1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
//! This crate provides provides functionality for encoding and decoding images from or into the webp format.
//! It is implemented as a safe wrapper around the libwebp-sys crate.
//! Currently only a subset of the features supported by libwebp are available.
//! The simple encoding and decoding apis are implemented which use the default configuration of libwebp.

mod animation_encoder;
#[doc(inline)]
pub use animation_encoder::*;

mod decoder;
#[doc(inline)]
pub use decoder::*;

mod animation_decoder;
#[doc(inline)]
pub use animation_decoder::*;

mod encoder;
#[doc(inline)]
pub use encoder::*;
pub use libwebp_sys::WebPEncodingError;

mod shared;
#[doc(inline)]
pub use shared::*;

pub use libwebp_sys::WebPConfig;

#[cfg(test)]
mod tests {
    use std::ops::Deref;

    use image::*;

    use crate::*;

    fn hsv_to_rgb(h: f64, s: f64, v: f64) -> [u8; 3] {
        let h = (h - h.floor()) * 6.0;
        let f = h - h.floor();
        let u = (v * 255.0) as u8;
        let p = (v * (1.0 - s) * 255.0) as u8;
        let q = (v * (1.0 - s * f) * 255.0) as u8;
        let t = (v * (1.0 - s * (1.0 - f)) * 255.0) as u8;

        match h as u8 {
            0 => [u, t, p],
            1 => [q, u, p],
            2 => [p, u, t],
            3 => [p, q, u],
            4 => [t, p, u],
            5 => [u, p, q],
            _ => unreachable!("h must be between 0.0 and 1.0"),
        }
    }

    fn generate_color_wheel(width: u32, height: u32, background_alpha: bool) -> DynamicImage {
        let f = |x, y| {
            let width = width as f64;
            let height = height as f64;

            let x = x as f64 - width / 2.0;
            let y = y as f64 - height / 2.0;

            let theta = y.atan2(x);
            let tau = 2.0 * std::f64::consts::PI;
            let h = (theta + std::f64::consts::PI) / tau;
            let s = (4.0 * (x * x + y * y) / width / height).sqrt();
            let v = 1.0;

            if s > 1.0 {
                Rgba([0, 0, 0, if background_alpha { 0 } else { 255 }])
            } else {
                let [r, g, b] = hsv_to_rgb(h, s, v);
                Rgba([r, g, b, 255])
            }
        };

        DynamicImage::ImageRgba8(ImageBuffer::from_fn(width, height, f))
    }

    const SIZE: u32 = 96;

    #[test]
    fn encode_decode() {
        let test_image_no_alpha = generate_color_wheel(SIZE, SIZE, false);
        let encoded = Encoder::from_image(&test_image_no_alpha)
            .unwrap()
            .encode_lossless();

        let decoded = Decoder::new(encoded.deref())
            .decode()
            .unwrap()
            .to_image()
            .to_rgb8();
        assert_eq!(test_image_no_alpha.to_rgb8().deref(), decoded.deref());

        let test_image_alpha = generate_color_wheel(SIZE, SIZE, true);
        let encoded = Encoder::from_image(&test_image_alpha)
            .unwrap()
            .encode_lossless();

        let decoded = Decoder::new(encoded.deref())
            .decode()
            .unwrap()
            .to_image()
            .to_rgba8();

        // To achieve better compression, the webp library changes the rgb values in transparent regions
        // This means we have to exclusively compare the opaque regions
        // See the note for WebPEncodeLossless* at https://developers.google.com/speed/webp/docs/api#simple_encoding_api
        fn compare(p1: &Rgba<u8>, p2: &Rgba<u8>) -> bool {
            // two pixels are equal if they are fully transparent
            if p1.channels()[3] == 0 && p2.channels()[3] == 0 {
                true
            } else {
                // or if they otherwise equal
                p1 == p2
            }
        }

        for (p1, p2) in test_image_alpha.to_rgba8().pixels().zip(decoded.pixels()) {
            assert!(compare(p1, p2))
        }
    }

    #[test]
    fn get_info() {
        let test_image_no_alpha = generate_color_wheel(SIZE, SIZE, false);
        let encoded = Encoder::from_image(&test_image_no_alpha)
            .unwrap()
            .encode_lossless();

        let features = BitstreamFeatures::new(encoded.deref()).unwrap();
        assert_eq!(features.width(), SIZE);
        assert_eq!(features.height(), SIZE);
        assert!(!features.has_alpha());
        assert!(!features.has_animation());

        let test_image_alpha = generate_color_wheel(SIZE, SIZE, true);
        let encoded = Encoder::from_image(&test_image_alpha)
            .unwrap()
            .encode_lossless();

        let features = BitstreamFeatures::new(encoded.deref()).unwrap();
        assert_eq!(features.width(), SIZE);
        assert_eq!(features.height(), SIZE);
        assert!(features.has_alpha());
        assert!(!features.has_animation());
    }

    #[test]
    fn anim_encode_decode() {
        let width = 32u32;
        let height = 32u32;
        let mut encode_images = vec![];
        let mut config = WebPConfig::new().unwrap();
        config.lossless = 1;
        config.alpha_compression = 0;
        config.alpha_filtering = 0;
        config.quality = 75f32;

        let mut encoder = AnimEncoder::new(width, height, &config);
        encoder.set_bgcolor([255, 0, 0, 255]);
        encoder.set_loop_count(3);

        let v = generate_color_wheel(width, height, true);
        encode_images.push(v);

        let v = generate_color_wheel(width, height, true);
        encode_images.push(v);

        let v = generate_color_wheel(width, height, true);
        encode_images.push(v);

        let v = generate_color_wheel(width, height, true);
        encode_images.push(v);

        let mut t = 1000;
        for v in encode_images.iter() {
            encoder.add_frame(AnimFrame::from_image(v, t).unwrap());
            t += 250;
        }
        let webp = encoder.encode();
        let mut decode_images: Vec<DynamicImage> = vec![];
        match AnimDecoder::new(&webp).decode() {
            Ok(frames) => {
                decode_images.extend((&frames).into_iter().map(|a| (&a).into()));
            }
            Err(mes) => {
                println!("{}", mes);
            }
        }
        let mut encode_rgba = vec![];
        for v in encode_images.into_iter() {
            let value = DynamicImage::ImageRgba8(v.to_rgba8());
            encode_rgba.push(value);
        }
        fn compare(p1: &Rgba<u8>, p2: &Rgba<u8>) -> bool {
            // two pixels are equal if they are fully transparent
            if p1.channels()[3] == 0 && p2.channels()[3] == 0 {
                true
            } else {
                // or if they otherwise equal
                p1 == p2
            }
        }
        for (i1, i2) in encode_rgba.iter().zip(decode_images.iter()) {
            for (p1, p2) in i1.to_rgba8().pixels().zip(i2.to_rgba8().pixels()) {
                assert!(compare(p1, p2))
            }
        }
    }
}