1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
use crate::ast::{self, kw};
use crate::parser::{Parse, Parser, Result};

pub use crate::resolve::Names;

/// A `*.wat` file parser, or a parser for one parenthesized module.
///
/// This is the top-level type which you'll frequently parse when working with
/// this crate. A `*.wat` file is either one `module` s-expression or a sequence
/// of s-expressions that are module fields.
pub struct Wat<'a> {
    #[allow(missing_docs)]
    pub module: Module<'a>,
}

impl<'a> Parse<'a> for Wat<'a> {
    fn parse(parser: Parser<'a>) -> Result<Self> {
        let module = if !parser.peek2::<kw::module>() {
            let mut fields = Vec::new();
            // must have at least one field
            fields.push(parser.parens(ModuleField::parse)?);
            while !parser.is_empty() {
                fields.push(parser.parens(ModuleField::parse)?);
            }
            Module {
                span: ast::Span { offset: 0 },
                name: None,
                kind: ModuleKind::Text(fields),
            }
        } else {
            parser.parens(|parser| parser.parse())?
        };
        Ok(Wat { module })
    }
}

/// A parsed WebAssembly module.
pub struct Module<'a> {
    /// Where this `module` was defined
    pub span: ast::Span,
    /// An optional name to refer to this module by.
    pub name: Option<ast::Id<'a>>,
    /// What kind of module this was parsed as.
    pub kind: ModuleKind<'a>,
}

/// The different kinds of ways to define a module.
pub enum ModuleKind<'a> {
    /// A module defined in the textual s-expression format.
    Text(Vec<ModuleField<'a>>),
    /// A module that had its raw binary bytes defined via the `binary`
    /// directive.
    Binary(Vec<&'a [u8]>),
}

impl<'a> Module<'a> {
    /// Performs a name resolution pass on this [`Module`], resolving all
    /// symbolic names to indices.
    ///
    /// The WAT format contains a number of shorthands to make it easier to
    /// write, such as inline exports, inline imports, inline type definitions,
    /// etc. Additionally it allows using symbolic names such as `$foo` instead
    /// of using indices. This module will postprocess an AST to remove all of
    /// this syntactic sugar, preparing the AST for binary emission.  This is
    /// where expansion and name resolution happens.
    ///
    /// This function will mutate the AST of this [`Module`] and replace all
    /// [`Index`] arguments with `Index::Num`. This will also expand inline
    /// exports/imports listed on fields and handle various other shorthands of
    /// the text format.
    ///
    /// If successful the AST was modified to be ready for binary encoding. A
    /// [`Names`] structure is also returned so if you'd like to do your own
    /// name lookups on the result you can do so as well.
    ///
    /// # Errors
    ///
    /// If an error happens during resolution, such a name resolution error or
    /// items are found in the wrong order, then an error is returned.
    pub fn resolve(&mut self) -> std::result::Result<Names<'a>, crate::Error> {
        crate::resolve::resolve(self)
    }

    /// Encodes this [`Module`] to its binary form.
    ///
    /// This function will take the textual representation in [`Module`] and
    /// perform all steps necessary to convert it to a binary WebAssembly
    /// module, suitable for writing to a `*.wasm` file. This function may
    /// internally modify the [`Module`], for example:
    ///
    /// * Name resolution is performed to ensure that `Index::Id` isn't present
    ///   anywhere in the AST.
    ///
    /// * Inline shorthands such as imports/exports/types are all expanded to be
    ///   dedicated fields of the module.
    ///
    /// * Module fields may be shuffled around to preserve index ordering from
    ///   expansions.
    ///
    /// After all of this expansion has happened the module will be converted to
    /// its binary form and returned as a `Vec<u8>`. This is then suitable to
    /// hand off to other wasm runtimes and such.
    ///
    /// # Errors
    ///
    /// This function can return an error for name resolution errors and other
    /// expansion-related errors.
    pub fn encode(&mut self) -> std::result::Result<Vec<u8>, crate::Error> {
        self.resolve()?;
        Ok(crate::binary::encode(self))
    }
}

impl<'a> Parse<'a> for Module<'a> {
    fn parse(parser: Parser<'a>) -> Result<Self> {
        let span = parser.parse::<kw::module>()?.0;
        let name = parser.parse()?;

        let kind = if parser.peek::<kw::binary>() {
            parser.parse::<kw::binary>()?;
            let mut data = Vec::new();
            while !parser.is_empty() {
                data.push(parser.parse()?);
            }
            ModuleKind::Binary(data)
        } else {
            let mut fields = Vec::new();
            while !parser.is_empty() {
                fields.push(parser.parens(ModuleField::parse)?);
            }
            ModuleKind::Text(fields)
        };
        Ok(Module { span, name, kind })
    }
}

/// A listing of all possible fields that can make up a WebAssembly module.
#[allow(missing_docs)]
#[derive(Debug)]
pub enum ModuleField<'a> {
    Type(ast::Type<'a>),
    Import(ast::Import<'a>),
    Func(ast::Func<'a>),
    Table(ast::Table<'a>),
    Memory(ast::Memory<'a>),
    Global(ast::Global<'a>),
    Export(ast::Export<'a>),
    Start(ast::Index<'a>),
    Elem(ast::Elem<'a>),
    Data(ast::Data<'a>),
}

impl<'a> Parse<'a> for ModuleField<'a> {
    fn parse(parser: Parser<'a>) -> Result<Self> {
        if parser.peek::<kw::r#type>() {
            return Ok(ModuleField::Type(parser.parse()?));
        }
        if parser.peek::<kw::import>() {
            return Ok(ModuleField::Import(parser.parse()?));
        }
        if parser.peek::<kw::func>() {
            return Ok(ModuleField::Func(parser.parse()?));
        }
        if parser.peek::<kw::table>() {
            return Ok(ModuleField::Table(parser.parse()?));
        }
        if parser.peek::<kw::memory>() {
            return Ok(ModuleField::Memory(parser.parse()?));
        }
        if parser.peek::<kw::global>() {
            return Ok(ModuleField::Global(parser.parse()?));
        }
        if parser.peek::<kw::export>() {
            return Ok(ModuleField::Export(parser.parse()?));
        }
        if parser.peek::<kw::start>() {
            parser.parse::<kw::start>()?;
            return Ok(ModuleField::Start(parser.parse()?));
        }
        if parser.peek::<kw::elem>() {
            return Ok(ModuleField::Elem(parser.parse()?));
        }
        if parser.peek::<kw::data>() {
            return Ok(ModuleField::Data(parser.parse()?));
        }
        Err(parser.error("expected valid module field"))
    }
}