that calls `value.method::<A>(args...)` for
/// the backend `A` selected by `id`. The expansion matches on `id.backend()`,
/// with an arm for each backend type in [`wgpu_types::Backend`] which calls the
/// specialization of `method` for the given backend. This allows resource
/// identifiers to select backends dynamically, even though many `wgpu_core`
/// methods are compiled and optimized for a specific back end.
///
/// This macro is typically used to call methods on [`wgpu_core::hub::Global`],
/// many of which take a single `hal::Api` type parameter. For example, to
/// create a new buffer on the device indicated by `device_id`, one would say:
///
/// ```ignore
/// gfx_select!(device_id => global.device_create_buffer(device_id, ...))
/// ```
///
/// where the `device_create_buffer` method is defined like this:
///
/// ```ignore
/// impl<...> Global<...> {
///    pub fn device_create_buffer<A: hal::Api>(&self, ...) -> ...
///    { ... }
/// }
/// ```
///
/// That `gfx_select!` call uses `device_id`'s backend to select the right
/// backend type `A` for a call to `Global::device_create_buffer<A>`.
///
/// However, there's nothing about this macro that is specific to `hub::Global`.
/// For example, Firefox's embedding of `wgpu_core` defines its own types with
/// methods that take `hal::Api` type parameters. Firefox uses `gfx_select!` to
/// dynamically dispatch to the right specialization based on the resource's id.
///
/// [`wgpu_types::Backend`]: wgt::Backend
/// [`wgpu_core::hub::Global`]: crate::hub::Global
/// [`Id`]: id::Id
#[macro_export]
macro_rules! gfx_select {
    ($id:expr => $global:ident.$method:ident( $($param:expr),* )) => {
        // Note: For some reason the cfg aliases defined in build.rs don't succesfully apply in this
        // macro so we must specify their equivalents manually
        match $id.backend() {
            #[cfg(any(
                all(not(target_arch = "wasm32"), not(target_os = "ios"), not(target_os = "macos")),
                feature = "vulkan-portability"
            ))]
            wgt::Backend::Vulkan => $global.$method::<$crate::api::Vulkan>( $($param),* ),
            #[cfg(all(not(target_arch = "wasm32"), any(target_os = "ios", target_os = "macos")))]
            wgt::Backend::Metal => $global.$method::<$crate::api::Metal>( $($param),* ),
            #[cfg(all(not(target_arch = "wasm32"), windows))]
            wgt::Backend::Dx12 => $global.$method::<$crate::api::Dx12>( $($param),* ),
            #[cfg(all(not(target_arch = "wasm32"), windows))]
            wgt::Backend::Dx11 => $global.$method::<$crate::api::Dx11>( $($param),* ),
            #[cfg(any(
                all(unix, not(target_os = "macos"), not(target_os = "ios")),
                feature = "angle",
                target_arch = "wasm32"
            ))]
            wgt::Backend::Gl => $global.$method::<$crate::api::Gles>( $($param),+ ),
            other => panic!("Unexpected backend {:?}", other),

        }
    };
}

/// Fast hash map used internally.
type FastHashMap<K, V> =
    std::collections::HashMap<K, V, std::hash::BuildHasherDefault<fxhash::FxHasher>>;
/// Fast hash set used internally.
type FastHashSet<K> = std::collections::HashSet<K, std::hash::BuildHasherDefault<fxhash::FxHasher>>;

#[inline]
pub(crate) fn get_lowest_common_denom(a: u32, b: u32) -> u32 {
    let gcd = if a >= b {
        get_greatest_common_divisor(a, b)
    } else {
        get_greatest_common_divisor(b, a)
    };
    a * b / gcd
}

#[inline]
pub(crate) fn get_greatest_common_divisor(mut a: u32, mut b: u32) -> u32 {
    assert!(a >= b);
    loop {
        let c = a % b;
        if c == 0 {
            return b;
        } else {
            a = b;
            b = c;
        }
    }
}

#[test]
fn test_lcd() {
    assert_eq!(get_lowest_common_denom(2, 2), 2);
    assert_eq!(get_lowest_common_denom(2, 3), 6);
    assert_eq!(get_lowest_common_denom(6, 4), 12);
}

#[test]
fn test_gcd() {
    assert_eq!(get_greatest_common_divisor(5, 1), 1);
    assert_eq!(get_greatest_common_divisor(4, 2), 2);
    assert_eq!(get_greatest_common_divisor(6, 4), 2);
    assert_eq!(get_greatest_common_divisor(7, 7), 7);
}