1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
use crate::frame_info;
use crate::frame_info::StoreFrameInfo;
use crate::sig_registry::SignatureRegistry;
use crate::trampoline::StoreInstanceHandle;
use crate::{Engine, Func, FuncType, Module, Trap};
use anyhow::{bail, Result};
use std::any::{Any, TypeId};
use std::cell::{Cell, RefCell};
use std::collections::{hash_map::Entry, HashMap, HashSet};
use std::convert::TryFrom;
use std::fmt;
use std::future::Future;
use std::hash::{Hash, Hasher};
use std::pin::Pin;
use std::ptr;
use std::rc::Rc;
use std::sync::Arc;
use std::task::{Context, Poll};
use wasmtime_environ::wasm;
use wasmtime_jit::{CompiledModule, ModuleCode, TypeTables};
use wasmtime_runtime::{
    Export, InstanceAllocator, InstanceHandle, OnDemandInstanceAllocator, SignalHandler,
    StackMapRegistry, TrapInfo, VMCallerCheckedAnyfunc, VMContext, VMExternRef,
    VMExternRefActivationsTable, VMInterrupts, VMSharedSignatureIndex, VMTrampoline,
};

/// Used to associate instances with the store.
///
/// This is needed to track if the instance was allocated explicitly with the on-demand
/// instance allocator.
struct StoreInstance {
    handle: InstanceHandle,
    // Stores whether or not to use the on-demand allocator to deallocate the instance
    ondemand: bool,
}

/// A `Store` is a collection of WebAssembly instances and host-defined items.
///
/// All WebAssembly instances and items will be attached to and refer to a
/// `Store`. For example instances, functions, globals, and tables are all
/// attached to a `Store`. Instances are created by instantiating a
/// [`Module`](crate::Module) within a `Store`.
///
/// `Store` is not thread-safe and cannot be sent to other threads. All items
/// which refer to a `Store` additionally are not threadsafe and can only be
/// used on the original thread that they were created on.
///
/// A `Store` is not intended to be a long-lived object in a program. No form of
/// GC is implemented at this time so once an instance is created within a
/// `Store` it will not be deallocated until all references to the `Store` have
/// gone away (this includes all references to items in the store). This makes
/// `Store` unsuitable for creating an unbounded number of instances in it
/// because `Store` will never release this memory. It's instead recommended to
/// have a long-lived [`Engine`] and instead create a `Store` for a more scoped
/// portion of your application.
///
/// # Stores and `Clone`
///
/// Using `clone` on a `Store` is a cheap operation. It will not create an
/// entirely new store, but rather just a new reference to the existing object.
/// In other words it's a shallow copy, not a deep copy.
///
/// ## Stores and `Default`
///
/// You can create a store with default configuration settings using
/// `Store::default()`. This will create a brand new [`Engine`] with default
/// ocnfiguration (see [`Config`](crate::Config) for more information).
#[derive(Clone)]
pub struct Store {
    inner: Rc<StoreInner>,
}

pub(crate) struct StoreInner {
    engine: Engine,
    /// The map of all host functions registered with this store's signature registry
    host_funcs: RefCell<HashMap<InstanceHandle, Box<VMCallerCheckedAnyfunc>>>,
    interrupts: Arc<VMInterrupts>,
    signatures: RefCell<SignatureRegistry>,
    instances: RefCell<Vec<StoreInstance>>,
    signal_handler: RefCell<Option<Box<SignalHandler<'static>>>>,
    externref_activations_table: VMExternRefActivationsTable,
    stack_map_registry: StackMapRegistry,
    /// Information about JIT code which allows us to test if a program counter
    /// is in JIT code, lookup trap information, etc.
    frame_info: RefCell<StoreFrameInfo>,
    /// Set of all compiled modules that we're holding a strong reference to
    /// the module's code for. This includes JIT functions, trampolines, etc.
    modules: RefCell<HashSet<ArcModuleCode>>,
    // Numbers of resources instantiated in this store.
    instance_count: Cell<usize>,
    memory_count: Cell<usize>,
    table_count: Cell<usize>,
    /// An adjustment to add to the fuel consumed value in `interrupts` above
    /// to get the true amount of fuel consumed.
    fuel_adj: Cell<i64>,
    #[cfg(feature = "async")]
    current_suspend: Cell<*const wasmtime_fiber::Suspend<Result<(), Trap>, (), Result<(), Trap>>>,
    #[cfg(feature = "async")]
    current_poll_cx: Cell<*mut Context<'static>>,
    out_of_gas_behavior: Cell<OutOfGas>,
    context_values: RefCell<HashMap<TypeId, Box<dyn Any>>>,
}

#[derive(Copy, Clone)]
enum OutOfGas {
    Trap,
    InjectFuel {
        injection_count: u32,
        fuel_to_inject: u64,
    },
}

struct HostInfoKey(VMExternRef);

impl PartialEq for HostInfoKey {
    fn eq(&self, rhs: &Self) -> bool {
        VMExternRef::eq(&self.0, &rhs.0)
    }
}

impl Eq for HostInfoKey {}

impl Hash for HostInfoKey {
    fn hash<H>(&self, hasher: &mut H)
    where
        H: Hasher,
    {
        VMExternRef::hash(&self.0, hasher);
    }
}

impl Store {
    /// Creates a new store to be associated with the given [`Engine`].
    pub fn new(engine: &Engine) -> Store {
        // Ensure that wasmtime_runtime's signal handlers are configured. Note
        // that at the `Store` level it means we should perform this
        // once-per-thread. Platforms like Unix, however, only require this
        // once-per-program. In any case this is safe to call many times and
        // each one that's not relevant just won't do anything.
        wasmtime_runtime::init_traps(frame_info::GlobalFrameInfo::is_wasm_pc)
            .expect("failed to initialize trap handling");

        Store {
            inner: Rc::new(StoreInner {
                engine: engine.clone(),
                host_funcs: RefCell::new(HashMap::new()),
                interrupts: Arc::new(Default::default()),
                signatures: RefCell::new(Default::default()),
                instances: RefCell::new(Vec::new()),
                signal_handler: RefCell::new(None),
                externref_activations_table: VMExternRefActivationsTable::new(),
                stack_map_registry: StackMapRegistry::default(),
                frame_info: Default::default(),
                modules: Default::default(),
                instance_count: Default::default(),
                memory_count: Default::default(),
                table_count: Default::default(),
                fuel_adj: Cell::new(0),
                #[cfg(feature = "async")]
                current_suspend: Cell::new(ptr::null()),
                #[cfg(feature = "async")]
                current_poll_cx: Cell::new(ptr::null_mut()),
                out_of_gas_behavior: Cell::new(OutOfGas::Trap),
                context_values: RefCell::new(HashMap::new()),
            }),
        }
    }

    /// Gets a host function from the [`Config`](crate::Config) associated with this [`Store`].
    ///
    /// Returns `None` if the given host function is not defined.
    pub fn get_host_func(&self, module: &str, name: &str) -> Option<Func> {
        self.inner
            .engine
            .config()
            .get_host_func(module, name)
            .map(|f| {
                // This call is safe because we know the function is coming from the
                // config associated with this store
                unsafe { f.to_func(self) }
            })
    }

    pub(crate) fn get_host_anyfunc(
        &self,
        instance: &InstanceHandle,
        ty: &FuncType,
        trampoline: VMTrampoline,
    ) -> *mut VMCallerCheckedAnyfunc {
        let mut funcs = self.inner.host_funcs.borrow_mut();

        let anyfunc = funcs.entry(unsafe { instance.clone() }).or_insert_with(|| {
            let mut anyfunc = match instance
                .lookup_by_declaration(&wasm::EntityIndex::Function(wasm::FuncIndex::from_u32(0)))
            {
                Export::Function(f) => unsafe { f.anyfunc.as_ref() }.clone(),
                _ => unreachable!(),
            };

            // Register the function with this store's signature registry
            anyfunc.type_index = self
                .inner
                .signatures
                .borrow_mut()
                .register(ty.as_wasm_func_type(), trampoline);

            Box::new(anyfunc)
        });

        &mut **anyfunc
    }

    /// Returns the [`Engine`] that this store is associated with.
    #[inline]
    pub fn engine(&self) -> &Engine {
        &self.inner.engine
    }

    /// Gets a context value from the store.
    ///
    /// Returns a reference to the context value if present.
    pub fn get<T: Any>(&self) -> Option<&T> {
        let values = self.inner.context_values.borrow();

        // Safety: a context value cannot be removed once added and therefore the address is
        // stable for the life of the store
        values
            .get(&TypeId::of::<T>())
            .map(|v| unsafe { &*(v.downcast_ref::<T>().unwrap() as *const T) })
    }

    /// Sets a context value into the store.
    ///
    /// Returns the given value as an error if an existing value is already set.
    pub fn set<T: Any>(&self, value: T) -> Result<(), T> {
        let mut values = self.inner.context_values.borrow_mut();

        match values.entry(value.type_id()) {
            Entry::Occupied(_) => Err(value),
            Entry::Vacant(v) => {
                v.insert(Box::new(value));
                Ok(())
            }
        }
    }

    pub(crate) fn signatures(&self) -> &RefCell<SignatureRegistry> {
        &self.inner.signatures
    }

    pub(crate) fn lookup_shared_signature<'a>(
        &'a self,
        types: &'a TypeTables,
    ) -> impl Fn(wasm::SignatureIndex) -> VMSharedSignatureIndex + 'a {
        move |index| {
            self.signatures()
                .borrow()
                .lookup(&types.wasm_signatures[index])
                .expect("signature not previously registered")
        }
    }

    pub(crate) fn register_module(&self, module: &Module) {
        // All modules register their JIT code in a store for two reasons
        // currently:
        //
        // * First we only catch signals/traps if the program counter falls
        //   within the jit code of an instantiated wasm module. This ensures
        //   we don't catch accidental Rust/host segfaults.
        //
        // * Second when generating a backtrace we'll use this mapping to
        //   only generate wasm frames for instruction pointers that fall
        //   within jit code.
        self.register_jit_code(module.compiled_module());

        // We need to know about all the stack maps of all instantiated modules
        // so when performing a GC we know about all wasm frames that we find
        // on the stack.
        self.register_stack_maps(module.compiled_module());

        // Signatures are loaded into our `SignatureRegistry` here
        // once-per-module (and once-per-signature). This allows us to create
        // a `Func` wrapper for any function in the module, which requires that
        // we know about the signature and trampoline for all instances.
        self.register_signatures(module);

        // And finally with a module being instantiated into this `Store` we
        // need to preserve its jit-code. References to this module's code and
        // trampolines are not owning-references so it's our responsibility to
        // keep it all alive within the `Store`.
        self.inner
            .modules
            .borrow_mut()
            .insert(ArcModuleCode(module.compiled_module().code().clone()));
    }

    fn register_jit_code(&self, module: &CompiledModule) {
        let functions = module.finished_functions();
        let first_pc = match functions.values().next() {
            Some(f) => unsafe { (**f).as_ptr() as usize },
            None => return,
        };
        // Only register this module if it hasn't already been registered.
        let mut info = self.inner.frame_info.borrow_mut();
        if !info.contains_pc(first_pc) {
            info.register(module);
        }
    }

    fn register_stack_maps(&self, module: &CompiledModule) {
        self.stack_map_registry()
            .register_stack_maps(module.stack_maps().map(|(func, stack_maps)| unsafe {
                let ptr = (*func).as_ptr();
                let len = (*func).len();
                let start = ptr as usize;
                let end = ptr as usize + len;
                let range = start..end;
                (range, stack_maps)
            }));
    }

    fn register_signatures(&self, module: &Module) {
        let mut signatures = self.signatures().borrow_mut();
        let types = module.types();
        for (index, trampoline) in module.compiled_module().trampolines() {
            let wasm = &types.wasm_signatures[*index];
            signatures.register(wasm, *trampoline);
        }
    }

    pub(crate) fn bump_resource_counts(&self, module: &Module) -> Result<()> {
        let config = self.engine().config();

        fn bump(slot: &Cell<usize>, max: usize, amt: usize, desc: &str) -> Result<()> {
            let new = slot.get().saturating_add(amt);
            if new > max {
                bail!(
                    "resource limit exceeded: {} count too high at {}",
                    desc,
                    new
                );
            }
            slot.set(new);
            Ok(())
        }

        let module = module.env_module();
        let memories = module.memory_plans.len() - module.num_imported_memories;
        let tables = module.table_plans.len() - module.num_imported_tables;

        bump(
            &self.inner.instance_count,
            config.max_instances,
            1,
            "instance",
        )?;
        bump(
            &self.inner.memory_count,
            config.max_memories,
            memories,
            "memory",
        )?;
        bump(&self.inner.table_count, config.max_tables, tables, "table")?;

        Ok(())
    }

    pub(crate) unsafe fn add_instance(
        &self,
        handle: InstanceHandle,
        ondemand: bool,
    ) -> StoreInstanceHandle {
        self.inner.instances.borrow_mut().push(StoreInstance {
            handle: handle.clone(),
            ondemand,
        });
        StoreInstanceHandle {
            store: self.clone(),
            handle,
        }
    }

    pub(crate) fn existing_instance_handle(&self, handle: InstanceHandle) -> StoreInstanceHandle {
        debug_assert!(
            self.inner
                .instances
                .borrow()
                .iter()
                .any(|i| i.handle.vmctx_ptr() == handle.vmctx_ptr())
                || self.inner.host_funcs.borrow().get(&handle).is_some()
        );
        StoreInstanceHandle {
            store: self.clone(),
            handle,
        }
    }

    pub(crate) unsafe fn existing_vmctx(&self, cx: *mut VMContext) -> StoreInstanceHandle {
        self.existing_instance_handle(InstanceHandle::from_vmctx(cx))
    }

    #[cfg_attr(not(target_os = "linux"), allow(dead_code))] // not used on all platforms
    pub(crate) fn set_signal_handler(&self, handler: Option<Box<SignalHandler<'static>>>) {
        *self.inner.signal_handler.borrow_mut() = handler;
    }

    #[inline]
    pub(crate) fn interrupts(&self) -> &VMInterrupts {
        &self.inner.interrupts
    }

    /// Returns whether the stores `a` and `b` refer to the same underlying
    /// `Store`.
    ///
    /// Because the `Store` type is reference counted multiple clones may point
    /// to the same underlying storage, and this method can be used to determine
    /// whether two stores are indeed the same.
    pub fn same(a: &Store, b: &Store) -> bool {
        Rc::ptr_eq(&a.inner, &b.inner)
    }

    /// Creates an [`InterruptHandle`] which can be used to interrupt the
    /// execution of instances within this `Store`.
    ///
    /// An [`InterruptHandle`] handle is a mechanism of ensuring that guest code
    /// doesn't execute for too long. For example it's used to prevent wasm
    /// programs for executing infinitely in infinite loops or recursive call
    /// chains.
    ///
    /// The [`InterruptHandle`] type is sendable to other threads so you can
    /// interact with it even while the thread with this `Store` is executing
    /// wasm code.
    ///
    /// There's one method on an interrupt handle:
    /// [`InterruptHandle::interrupt`]. This method is used to generate an
    /// interrupt and cause wasm code to exit "soon".
    ///
    /// ## When are interrupts delivered?
    ///
    /// The term "interrupt" here refers to one of two different behaviors that
    /// are interrupted in wasm:
    ///
    /// * The head of every loop in wasm has a check to see if it's interrupted.
    /// * The prologue of every function has a check to see if it's interrupted.
    ///
    /// This interrupt mechanism makes no attempt to signal interrupts to
    /// native code. For example if a host function is blocked, then sending
    /// an interrupt will not interrupt that operation.
    ///
    /// Interrupts are consumed as soon as possible when wasm itself starts
    /// executing. This means that if you interrupt wasm code then it basically
    /// guarantees that the next time wasm is executing on the target thread it
    /// will return quickly (either normally if it were already in the process
    /// of returning or with a trap from the interrupt). Once an interrupt
    /// trap is generated then an interrupt is consumed, and further execution
    /// will not be interrupted (unless another interrupt is set).
    ///
    /// When implementing interrupts you'll want to ensure that the delivery of
    /// interrupts into wasm code is also handled in your host imports and
    /// functionality. Host functions need to either execute for bounded amounts
    /// of time or you'll need to arrange for them to be interrupted as well.
    ///
    /// ## Return Value
    ///
    /// This function returns a `Result` since interrupts are not always
    /// enabled. Interrupts are enabled via the
    /// [`Config::interruptable`](crate::Config::interruptable) method, and if
    /// this store's [`Config`](crate::Config) hasn't been configured to enable
    /// interrupts then an error is returned.
    ///
    /// ## Examples
    ///
    /// ```
    /// # use anyhow::Result;
    /// # use wasmtime::*;
    /// # fn main() -> Result<()> {
    /// // Enable interruptable code via `Config` and then create an interrupt
    /// // handle which we'll use later to interrupt running code.
    /// let engine = Engine::new(Config::new().interruptable(true))?;
    /// let store = Store::new(&engine);
    /// let interrupt_handle = store.interrupt_handle()?;
    ///
    /// // Compile and instantiate a small example with an infinite loop.
    /// let module = Module::new(&engine, r#"
    ///     (func (export "run") (loop br 0))
    /// "#)?;
    /// let instance = Instance::new(&store, &module, &[])?;
    /// let run = instance.get_typed_func::<(), ()>("run")?;
    ///
    /// // Spin up a thread to send us an interrupt in a second
    /// std::thread::spawn(move || {
    ///     std::thread::sleep(std::time::Duration::from_secs(1));
    ///     interrupt_handle.interrupt();
    /// });
    ///
    /// let trap = run.call(()).unwrap_err();
    /// assert!(trap.to_string().contains("wasm trap: interrupt"));
    /// # Ok(())
    /// # }
    /// ```
    pub fn interrupt_handle(&self) -> Result<InterruptHandle> {
        if self.engine().config().tunables.interruptable {
            Ok(InterruptHandle {
                interrupts: self.inner.interrupts.clone(),
            })
        } else {
            bail!("interrupts aren't enabled for this `Store`")
        }
    }

    #[inline]
    pub(crate) fn externref_activations_table(&self) -> &VMExternRefActivationsTable {
        &self.inner.externref_activations_table
    }

    #[inline]
    pub(crate) fn stack_map_registry(&self) -> &StackMapRegistry {
        &self.inner.stack_map_registry
    }

    pub(crate) fn frame_info(&self) -> &RefCell<StoreFrameInfo> {
        &self.inner.frame_info
    }

    /// Perform garbage collection of `ExternRef`s.
    pub fn gc(&self) {
        // For this crate's API, we ensure that `set_stack_canary` invariants
        // are upheld for all host-->Wasm calls, and we register every module
        // used with this store in `self.inner.stack_map_registry`.
        unsafe {
            wasmtime_runtime::gc(
                &self.inner.stack_map_registry,
                &self.inner.externref_activations_table,
            );
        }
    }

    /// Returns the amount of fuel consumed by this store's execution so far.
    ///
    /// If fuel consumption is not enabled via
    /// [`Config::consume_fuel`](crate::Config::consume_fuel) then this
    /// function will return `None`. Also note that fuel, if enabled, must be
    /// originally configured via [`Store::add_fuel`].
    pub fn fuel_consumed(&self) -> Option<u64> {
        if !self.engine().config().tunables.consume_fuel {
            return None;
        }
        let consumed = unsafe { *self.inner.interrupts.fuel_consumed.get() };
        Some(u64::try_from(self.inner.fuel_adj.get() + consumed).unwrap())
    }

    /// Adds fuel to this [`Store`] for wasm to consume while executing.
    ///
    /// For this method to work fuel consumption must be enabled via
    /// [`Config::consume_fuel`](crate::Config::consume_fuel). By default a
    /// [`Store`] starts with 0 fuel for wasm to execute with (meaning it will
    /// immediately trap). This function must be called for the store to have
    /// some fuel to allow WebAssembly to execute.
    ///
    /// Most WebAssembly instructions consume 1 unit of fuel. Some
    /// instructions, such as `nop`, `drop`, `block`, and `loop`, consume 0
    /// units, as any execution cost associated with them involves other
    /// instructions which do consume fuel.
    ///
    /// Note that at this time when fuel is entirely consumed it will cause
    /// wasm to trap. More usages of fuel are planned for the future.
    ///
    /// # Panics
    ///
    /// This function will panic if the store's [`Config`](crate::Config) did
    /// not have fuel consumption enabled.
    pub fn add_fuel(&self, fuel: u64) -> Result<()> {
        anyhow::ensure!(
            self.engine().config().tunables.consume_fuel,
            "fuel is not configured in this store"
        );

        // Fuel is stored as an i64, so we need to cast it. If the provided fuel
        // value overflows that just assume that i64::max will suffice. Wasm
        // execution isn't fast enough to burn through i64::max fuel in any
        // reasonable amount of time anyway.
        let fuel = i64::try_from(fuel).unwrap_or(i64::max_value());
        let adj = self.inner.fuel_adj.get();
        let consumed_ptr = unsafe { &mut *self.inner.interrupts.fuel_consumed.get() };

        match (consumed_ptr.checked_sub(fuel), adj.checked_add(fuel)) {
            // If we succesfully did arithmetic without overflowing then we can
            // just update our fields.
            (Some(consumed), Some(adj)) => {
                self.inner.fuel_adj.set(adj);
                *consumed_ptr = consumed;
            }

            // Otherwise something overflowed. Make sure that we preserve the
            // amount of fuel that's already consumed, but otherwise assume that
            // we were given infinite fuel.
            _ => {
                self.inner.fuel_adj.set(i64::max_value());
                *consumed_ptr = (*consumed_ptr + adj) - i64::max_value();
            }
        }

        Ok(())
    }

    /// Configures a [`Store`] to generate a [`Trap`] whenever it runs out of
    /// fuel.
    ///
    /// When a [`Store`] is configured to consume fuel with
    /// [`Config::consume_fuel`](crate::Config::consume_fuel) this method will
    /// configure what happens when fuel runs out. Specifically a WebAssembly
    /// trap will be raised and the current execution of WebAssembly will be
    /// aborted.
    ///
    /// This is the default behavior for running out of fuel.
    pub fn out_of_fuel_trap(&self) {
        self.inner.out_of_gas_behavior.set(OutOfGas::Trap);
    }

    /// Configures a [`Store`] to yield execution of async WebAssembly code
    /// periodically.
    ///
    /// When a [`Store`] is configured to consume fuel with
    /// [`Config::consume_fuel`](crate::Config::consume_fuel) this method will
    /// configure what happens when fuel runs out. Specifically executing
    /// WebAssembly will be suspended and control will be yielded back to the
    /// caller. This is only suitable with use of a store associated with an [async
    /// config](crate::Config::async_support) because only then are futures used and yields
    /// are possible.
    ///
    /// The purpose of this behavior is to ensure that futures which represent
    /// execution of WebAssembly do not execute too long inside their
    /// `Future::poll` method. This allows for some form of cooperative
    /// multitasking where WebAssembly will voluntarily yield control
    /// periodically (based on fuel consumption) back to the running thread.
    ///
    /// Note that futures returned by this crate will automatically flag
    /// themselves to get re-polled if a yield happens. This means that
    /// WebAssembly will continue to execute, just after giving the host an
    /// opportunity to do something else.
    ///
    /// The `fuel_to_inject` parameter indicates how much fuel should be
    /// automatically re-injected after fuel runs out. This is how much fuel
    /// will be consumed between yields of an async future.
    ///
    /// The `injection_count` parameter indicates how many times this fuel will
    /// be injected. Multiplying the two parameters is the total amount of fuel
    /// this store is allowed before wasm traps.
    ///
    /// # Panics
    ///
    /// This method will panic if it is not called on a store associated with an [async
    /// config](crate::Config::async_support).
    pub fn out_of_fuel_async_yield(&self, injection_count: u32, fuel_to_inject: u64) {
        assert!(
            self.async_support(),
            "cannot use `out_of_fuel_async_yield` without enabling async support in the config"
        );
        self.inner.out_of_gas_behavior.set(OutOfGas::InjectFuel {
            injection_count,
            fuel_to_inject,
        });
    }

    #[inline]
    pub(crate) fn async_support(&self) -> bool {
        self.inner.engine.config().async_support
    }

    /// Blocks on the asynchronous computation represented by `future` and
    /// produces the result here, in-line.
    ///
    /// This function is designed to only work when it's currently executing on
    /// a native fiber. This fiber provides the ability for us to handle the
    /// future's `Pending` state as "jump back to whomever called the fiber in
    /// an asynchronous fashion and propagate `Pending`". This tight coupling
    /// with `on_fiber` below is what powers the asynchronicity of calling wasm.
    /// Note that the asynchronous part only applies to host functions, wasm
    /// itself never really does anything asynchronous at this time.
    ///
    /// This function takes a `future` and will (appear to) synchronously wait
    /// on the result. While this function is executing it will fiber switch
    /// to-and-from the original frame calling `on_fiber` which should be a
    /// guarantee due to how async stores are configured.
    ///
    /// The return value here is either the output of the future `T`, or a trap
    /// which represents that the asynchronous computation was cancelled. It is
    /// not recommended to catch the trap and try to keep executing wasm, so
    /// we've tried to liberally document this.
    #[cfg(feature = "async")]
    pub(crate) fn block_on<T>(
        &self,
        mut future: Pin<&mut dyn Future<Output = T>>,
    ) -> Result<T, Trap> {
        debug_assert!(self.async_support());

        // Take our current `Suspend` context which was configured as soon as
        // our fiber started. Note that we must load it at the front here and
        // save it on our stack frame. While we're polling the future other
        // fibers may be started for recursive computations, and the current
        // suspend context is only preserved at the edges of the fiber, not
        // during the fiber itself.
        //
        // For a little bit of extra safety we also replace the current value
        // with null to try to catch any accidental bugs on our part early.
        // This is all pretty unsafe so we're trying to be careful...
        //
        // Note that there should be a segfaulting test  in `async_functions.rs`
        // if this `Reset` is removed.
        let suspend = self.inner.current_suspend.replace(ptr::null());
        let _reset = Reset(&self.inner.current_suspend, suspend);
        assert!(!suspend.is_null());

        loop {
            let future_result = unsafe {
                let current_poll_cx = self.inner.current_poll_cx.replace(ptr::null_mut());
                let _reset = Reset(&self.inner.current_poll_cx, current_poll_cx);
                assert!(!current_poll_cx.is_null());
                future.as_mut().poll(&mut *current_poll_cx)
            };
            match future_result {
                Poll::Ready(t) => break Ok(t),
                Poll::Pending => {}
            }

            unsafe {
                let before = wasmtime_runtime::TlsRestore::take();
                let res = (*suspend).suspend(());
                before.replace().map_err(|e| Trap::from_runtime(self, e))?;
                res?;
            }
        }
    }

    /// Executes a synchronous computation `func` asynchronously on a new fiber.
    ///
    /// This function will convert the synchronous `func` into an asynchronous
    /// future. This is done by running `func` in a fiber on a separate native
    /// stack which can be suspended and resumed from.
    ///
    /// Most of the nitty-gritty here is how we juggle the various contexts
    /// necessary to suspend the fiber later on and poll sub-futures. It's hoped
    /// that the various comments are illuminating as to what's going on here.
    #[cfg(feature = "async")]
    pub(crate) async fn on_fiber<R>(&self, func: impl FnOnce() -> R) -> Result<R, Trap> {
        let config = self.inner.engine.config();

        debug_assert!(self.async_support());
        debug_assert!(config.async_stack_size > 0);

        let stack = self
            .inner
            .engine
            .allocator()
            .allocate_fiber_stack()
            .map_err(|e| Trap::from(anyhow::Error::from(e)))?;

        let mut slot = None;
        let fiber = wasmtime_fiber::Fiber::new(stack, |keep_going, suspend| {
            // First check and see if we were interrupted/dropped, and only
            // continue if we haven't been.
            keep_going?;

            // Configure our store's suspension context for the rest of the
            // execution of this fiber. Note that a raw pointer is stored here
            // which is only valid for the duration of this closure.
            // Consequently we at least replace it with the previous value when
            // we're done. This reset is also required for correctness because
            // otherwise our value will overwrite another active fiber's value.
            // There should be a test that segfaults in `async_functions.rs` if
            // this `Replace` is removed.
            let prev = self.inner.current_suspend.replace(suspend);
            let _reset = Reset(&self.inner.current_suspend, prev);

            slot = Some(func());
            Ok(())
        })
        .map_err(|e| Trap::from(anyhow::Error::from(e)))?;

        // Once we have the fiber representing our synchronous computation, we
        // wrap that in a custom future implementation which does the
        // translation from the future protocol to our fiber API.
        FiberFuture { fiber, store: self }.await?;

        return Ok(slot.unwrap());

        struct FiberFuture<'a> {
            fiber: wasmtime_fiber::Fiber<'a, Result<(), Trap>, (), Result<(), Trap>>,
            store: &'a Store,
        }

        impl Future for FiberFuture<'_> {
            type Output = Result<(), Trap>;

            fn poll(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
                // We need to carry over this `cx` into our fiber's runtime
                // for when it tries to poll sub-futures that are created. Doing
                // this must be done unsafely, however, since `cx` is only alive
                // for this one singular function call. Here we do a `transmute`
                // to extend the lifetime of `Context` so it can be stored in
                // our `Store`, and then we replace the current polling context
                // with this one.
                //
                // Note that the replace is done for weird situations where
                // futures might be switching contexts and there's multiple
                // wasmtime futures in a chain of futures.
                //
                // On exit from this function, though, we reset the polling
                // context back to what it was to signify that `Store` no longer
                // has access to this pointer.
                let cx =
                    unsafe { std::mem::transmute::<&mut Context<'_>, *mut Context<'static>>(cx) };
                let prev = self.store.inner.current_poll_cx.replace(cx);
                let _reset = Reset(&self.store.inner.current_poll_cx, prev);

                // After that's set up we resume execution of the fiber, which
                // may also start the fiber for the first time. This either
                // returns `Ok` saying the fiber finished (yay!) or it returns
                // `Err` with the payload passed to `suspend`, which in our case
                // is `()`. If `Err` is returned that means the fiber polled a
                // future but it said "Pending", so we propagate that here.
                match self.fiber.resume(Ok(())) {
                    Ok(result) => Poll::Ready(result),
                    Err(()) => Poll::Pending,
                }
            }
        }

        // Dropping futures is pretty special in that it means the future has
        // been requested to be cancelled. Here we run the risk of dropping an
        // in-progress fiber, and if we were to do nothing then the fiber would
        // leak all its owned stack resources.
        //
        // To handle this we implement `Drop` here and, if the fiber isn't done,
        // resume execution of the fiber saying "hey please stop you're
        // interrupted". Our `Trap` created here (which has the stack trace
        // of whomever dropped us) will then get propagated in whatever called
        // `block_on`, and the idea is that the trap propagates all the way back
        // up to the original fiber start, finishing execution.
        //
        // We don't actually care about the fiber's return value here (no one's
        // around to look at it), we just assert the fiber finished to
        // completion.
        impl Drop for FiberFuture<'_> {
            fn drop(&mut self) {
                if !self.fiber.done() {
                    let result = self.fiber.resume(Err(Trap::new("future dropped")));
                    // This resumption with an error should always complete the
                    // fiber. While it's technically possible for host code to catch
                    // the trap and re-resume, we'd ideally like to signal that to
                    // callers that they shouldn't be doing that.
                    debug_assert!(result.is_ok());
                }

                unsafe {
                    self.store
                        .engine()
                        .allocator()
                        .deallocate_fiber_stack(self.fiber.stack());
                }
            }
        }
    }

    /// Immediately raise a trap on an out-of-gas condition.
    fn out_of_gas_trap(&self) -> ! {
        #[derive(Debug)]
        struct OutOfGasError;

        impl fmt::Display for OutOfGasError {
            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                f.write_str("all fuel consumed by WebAssembly")
            }
        }

        impl std::error::Error for OutOfGasError {}
        unsafe {
            wasmtime_runtime::raise_lib_trap(wasmtime_runtime::Trap::User(Box::new(OutOfGasError)))
        }
    }

    /// Yields execution to the caller on out-of-gas
    ///
    /// This only works on async futures and stores, and assumes that we're
    /// executing on a fiber. This will yield execution back to the caller once
    /// and when we come back we'll continue with `fuel_to_inject` more fuel.
    #[cfg(feature = "async")]
    fn out_of_gas_yield(&self, fuel_to_inject: u64) {
        // Small future that yields once and then returns ()
        #[derive(Default)]
        struct Yield {
            yielded: bool,
        }

        impl Future for Yield {
            type Output = ();

            fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<()> {
                if self.yielded {
                    Poll::Ready(())
                } else {
                    // Flag ourselves as yielded to return next time, and also
                    // flag the waker that we're already ready to get
                    // re-enqueued for another poll.
                    self.yielded = true;
                    cx.waker().wake_by_ref();
                    Poll::Pending
                }
            }
        }

        let mut future = Yield::default();
        match self.block_on(unsafe { Pin::new_unchecked(&mut future) }) {
            // If this finished successfully then we were resumed normally via a
            // `poll`, so inject some more fuel and keep going.
            Ok(()) => self.add_fuel(fuel_to_inject).unwrap(),
            // If the future was dropped while we were yielded, then we need to
            // clean up this fiber. Do so by raising a trap which will abort all
            // wasm and get caught on the other side to clean things up.
            Err(trap) => unsafe { wasmtime_runtime::raise_user_trap(trap.into()) },
        }
    }
}

unsafe impl TrapInfo for Store {
    #[inline]
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn custom_signal_handler(&self, call: &dyn Fn(&SignalHandler) -> bool) -> bool {
        if let Some(handler) = &*self.inner.signal_handler.borrow() {
            return call(handler);
        }
        false
    }

    fn out_of_gas(&self) {
        match self.inner.out_of_gas_behavior.get() {
            OutOfGas::Trap => self.out_of_gas_trap(),
            #[cfg(feature = "async")]
            OutOfGas::InjectFuel {
                injection_count,
                fuel_to_inject,
            } => {
                if injection_count == 0 {
                    self.out_of_gas_trap();
                }
                self.inner.out_of_gas_behavior.set(OutOfGas::InjectFuel {
                    injection_count: injection_count - 1,
                    fuel_to_inject,
                });
                self.out_of_gas_yield(fuel_to_inject);
            }
            #[cfg(not(feature = "async"))]
            OutOfGas::InjectFuel { .. } => unreachable!(),
        }
    }

    #[inline]
    fn interrupts(&self) -> &VMInterrupts {
        &self.inner.interrupts
    }
}

impl Default for Store {
    fn default() -> Store {
        Store::new(&Engine::default())
    }
}

impl fmt::Debug for Store {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let inner = &*self.inner as *const StoreInner;
        f.debug_struct("Store").field("inner", &inner).finish()
    }
}

impl Drop for StoreInner {
    fn drop(&mut self) {
        let allocator = self.engine.allocator();
        let ondemand = OnDemandInstanceAllocator::default();
        for instance in self.instances.borrow().iter() {
            unsafe {
                if instance.ondemand {
                    ondemand.deallocate(&instance.handle);
                } else {
                    allocator.deallocate(&instance.handle);
                }
            }
        }
    }
}

/// A threadsafe handle used to interrupt instances executing within a
/// particular `Store`.
///
/// This structure is created by the [`Store::interrupt_handle`] method.
pub struct InterruptHandle {
    interrupts: Arc<VMInterrupts>,
}

// The `VMInterrupts` type is a pod-type with no destructor, and we only access
// `interrupts` from other threads, so add in these trait impls which are
// otherwise not available due to the `fuel_consumed` variable in
// `VMInterrupts`.
unsafe impl Send for InterruptHandle {}
unsafe impl Sync for InterruptHandle {}

impl InterruptHandle {
    /// Flags that execution within this handle's original [`Store`] should be
    /// interrupted.
    ///
    /// This will not immediately interrupt execution of wasm modules, but
    /// rather it will interrupt wasm execution of loop headers and wasm
    /// execution of function entries. For more information see
    /// [`Store::interrupt_handle`].
    pub fn interrupt(&self) {
        self.interrupts.interrupt()
    }
}

// Wrapper struct to implement hash/equality based on the pointer value of the
// `Arc` in question.
struct ArcModuleCode(Arc<ModuleCode>);

impl PartialEq for ArcModuleCode {
    fn eq(&self, other: &ArcModuleCode) -> bool {
        Arc::ptr_eq(&self.0, &other.0)
    }
}

impl Eq for ArcModuleCode {}

impl Hash for ArcModuleCode {
    fn hash<H: Hasher>(&self, hasher: &mut H) {
        Arc::as_ptr(&self.0).hash(hasher)
    }
}

struct Reset<'a, T: Copy>(&'a Cell<T>, T);

impl<T: Copy> Drop for Reset<'_, T> {
    fn drop(&mut self) {
        self.0.set(self.1);
    }
}