1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
//! A wavetable representing a collection of waveshapes.
//!
//! A wavetable consists of a collection of waveshapes. Every waveshape in the
//! wavetable itself contains multiple bandlimited tables for use in different
//! octaves. Every octave table is a vector of usually 2048 values
//! representing a single wave cycle.
//!
//! In memory, the table is stored as a vector of vectors. The inner vector
//! holds the samples of a single wave cycle, with the different octave tables
//! stored as a contiguous piece of memory. The outer vector holds the different
//! waveshapes.
//!
//! An oscillator using a wavetable then needs three positions to calculate a
//! sample: The wave index, which determines which waveshape table to use, the
//! current octave, which determines the octave table to use, and the position
//! inside the single wave cycle. Both the wave index and the position are float
//! values, which means some interpolation is required to get the final sample.

use super::Float;

use log::{info, debug, trace, warn};
use rustfft::FFTplanner;
use rustfft::num_complex::Complex;
use rustfft::num_traits::Zero;

use std::cmp;
use std::sync::Arc;

pub struct Wavetable {
    pub num_tables: usize,  // Number of different waveshapes
    pub num_octaves: usize, // Number of octave tables to generate per waveshape
    pub num_values: usize,  // Length of a single octave table, including duplicated first element (usually 2049)
    pub num_samples: usize, // Length of a single octave table - 1, actual number of unique values (usually 2048)
    pub table: Vec<Vec<Float>>, // Vector of vectors holding all tables
}

pub type WavetableRef = Arc<Wavetable>;

impl Wavetable {
    /// Creates a new Wavetable instance.
    ///
    /// This function allocates the memory required for storing the given
    /// number of tables.
    ///
    /// ```
    /// use wavetable::Wavetable;
    ///
    /// // Allocate a table for 4 waveshapes, each containing bandlimited
    /// // sub-tables for 11 octaves, with each table holding 2048 samples.
    /// let wt = Wavetable::new(4, 11, 2048);
    /// ```
    pub fn new(num_tables: usize, num_octaves: usize, num_samples: usize) -> Wavetable {
        let num_values = num_samples + 1;
        let table = vec!(vec!(0.0; num_values * num_octaves); num_tables);
        debug!("New Wavetable: {} tables for {} octaves, {} samples",
              num_tables, num_octaves, num_samples);
        Wavetable {
            num_tables,
            num_octaves,
            num_values,
            num_samples,
            table
        }
    }

    /// Create a new Wavetable using the provided sample memory.
    ///
    /// ```
    /// use wavetable::Wavetable;
    ///
    /// let num_tables = 4;
    /// let num_octaves = 11;
    /// let num_samples = 2048;
    /// let num_values = num_samples + 1;
    /// let table = vec!(vec!(0.0; num_values * num_octaves); num_tables);
    /// let wt = Wavetable::new_from_vector(num_tables, num_octaves, num_samples, table);
    /// ```
    pub fn new_from_vector(num_tables: usize, num_octaves: usize, num_samples: usize, table: Vec<Vec<Float>>) -> WavetableRef {
        let num_values = num_samples + 1;
        debug!("New Wavetable: {} tables for {} octaves, {} samples",
              num_tables, num_octaves, num_samples);
        Arc::new(Wavetable {
            num_tables,
            num_octaves,
            num_values,
            num_samples,
            table
        })
    }

    /// Return the waveshape at the given index.
    ///
    /// This will return the vector containing all octave tables for a single
    /// waveshape in the Wavetable.
    ///
    /// ```
    /// use wavetable::Wavetable;
    /// 
    /// let wt = Wavetable::new(4, 11, 2048); // Allocate a Wavetable for 4 waveshapes
    /// let first_wave = wt.get_wave(0);      // Get the vector holding the first waveshape
    /// ```
    pub fn get_wave(&self, wave_id: usize) -> &Vec<Float> {
        &self.table[wave_id]
    }

    /// Return a mutable vector for the selected waveshape.
    ///
    /// This will return a mutable vector containing all octave tables for a
    /// single waveshape in the Wavetable.
    ///
    /// ```
    /// use wavetable::Wavetable;
    ///
    /// let mut wt = Wavetable::new(4, 11, 2048);    // Allocate a Wavetable for 4 waveshapes
    /// let mut second_wave = wt.get_wave_mut(1); // Get the vector holding the second waveshape
    /// ```
    pub fn get_wave_mut(&mut self, wave_id: usize) -> &mut Vec<Float> {
        &mut self.table[wave_id]
    }

    // -----------------------------------------
    // Functions for constructing wavetable data
    // -----------------------------------------

    /// Calculates the number of non-aliasing harmonics for one octave.
    ///
    /// Calculates all the harmonics for the octave starting at base_freq that
    /// do not exceed the Nyquist frequency.
    ///
    /// ```
    /// use wavetable::Wavetable;
    ///
    /// let num_harmonics = Wavetable::calc_num_harmonics(20.0, 100.0);
    /// assert_eq!(num_harmonics, 1);
    /// ```
    pub fn calc_num_harmonics(base_freq: Float, sample_freq: Float) -> usize {
        let nyquist_freq = sample_freq / 2.0;
        if base_freq > nyquist_freq {
            return 0;
        }
        let num_harmonics = (nyquist_freq / base_freq) as usize - 1; // Don't count the base frequency itself
        debug!("Base frequency {}: {} harmonics, highest at {} Hz with sample frequency {}",
            base_freq, num_harmonics, base_freq * (num_harmonics + 1) as Float, sample_freq);
        num_harmonics
    }

    /// Convert a wavetable to a vector of harmonics lists.
    ///
    /// Creates one harmonic list for each waveshape in the table. The result
    /// will contain at most <num_harmonics> harmonics in the list.
    ///
    /// ```
    /// use wavetable::Wavetable;
    /// use wavetable::WtManager;
    ///
    /// let mut wt_manager = WtManager::new(44100.0, "data");
    /// wt_manager.add_basic_tables(0);
    /// let wt = if let Some(table) = wt_manager.get_table(0) { table } else { panic!(); };
    /// let harmonics = wt.convert_to_harmonics(1300);
    /// ```
    pub fn convert_to_harmonics(&self, num_harmonics: usize) -> Vec<Vec<Float>> {
        // Allocate memory
        let mut harmonics = vec![vec![0.0; num_harmonics]; self.table.len()];

        // Prepare FFT
        let mut input: Vec<Complex<Float>> = vec![Complex::zero(); 2048];
        let mut output: Vec<Complex<Float>> = vec![Complex::zero(); 2048];
        let mut planner = FFTplanner::new(false);
        let fft = planner.plan_fft(2048);
        let mut value: Float;

        // For all waveshapes in the Wavetable
        for i in 0..self.table.len() {

            // Copy wave to input.
            // We're only checking octave table 1, since it has the most
            // harmonics.
            let table = &self.table[i];
            for j in 0..2048 {
                input[j].re = table[j];
            }

            // Process input
            fft.process(&mut input, &mut output);

            // Find scale of output
            let mut max: Float = 0.0;
            for j in 0..output.len() {
                max = max.max(output[j].im.abs());
            }
            // Transfer output to harmonics list
            for j in 0..num_harmonics {
                value = output[j].im;
                harmonics[i][j] = if value < 0.001 && value > -0.001 {
                    0.0
                } else {
                    (value / max) * -1.0
                };
            }
        }
        harmonics
    }

    // Add a wave with given frequency to a table.
    //
    // Frequency is relative to the buffer length, so a value of 1 will put one
    // wave period into the table. The values are added to the values already
    // in the table. Giving a negative amplitude will subtract the values.
    //
    // The last sample in the table receives the same value as the first, to
    // allow more efficient interpolation (eliminates the need for index
    // wrapping).
    //
    // wave_func is a function receiving an input in the range [0:1] and
    // returning a value in the same range.
    //
    fn add_wave(table: &mut [Float], freq: Float, amplitude: Float, wave_func: fn(Float) -> Float) {
        let extra_sample = table.len() & 0x01;
        let num_samples = table.len() - extra_sample;
        let num_samples_f = num_samples as Float;
        let mult = freq * 2.0 * std::f64::consts::PI;
        let mut position: Float;
        for i in 0..num_samples {
            position = mult * (i as Float / num_samples_f);
            table[i] = table[i] + wave_func(position) * amplitude;
        }
        if extra_sample > 0 {
            table[table.len() - 1] = table[0]; // Add extra sample for easy interpolation
        }
    }

    /// Add a sine wave with given frequency and amplitude to the buffer.
    ///
    /// ```
    /// use wavetable::Wavetable;
    ///
    /// let mut wt = Wavetable::new(4, 11, 2048);
    /// let mut first_wave = wt.get_wave_mut(0);
    /// let frequency = 1.0; // wavelength = buffer size
    /// let amplitude = 1.0;
    /// Wavetable::add_sine_wave(&mut first_wave, frequency, amplitude);
    /// ```
    pub fn add_sine_wave(table: &mut [Float], freq: Float, amplitude: Float) {
        Wavetable::add_wave(table, freq, amplitude, f64::sin);
    }

    /// Add a cosine wave with given frequency and amplitude to the buffer.
    ///
    /// ```
    /// use wavetable::Wavetable;
    ///
    /// let mut wt = Wavetable::new(4, 11, 2048);
    /// let mut first_wave = wt.get_wave_mut(0);
    /// let frequency = 1.0; // wavelength = buffer size
    /// let amplitude = 1.0;
    /// Wavetable::add_cosine_wave(&mut first_wave, frequency, amplitude);
    /// ```
    pub fn add_cosine_wave(table: &mut [Float], freq: Float, amplitude: Float) {
        Wavetable::add_wave(table, freq, amplitude, f64::cos);
    }

    /// Create octave tables with given insert function.
    ///
    /// Divides the given table into NUM_TABLES subtables and uses the given
    /// insert function to insert waveforms into them. Each table serves the
    /// frequency range of one octave.
    ///
    pub fn insert_tables(&mut self,
                         table_id: usize,
                         start_freq: Float,
                         sample_freq: Float,
                         insert_wave: fn(&mut [Float], Float, Float)) {
        info!("Creating table {}", table_id);
        let num_octaves = self.num_octaves;
        let num_values = self.num_values;
        let table = self.get_wave_mut(table_id);
        let mut current_freq = start_freq;
        for i in 0..num_octaves {
            let from = i * num_values;
            let to = (i + 1) * num_values;
            insert_wave(&mut table[from..to], current_freq, sample_freq);
            current_freq *= 2.0; // Next octave
        }
    }

    /// Calculate the start frequency to use for wave creation.
    pub fn get_start_frequency(base_freq: Float) -> Float {
        let two: Float = 2.0;
        (base_freq / 32.0) * (two.powf((-9.0) / 12.0))
    }

    /// Insert a wave from a list of harmonic amplitudes.
    ///
    /// The list of harmonics containes their relative amplitude. After adding
    /// the harmonics to the wavetable, the total amplitude will be normalized.
    ///
    /// ```
    /// use wavetable::Wavetable;
    ///
    /// let harmonics = vec![vec![0.0; 2048]];
    /// let mut wt = Wavetable::new(1, 11, 2048);
    /// wt.insert_harmonics(&harmonics, 44100.0);
    /// ```
    pub fn insert_harmonics(&mut self, harmonics: &[Vec<Float>], sample_freq: Float) -> Result<(), ()> {
        if harmonics.len() != self.table.len() {
            // Number of waveshapes doesn't match
            info!("Wrong number of tables");
            return Err(());
        }

        let mut amp: Float;
        let num_values = self.num_values;

        for i in 0..harmonics.len() { // For each waveshape
            let table = &mut self.table[i];
            let mut start_freq = Wavetable::get_start_frequency(440.0);

            for j in 0..self.num_octaves { // For each octave
                // Calc number of harmonics for this octave
                start_freq *= 2.0;
                let num_harmonics = Wavetable::calc_num_harmonics(start_freq, sample_freq);
                let num_harmonics = cmp::min(num_harmonics, harmonics[i].len());
                let from = j * num_values;
                let to = (j + 1) * num_values;

                // Insert waves
                for freq in 0..num_harmonics {
                    amp = harmonics[i][freq];
                    Wavetable::add_sine_wave(&mut table[from..to], freq as Float, amp);
                }
                Wavetable::normalize(&mut table[from..to]);
            }
        }
        Ok(())
    }

    /// Combine two tables by subtracting one from the other.
    ///
    /// \param table_id ID of the target table to write to
    /// \param table_a Source table that is subtracted from
    /// \param table_b Source table that gets subtracted from table_a
    /// \param offset_b Offset into source table_b (0.0 - 1.0)
    ///
    pub fn combine_tables(&mut self,
                          table_id: usize,
                          table_a: &[Float],
                          table_b: &[Float],
                          offset_b: Float) {
        let num_octaves = self.num_octaves;
        let num_values = self.num_values;
        let num_samples = self.num_samples;
        let table = self.get_wave_mut(table_id);
        let offset_b = (num_samples as Float * offset_b) as usize;
        info!("Combining source tables into table {}, offset {}", table_id, offset_b);
        let mut index_b: usize;
        for i in 0..num_octaves {
            let from = i * num_values;
            let to = (i + 1) * num_values;
            for j in from..to {
                index_b = j + offset_b;
                if index_b >= to {
                    index_b -= num_samples;
                }
                table[j] = table_a[j] - table_b[index_b];
            }
            Wavetable::expand(&mut table[from..to]);
        }
    }

    /// Normalizes samples in a table to the range [-1.0,1.0].
    ///
    /// Searches the maximum absolute value and uses it to calculate the
    /// required scale. Assumes that the values are centered around 0.0.
    ///
    pub fn normalize(table: &mut [Float]) {
        let mut max = 0.0;
        let mut current: Float;
        for i in 0..table.len() {
            current = table[i].abs();
            if current > max {
                max = current;
            }
        }
        for i in 0..table.len() {
            table[i] = table[i] / max;
        }
    }

    /// Shifts all values in a table by the given offset.
    pub fn shift(table: &mut [Float], num_values: usize, offset: usize) {
        let mut temp = vec!(0.0; num_values);
        let mut offset = offset;
        for i in 0..num_values {
            temp[offset] = table[i];
            offset += 1;
            if offset == num_values {
                offset = 0;
            }
        }
        for i in 0..num_values {
            table[i] = temp[i]; // Copy back
        }
        table[num_values] = table[0];
    }

    /// Return min and max values of given table.
    fn get_extremes(table: &[Float]) -> (Float, Float) {
        let mut max = -1.0;
        let mut min = 1.0;
        let mut current: Float;
        for i in 0..table.len() {
            current = table[i];
            if current > max {
                max = current;
            } else if current < min {
                min = current;
            }
        }
        (min, max)
    }

    /// Expand the samples in a table to the rage [-1.0, 1.0].
    ///
    /// Scales and shifts a wave to fit into the target range. Uses the minimum
    /// and the maximum of the values to calculate scale factor and offset.
    ///
    pub fn expand(table: &mut [Float]) {
        let (min, max) = Wavetable::get_extremes(table);
        let scale = 2.0 / (max - min);
        let offset = (max + min) / 2.0;
        let mut new_val: Float;
        for i in 0..table.len() {
            new_val = (table[i] - offset) * scale;
            table[i] = new_val;
        }
    }

    /// Print all values of a table to the logfile.
    pub fn show(&self) {
        for t in &self.table {
            for (i, s) in t.iter().enumerate() {
                info!("{}: {}", i, s);
            }
        }
    }
}

// TODO: Add tests for wave generation