1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
use std::any::Any;
use std::io::{Result as IoResult, Error as IoError};
use std::io::Write;
use std::ops::{Deref, DerefMut};
use std::os::raw::{c_void, c_int};
use std::sync::Arc;
use std::sync::atomic::{AtomicBool, AtomicPtr};

use wayland_sys::client::*;
use wayland_sys::common::*;
use {Handler, Proxy};

type ProxyUserData = (*mut EventQueueHandle, Arc<(AtomicBool, AtomicPtr<()>)>);

/// Handle to an event queue
///
/// This handle gives you access to methods on an event queue
/// that are safe to do from within a callback.
///
/// They are also available on an `EventQueue` object via `Deref`.
pub struct EventQueueHandle {
    handlers: Vec<Box<Any+Send>>,
    wlevq: Option<*mut wl_event_queue>,
}

/// A trait to initialize handlers after they've been inserted in an event queue
///
/// Works with the `add_handler_with_init` method of `EventQueueHandle`.
pub trait Init {
    /// Init the handler
    ///
    /// `index` is the current index of the handler in the event queue (you can
    /// use it to register objects to it)
    fn init(&mut self, evqh: &mut EventQueueHandle, index: usize);
}

impl EventQueueHandle {
    /// Register a proxy to a handler of this event queue.
    ///
    /// The H type must be provided and match the type of the targetted Handler, or
    /// it will panic.
    ///
    /// This overwrites any precedently set Handler for this proxy.
    pub fn register<P: Proxy, H: Handler<P> + Any + Send + 'static>(&mut self, proxy: &P, handler_id: usize) {
        let h = self.handlers[handler_id].downcast_ref::<H>()
                    .expect("Handler type do not match.");
        unsafe {
            let data: *mut ProxyUserData = ffi_dispatch!(
                WAYLAND_CLIENT_HANDLE,
                wl_proxy_get_user_data,
                proxy.ptr()
            ) as *mut _;
            (&mut *data).0 = self as *const _ as *mut _;
            ffi_dispatch!(
                WAYLAND_CLIENT_HANDLE,
                wl_proxy_add_dispatcher,
                proxy.ptr(),
                dispatch_func::<P,H>,
                h as *const _ as *const c_void,
                data as *mut c_void
            );
            ffi_dispatch!(
                WAYLAND_CLIENT_HANDLE,
                wl_proxy_set_queue,
                proxy.ptr(),
                match self.wlevq {
                    Some(ptr) => ptr,
                    None => ::std::ptr::null_mut()
                }
            );
        }
    }

    /// Insert a new handler to this event queue
    ///
    /// Returns the index of this handler in the internal array, which is needed
    /// to register proxies to it.
    pub fn add_handler<H: Any + Send + 'static>(&mut self, handler: H) -> usize {
        self.handlers.push(Box::new(handler) as Box<Any + Send>);
        self.handlers.len() - 1
    }

    /// Insert a new handler with init
    ///
    /// Allows you to insert handlers that require some interaction with the
    /// event loop in their initialization, like registering some objects to it.
    ///
    /// The handler must implement the `Init` trait, and its init method will
    /// be called after its insertion.
    pub fn add_handler_with_init<H: Init + Any + Send + 'static>(&mut self, handler: H) -> usize
    {
        let mut box_ = Box::new(handler);
        // this little juggling is to avoid the double-borrow, which is actually safe,
        // as handlers cannot be mutably accessed outside of an event-dispatch,
        // and this new handler cannot receive any events before the return
        // of this function
        let h = &mut *box_ as *mut H;
        self.handlers.push(box_ as Box<Any + Send>);
        let index = self.handlers.len() - 1;
        unsafe { (&mut *h).init(self, index) };
        index
    }
}

/// Guard to access internal state of an event queue
///
/// This guard allows you to get references to the handlers you
/// previously stored inside an event queue.
///
/// It borrows the event queue, so no event dispatching is possible
/// as long as the guard is in scope, for safety reasons.
pub struct StateGuard<'evq> {
    evq: &'evq mut EventQueue
}

impl<'evq> StateGuard<'evq> {
    /// Get a reference to a handler
    ///
    /// Provides a reference to a handler stored in this event loop.
    ///
    /// The H type must be provided and match the type of the targetted Handler, or
    /// it will panic.
    pub fn get_handler<H: Any + 'static>(&self, handler_id: usize) -> &H {
        self.evq.handle.handlers[handler_id].downcast_ref::<H>()
            .expect("Handler type do not match.")
    }

    /// Get a mutable reference to a handler
    ///
    /// Provides a reference to a handler stored in this event loop.
    ///
    /// The H type must be provided and match the type of the targetted Handler, or
    /// it will panic.
    pub fn get_mut_handler<H: Any + 'static>(&mut self, handler_id: usize) -> &mut H {
        self.evq.handle.handlers[handler_id].downcast_mut::<H>()
            .expect("Handler type do not match.")
    }
}

/// An event queue managing wayland events
///
/// Each wayland object can receive events from the server. To handle these events
/// you must use a handler object: a struct (or enum) which you have implemented
/// the appropriate `Handler` traits on it (each wayland interface defines a `Handler`
/// trait in its module), and declared it using the `declare_handler!(..)` macro.
///
/// This handler contains the state all your handler methods will be able to access
/// via the `&mut self` argument. You can then instanciate your type, and give ownership of
/// the handler object to the event queue, via the `add_handler(..)` method. Then, each
/// wayland object must be registered to a handler via the `register(..)` method (or its events
/// will all be ignored).
///
/// The event queues also provides you control on the flow of the program, via the `dispatch()` and
/// `dispatch_pending()` methods.
///
/// ## example of use
///
/// ```ignore
/// struct MyHandler { /* ... */ }
///
/// impl wl_surface::Handler for MyHandler {
///     // implementation of the handler methods
/// }
///
/// declare_handler!(MyHandler, wl_surface::Handler, wl_surface::WlSurface);
///
/// fn main() {
///     /* ... setup of your environment ... */
///     let surface = compositor.create_surface().expect("Compositor cannot be destroyed.");
///     let my_id = eventqueue.add_handler(MyHandler::new());
///     eventqueue.register::<_, MyHandler>(&surface, my_id);
///
///     // main event loop
///     loop {
///         // flush requests to the server
///         display.flush().unwrap();
///         // dispatch events from the server, blocking if needed
///         eventqueue.dispatch().unwrap();
///     }
/// }
/// ```
pub struct EventQueue {
    handle: Box<EventQueueHandle>,
    display: *mut wl_display
}

impl EventQueue {
    /// Dispatches events from the internal buffer.
    ///
    /// Dispatches all events to their appropriate handlers.
    /// If not events were in the internal buffer, will block until
    /// some events are read and dispatch them.
    /// This process can insert events in the internal buffers of
    /// other event queues.
    ///
    /// If an error is returned, your connexion with the wayland
    /// compositor is probably lost.
    pub fn dispatch(&mut self) -> IoResult<u32> {
        let ret = match self.handle.wlevq {
            Some(evq) => unsafe {
                ffi_dispatch!(
                    WAYLAND_CLIENT_HANDLE,
                    wl_display_dispatch_queue,
                    self.display,
                    evq
                )
            },
            None => unsafe {
                ffi_dispatch!(
                    WAYLAND_CLIENT_HANDLE,
                    wl_display_dispatch,
                    self.display
                )
            }
        };
        if ret >= 0 {
            Ok(ret as u32)
        } else {
            Err(IoError::last_os_error())
        }
    }

    /// Dispatches pending events from the internal buffer.
    ///
    /// Dispatches all events to their appropriate handlers.
    /// Never blocks, if not events were pending, simply returns
    /// `Ok(0)`.
    ///
    /// If an error is returned, your connexion with the wayland
    /// compositor is probably lost.
    pub fn dispatch_pending(&mut self) -> IoResult<u32> {
        let ret = match self.handle.wlevq {
            Some(evq) => unsafe {
                ffi_dispatch!(
                    WAYLAND_CLIENT_HANDLE,
                    wl_display_dispatch_queue_pending,
                    self.display,
                    evq
                )
            },
            None => unsafe {
                ffi_dispatch!(
                    WAYLAND_CLIENT_HANDLE,
                    wl_display_dispatch_pending,
                    self.display
                )
            }
        };
        if ret >= 0 {
            Ok(ret as u32)
        } else {
            Err(IoError::last_os_error())
        }
    }

    /// Synchronous roundtrip
    ///
    /// This call will cause a synchonous roundtrip with the wayland server. It will block until all
    /// pending requests of this queue are send to the server and it has processed all of them and
    /// send the appropriate events.
    ///
    /// Handlers are called as a consequence.
    ///
    /// On success returns the number of dispatched events.
    pub fn sync_roundtrip(&mut self) -> IoResult<i32> {
        let ret = unsafe { match self.handle.wlevq {
            Some(evtq) => {
                ffi_dispatch!(WAYLAND_CLIENT_HANDLE, wl_display_roundtrip_queue,
                    self.display, evtq)
            }
            None => {
                ffi_dispatch!(WAYLAND_CLIENT_HANDLE, wl_display_roundtrip, self.display)
            }
        }};
        if ret >= 0 { Ok(ret) } else { Err(IoError::last_os_error()) }
    }

    /// Get a handle to the internal state
    ///
    /// The returned guard object allows you to get references
    /// to the handler objects you previously inserted in this
    /// event queue.
    pub fn state(&mut self) -> StateGuard {
        StateGuard { evq: self }
    }

    /// Prepare an conccurent read
    ///
    /// Will declare your intention to read events from the server socket.
    ///
    /// Will return `None` if there are still some events awaiting dispatch on this EventIterator.
    /// In this case, you need to call `dispatch_pending()` before calling this method again.
    ///
    /// As long as the returned guard is in scope, no events can be dispatched to any event iterator.
    ///
    /// The guard can then be destroyed by two means:
    ///
    ///  - Calling its `cancel()` method (or letting it go out of scope): the read intention will
    ///    be cancelled
    ///  - Calling its `read_events()` method: will block until all existing guards are destroyed
    ///    by one of these methods, then events will be read and all blocked `read_events()` calls
    ///    will return.
    ///
    /// This call will otherwise not block on the server socket if it is empty, and return
    /// an io error `WouldBlock` in such cases.
    pub fn prepare_read(&self) -> Option<ReadEventsGuard> {
        let ret = unsafe { match self.handle.wlevq {
            Some(evtq) => {
                ffi_dispatch!(WAYLAND_CLIENT_HANDLE, wl_display_prepare_read_queue,
                    self.display, evtq)
            },
            None => {
                ffi_dispatch!(WAYLAND_CLIENT_HANDLE, wl_display_prepare_read,
                    self.display)
            }
        }};
        if ret >= 0 { Some(ReadEventsGuard { display: self.display }) } else { None }
}
}

unsafe impl Send for EventQueue {}

impl Deref for EventQueue {
    type Target = EventQueueHandle;
    fn deref(&self) -> &EventQueueHandle {
        &*self.handle
    }
}

impl DerefMut for EventQueue {
    fn deref_mut(&mut self) -> &mut EventQueueHandle {
        &mut *self.handle
    }
}

/// A guard over a read intention.
///
/// See `EventQueue::prepare_read()` for details about its use.
pub struct ReadEventsGuard {
    display: *mut wl_display
}

impl ReadEventsGuard {
    /// Read events
    ///
    /// Reads events from the server socket. If other `ReadEventsGuard` exists, will block
    /// until they are all consumed or destroyed.
    pub fn read_events(self) -> IoResult<i32> {
        let ret = unsafe { ffi_dispatch!(WAYLAND_CLIENT_HANDLE, wl_display_read_events, self.display) };
        // Don't run destructor that would cancel the read intent
        ::std::mem::forget(self);
        if ret >= 0 { Ok(ret) } else { Err(IoError::last_os_error()) }
    }

    /// Cancel the read
    ///
    /// Will cancel the read intention associated with this guard. Never blocks.
    ///
    /// Has the same effet as letting the guard go out of scope.
    pub fn cancel(self) {
        // just run the destructor
    }
}

impl Drop for ReadEventsGuard {
    fn drop(&mut self) {
        unsafe { ffi_dispatch!(WAYLAND_CLIENT_HANDLE, wl_display_cancel_read, self.display) }
    }
}

pub unsafe fn create_event_queue(display: *mut wl_display, evq: Option<*mut wl_event_queue>) -> EventQueue {
    EventQueue {
        display: display,
        handle: Box::new(EventQueueHandle {
            handlers: Vec::new(),
            wlevq: evq
        })
    }
}

unsafe extern "C" fn dispatch_func<P: Proxy, H: Handler<P>>(
    handler: *const c_void,
    proxy: *mut c_void,
    opcode: u32,
    _msg: *const wl_message,
    args: *const wl_argument
) -> c_int {
    // We don't need to worry about panic-safeness, because if there is a panic,
    // we'll abort the process, so no access to corrupted data is possible.
    let ret = ::std::panic::catch_unwind(move || {
        // This cast from *const to *mut is legit because we enforce that a Handler
        // can only be assigned to a single EventQueue.
        // (this is actually the whole point of the design of this lib)
        let handler = &mut *(handler as *const H as *mut H);
        let proxy = P::from_ptr_initialized(proxy as *mut wl_proxy);
        let data = &mut *(ffi_dispatch!(
            WAYLAND_CLIENT_HANDLE, wl_proxy_get_user_data, proxy.ptr()
        ) as *mut ProxyUserData);
        let evqhandle = &mut *data.0;
        handler.message(evqhandle, &proxy, opcode, args)
    });
    match ret {
        Ok(Ok(())) => return 0,   // all went well
        Ok(Err(())) => {
            // an unknown opcode was dispatched, this is not normal
            let _ = write!(
                ::std::io::stderr(),
                "[wayland-client error] Attempted to dispatch unknown opcode {} for {}, aborting.",
                opcode, P::interface_name()
            );
            ::libc::abort();
        }
        Err(_) => {
            // a panic occured
            let _ = write!(
                ::std::io::stderr(),
                "[wayland-client error] A handler for {} panicked, aborting.",
                P::interface_name()
            );
            ::libc::abort();
        }
    }
}

/// Registers a handler type so it can be used in event queue
///
/// After having implemented the appropriate Handler trait for your type,
/// declare it via this macro, like this:
///
/// ```ignore
/// struct MyHandler;
///
/// impl wl_foo::Handler for MyHandler {
///     ...
/// }
///
/// declare_handler!(MyHandler, wl_foo::Handler, wl_foo::WlFoo);
/// ```
#[macro_export]
macro_rules! declare_handler(
    ($handler_struct: ty, $handler_trait: path, $handled_type: ty) => {
        unsafe impl $crate::Handler<$handled_type> for $handler_struct {
            unsafe fn message(&mut self, evq: &mut $crate::EventQueueHandle, proxy: &$handled_type, opcode: u32, args: *const $crate::sys::wl_argument) -> Result<(),()> {
                <$handler_struct as $handler_trait>::__message(self, evq, proxy, opcode, args)
            }
        }
    }
);

/// Registers a handler type so it as delegating to one of its fields
///
/// This allows to declare your type as a handler, by delegating the impl
/// to one of its fields (or subfields).
///
/// ```ignore
/// // MySubHandler is a proper handler for wl_foo events
/// struct MySubHandler;
///
/// struct MyHandler {
///     sub: MySubHandler
/// }
///
/// declare_delegating_handler!(MySubHandler, sub, wl_foo::Handler, wl_foo::WlFoo);
/// ```
#[macro_export]
macro_rules! declare_delegating_handler(
    ($handler_struct: ty, $($handler_field: ident).+ , $handler_trait: path, $handled_type: ty) => {
        unsafe impl $crate::Handler<$handled_type> for $handler_struct {
            unsafe fn message(&mut self, evq: &mut $crate::EventQueueHandle, proxy: &$handled_type, opcode: u32, args: *const $crate::sys::wl_argument) -> Result<(),()> {
                <$handler_trait>::__message(&mut self.$($handler_field).+, evq, proxy, opcode, args)
            }
        }
    }
);