1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
//! Data structures for representing decoded wasm modules.

use crate::{ModuleTranslation, PrimaryMap, Tunables, WASM_PAGE_SIZE};
use cranelift_entity::{packed_option::ReservedValue, EntityRef};
use indexmap::IndexMap;
use serde_derive::{Deserialize, Serialize};
use std::collections::BTreeMap;
use std::mem;
use std::ops::Range;
use wasmtime_types::*;

/// Implementation styles for WebAssembly linear memory.
#[derive(Debug, Clone, Hash, Serialize, Deserialize)]
pub enum MemoryStyle {
    /// The actual memory can be resized and moved.
    Dynamic {
        /// Extra space to reserve when a memory must be moved due to growth.
        reserve: u64,
    },
    /// Address space is allocated up front.
    Static {
        /// The number of mapped and unmapped pages.
        bound: u64,
    },
}

impl MemoryStyle {
    /// Decide on an implementation style for the given `Memory`.
    pub fn for_memory(memory: Memory, tunables: &Tunables) -> (Self, u64) {
        // A heap with a maximum that doesn't exceed the static memory bound specified by the
        // tunables make it static.
        //
        // If the module doesn't declare an explicit maximum treat it as 4GiB when not
        // requested to use the static memory bound itself as the maximum.
        let absolute_max_pages = if memory.memory64 {
            crate::WASM64_MAX_PAGES
        } else {
            crate::WASM32_MAX_PAGES
        };
        let maximum = std::cmp::min(
            memory.maximum.unwrap_or(absolute_max_pages),
            if tunables.static_memory_bound_is_maximum {
                std::cmp::min(tunables.static_memory_bound, absolute_max_pages)
            } else {
                absolute_max_pages
            },
        );

        // Ensure the minimum is less than the maximum; the minimum might exceed the maximum
        // when the memory is artificially bounded via `static_memory_bound_is_maximum` above
        if memory.minimum <= maximum && maximum <= tunables.static_memory_bound {
            return (
                Self::Static {
                    bound: tunables.static_memory_bound,
                },
                tunables.static_memory_offset_guard_size,
            );
        }

        // Otherwise, make it dynamic.
        (
            Self::Dynamic {
                reserve: tunables.dynamic_memory_growth_reserve,
            },
            tunables.dynamic_memory_offset_guard_size,
        )
    }
}

/// A WebAssembly linear memory description along with our chosen style for
/// implementing it.
#[derive(Debug, Clone, Hash, Serialize, Deserialize)]
pub struct MemoryPlan {
    /// The WebAssembly linear memory description.
    pub memory: Memory,
    /// Our chosen implementation style.
    pub style: MemoryStyle,
    /// Chosen size of a guard page before the linear memory allocation.
    pub pre_guard_size: u64,
    /// Our chosen offset-guard size.
    pub offset_guard_size: u64,
}

impl MemoryPlan {
    /// Draw up a plan for implementing a `Memory`.
    pub fn for_memory(memory: Memory, tunables: &Tunables) -> Self {
        let (style, offset_guard_size) = MemoryStyle::for_memory(memory, tunables);
        Self {
            memory,
            style,
            offset_guard_size,
            pre_guard_size: if tunables.guard_before_linear_memory {
                offset_guard_size
            } else {
                0
            },
        }
    }
}

/// A WebAssembly linear memory initializer.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct MemoryInitializer {
    /// The index of a linear memory to initialize.
    pub memory_index: MemoryIndex,
    /// Optionally, a global variable giving a base index.
    pub base: Option<GlobalIndex>,
    /// The offset to add to the base.
    pub offset: u64,
    /// The range of the data to write within the linear memory.
    ///
    /// This range indexes into a separately stored data section which will be
    /// provided with the compiled module's code as well.
    pub data: Range<u32>,
}

/// Similar to the above `MemoryInitializer` but only used when memory
/// initializers are statically known to be valid.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct StaticMemoryInitializer {
    /// The 64-bit offset, in bytes, of where this initializer starts.
    pub offset: u64,

    /// The range of data to write at `offset`, where these indices are indexes
    /// into the compiled wasm module's data section.
    pub data: Range<u32>,
}

/// The type of WebAssembly linear memory initialization to use for a module.
#[derive(Debug, Serialize, Deserialize)]
pub enum MemoryInitialization {
    /// Memory initialization is segmented.
    ///
    /// Segmented initialization can be used for any module, but it is required
    /// if:
    ///
    /// * A data segment referenced an imported memory.
    /// * A data segment uses a global base.
    ///
    /// Segmented initialization is performed by processing the complete set of
    /// data segments when the module is instantiated.
    ///
    /// This is the default memory initialization type.
    Segmented(Vec<MemoryInitializer>),

    /// Memory initialization is statically known and involves a single `memcpy`
    /// or otherwise simply making the defined data visible.
    ///
    /// To be statically initialized everything must reference a defined memory
    /// and all data segments have a statically known in-bounds base (no
    /// globals).
    ///
    /// This form of memory initialization is a more optimized version of
    /// `Segmented` where memory can be initialized with one of a few methods:
    ///
    /// * First it could be initialized with a single `memcpy` of data from the
    ///   module to the linear memory.
    /// * Otherwise techniques like `mmap` are also possible to make this data,
    ///   which might reside in a compiled module on disk, available immediately
    ///   in a linear memory's address space.
    ///
    /// To facilitate the latter of these techniques the `try_static_init`
    /// function below, which creates this variant, takes a host page size
    /// argument which can page-align everything to make mmap-ing possible.
    Static {
        /// The initialization contents for each linear memory.
        ///
        /// This array has, for each module's own linear memory, the contents
        /// necessary to initialize it. If the memory has a `None` value then no
        /// initialization is necessary (it's zero-filled). Otherwise with
        /// `Some` the first element of the tuple is the offset in memory to
        /// start the initialization and the `Range` is the range within the
        /// final data section of the compiled module of bytes to copy into the
        /// memory.
        ///
        /// The offset, range base, and range end are all guaranteed to be page
        /// aligned to the page size passed in to `try_static_init`.
        map: PrimaryMap<MemoryIndex, Option<StaticMemoryInitializer>>,
    },
}

impl ModuleTranslation<'_> {
    /// Attempts to convert segmented memory initialization into static
    /// initialization for the module that this translation represents.
    ///
    /// If this module's memory initialization is not compatible with paged
    /// initialization then this won't change anything. Otherwise if it is
    /// compatible then the `memory_initialization` field will be updated.
    ///
    /// Takes a `page_size` argument in order to ensure that all
    /// initialization is page-aligned for mmap-ability, and
    /// `max_image_size_always_allowed` to control how we decide
    /// whether to use static init.
    ///
    /// We will try to avoid generating very sparse images, which are
    /// possible if e.g. a module has an initializer at offset 0 and a
    /// very high offset (say, 1 GiB). To avoid this, we use a dual
    /// condition: we always allow images less than
    /// `max_image_size_always_allowed`, and the embedder of Wasmtime
    /// can set this if desired to ensure that static init should
    /// always be done if the size of the module or its heaps is
    /// otherwise bounded by the system. We also allow images with
    /// static init data bigger than that, but only if it is "dense",
    /// defined as having at least half (50%) of its pages with some
    /// data.
    ///
    /// We could do something slightly better by building a dense part
    /// and keeping a sparse list of outlier/leftover segments (see
    /// issue #3820). This would also allow mostly-static init of
    /// modules that have some dynamically-placed data segments. But,
    /// for now, this is sufficient to allow a system that "knows what
    /// it's doing" to always get static init.
    pub fn try_static_init(&mut self, page_size: u64, max_image_size_always_allowed: u64) {
        // This method only attempts to transform a `Segmented` memory init
        // into a `Static` one, no other state.
        if !self.module.memory_initialization.is_segmented() {
            return;
        }

        // First a dry run of memory initialization is performed. This
        // collects information about the extent of memory initialized for each
        // memory as well as the size of all data segments being copied in.
        struct Memory {
            data_size: u64,
            min_addr: u64,
            max_addr: u64,
            // The `usize` here is a pointer into `self.data` which is the list
            // of data segments corresponding to what was found in the original
            // wasm module.
            segments: Vec<(usize, StaticMemoryInitializer)>,
        }
        let mut info = PrimaryMap::with_capacity(self.module.memory_plans.len());
        for _ in 0..self.module.memory_plans.len() {
            info.push(Memory {
                data_size: 0,
                min_addr: u64::MAX,
                max_addr: 0,
                segments: Vec::new(),
            });
        }
        let mut idx = 0;
        let ok = self.module.memory_initialization.init_memory(
            &mut (),
            InitMemory::CompileTime(&self.module),
            |(), memory, init| {
                // Currently `Static` only applies to locally-defined memories,
                // so if a data segment references an imported memory then
                // transitioning to a `Static` memory initializer is not
                // possible.
                if self.module.defined_memory_index(memory).is_none() {
                    return false;
                };
                let info = &mut info[memory];
                let data_len = u64::from(init.data.end - init.data.start);
                if data_len > 0 {
                    info.data_size += data_len;
                    info.min_addr = info.min_addr.min(init.offset);
                    info.max_addr = info.max_addr.max(init.offset + data_len);
                    info.segments.push((idx, init.clone()));
                }
                idx += 1;
                true
            },
        );
        if !ok {
            return;
        }

        // Validate that the memory information collected is indeed valid for
        // static memory initialization.
        for info in info.values().filter(|i| i.data_size > 0) {
            let image_size = info.max_addr - info.min_addr;

            // If the range of memory being initialized is less than twice the
            // total size of the data itself then it's assumed that static
            // initialization is ok. This means we'll at most double memory
            // consumption during the memory image creation process, which is
            // currently assumed to "probably be ok" but this will likely need
            // tweaks over time.
            if image_size < info.data_size.saturating_mul(2) {
                continue;
            }

            // If the memory initialization image is larger than the size of all
            // data, then we still allow memory initialization if the image will
            // be of a relatively modest size, such as 1MB here.
            if image_size < max_image_size_always_allowed {
                continue;
            }

            // At this point memory initialization is concluded to be too
            // expensive to do at compile time so it's entirely deferred to
            // happen at runtime.
            return;
        }

        // Here's where we've now committed to changing to static memory. The
        // memory initialization image is built here from the page data and then
        // it's converted to a single initializer.
        let data = mem::replace(&mut self.data, Vec::new());
        let mut map = PrimaryMap::with_capacity(info.len());
        let mut module_data_size = 0u32;
        for (memory, info) in info.iter() {
            // Create the in-memory `image` which is the initialized contents of
            // this linear memory.
            let extent = if info.segments.len() > 0 {
                (info.max_addr - info.min_addr) as usize
            } else {
                0
            };
            let mut image = Vec::with_capacity(extent);
            for (idx, init) in info.segments.iter() {
                let data = &data[*idx];
                assert_eq!(data.len(), init.data.len());
                let offset = usize::try_from(init.offset - info.min_addr).unwrap();
                if image.len() < offset {
                    image.resize(offset, 0u8);
                    image.extend_from_slice(data);
                } else {
                    image.splice(
                        offset..(offset + data.len()).min(image.len()),
                        data.iter().copied(),
                    );
                }
            }
            assert_eq!(image.len(), extent);
            assert_eq!(image.capacity(), extent);
            let mut offset = if info.segments.len() > 0 {
                info.min_addr
            } else {
                0
            };

            // Chop off trailing zeros from the image as memory is already
            // zero-initialized. Note that `i` is the position of a nonzero
            // entry here, so to not lose it we truncate to `i + 1`.
            if let Some(i) = image.iter().rposition(|i| *i != 0) {
                image.truncate(i + 1);
            }

            // Also chop off leading zeros, if any.
            if let Some(i) = image.iter().position(|i| *i != 0) {
                offset += i as u64;
                image.drain(..i);
            }
            let mut len = u64::try_from(image.len()).unwrap();

            // The goal is to enable mapping this image directly into memory, so
            // the offset into linear memory must be a multiple of the page
            // size. If that's not already the case then the image is padded at
            // the front and back with extra zeros as necessary
            if offset % page_size != 0 {
                let zero_padding = offset % page_size;
                self.data.push(vec![0; zero_padding as usize].into());
                offset -= zero_padding;
                len += zero_padding;
            }
            self.data.push(image.into());
            if len % page_size != 0 {
                let zero_padding = page_size - (len % page_size);
                self.data.push(vec![0; zero_padding as usize].into());
                len += zero_padding;
            }

            // Offset/length should now always be page-aligned.
            assert!(offset % page_size == 0);
            assert!(len % page_size == 0);

            // Create the `StaticMemoryInitializer` which describes this image,
            // only needed if the image is actually present and has a nonzero
            // length. The `offset` has been calculates above, originally
            // sourced from `info.min_addr`. The `data` field is the extent
            // within the final data segment we'll emit to an ELF image, which
            // is the concatenation of `self.data`, so here it's the size of
            // the section-so-far plus the current segment we're appending.
            let len = u32::try_from(len).unwrap();
            let init = if len > 0 {
                Some(StaticMemoryInitializer {
                    offset,
                    data: module_data_size..module_data_size + len,
                })
            } else {
                None
            };
            let idx = map.push(init);
            assert_eq!(idx, memory);
            module_data_size += len;
        }
        self.data_align = Some(page_size);
        self.module.memory_initialization = MemoryInitialization::Static { map };
    }

    /// Attempts to convert the module's table initializers to
    /// FuncTable form where possible. This enables lazy table
    /// initialization later by providing a one-to-one map of initial
    /// table values, without having to parse all segments.
    pub fn try_func_table_init(&mut self) {
        // This should be large enough to support very large Wasm
        // modules with huge funcref tables, but small enough to avoid
        // OOMs or DoS on truly sparse tables.
        const MAX_FUNC_TABLE_SIZE: u32 = 1024 * 1024;

        // First convert any element-initialized tables to images of just that
        // single function if the minimum size of the table allows doing so.
        for ((_, init), (_, plan)) in self
            .module
            .table_initialization
            .initial_values
            .iter_mut()
            .zip(
                self.module
                    .table_plans
                    .iter()
                    .skip(self.module.num_imported_tables),
            )
        {
            let table_size = plan.table.minimum;
            if table_size > MAX_FUNC_TABLE_SIZE {
                continue;
            }
            if let TableInitialValue::FuncRef(val) = *init {
                *init = TableInitialValue::Null {
                    precomputed: vec![val; table_size as usize],
                };
            }
        }

        let mut segments = mem::take(&mut self.module.table_initialization.segments)
            .into_iter()
            .peekable();

        // The goal of this loop is to interpret a table segment and apply it
        // "statically" to a local table. This will iterate over segments and
        // apply them one-by-one to each table.
        //
        // If any segment can't be applied, however, then this loop exits and
        // all remaining segments are placed back into the segment list. This is
        // because segments are supposed to be initialized one-at-a-time which
        // means that intermediate state is visible with respect to traps. If
        // anything isn't statically known to not trap it's pessimistically
        // assumed to trap meaning all further segment initializers must be
        // applied manually at instantiation time.
        while let Some(segment) = segments.peek() {
            let defined_index = match self.module.defined_table_index(segment.table_index) {
                Some(index) => index,
                // Skip imported tables: we can't provide a preconstructed
                // table for them, because their values depend on the
                // imported table overlaid with whatever segments we have.
                None => break,
            };

            // If the base of this segment is dynamic, then we can't
            // include it in the statically-built array of initial
            // contents.
            if segment.base.is_some() {
                break;
            }

            // Get the end of this segment. If out-of-bounds, or too
            // large for our dense table representation, then skip the
            // segment.
            let top = match segment.offset.checked_add(segment.elements.len()) {
                Some(top) => top,
                None => break,
            };
            let table_size = self.module.table_plans[segment.table_index].table.minimum;
            if top > table_size || top > MAX_FUNC_TABLE_SIZE {
                break;
            }

            match self.module.table_plans[segment.table_index]
                .table
                .wasm_ty
                .heap_type
            {
                WasmHeapType::Func | WasmHeapType::Concrete(_) | WasmHeapType::NoFunc => {}
                // If this is not a funcref table, then we can't support a
                // pre-computed table of function indices. Technically this
                // initializer won't trap so we could continue processing
                // segments, but that's left as a future optimization if
                // necessary.
                WasmHeapType::Extern => break,
            }

            // Function indices can be optimized here, but fully general
            // expressions are deferred to get evaluated at runtime.
            let function_elements = match &segment.elements {
                TableSegmentElements::Functions(indices) => indices,
                TableSegmentElements::Expressions(_) => break,
            };

            let precomputed =
                match &mut self.module.table_initialization.initial_values[defined_index] {
                    TableInitialValue::Null { precomputed } => precomputed,

                    // If this table is still listed as an initial value here
                    // then that means the initial size of the table doesn't
                    // support a precomputed function list, so skip this.
                    // Technically this won't trap so it's possible to process
                    // further initializers, but that's left as a future
                    // optimization.
                    TableInitialValue::FuncRef(_) | TableInitialValue::GlobalGet(_) => break,
                };

            // At this point we're committing to pre-initializing the table
            // with the `segment` that's being iterated over. This segment is
            // applied to the `precomputed` list for the table by ensuring
            // it's large enough to hold the segment and then copying the
            // segment into the precomputed list.
            if precomputed.len() < top as usize {
                precomputed.resize(top as usize, FuncIndex::reserved_value());
            }
            let dst = &mut precomputed[(segment.offset as usize)..(top as usize)];
            dst.copy_from_slice(&function_elements);

            // advance the iterator to see the next segment
            let _ = segments.next();
        }
        self.module.table_initialization.segments = segments.collect();
    }
}

impl Default for MemoryInitialization {
    fn default() -> Self {
        Self::Segmented(Vec::new())
    }
}

impl MemoryInitialization {
    /// Returns whether this initialization is of the form
    /// `MemoryInitialization::Segmented`.
    pub fn is_segmented(&self) -> bool {
        match self {
            MemoryInitialization::Segmented(_) => true,
            _ => false,
        }
    }

    /// Performs the memory initialization steps for this set of initializers.
    ///
    /// This will perform wasm initialization in compliance with the wasm spec
    /// and how data segments are processed. This doesn't need to necessarily
    /// only be called as part of initialization, however, as it's structured to
    /// allow learning about memory ahead-of-time at compile time possibly.
    ///
    /// The various callbacks provided here are used to drive the smaller bits
    /// of initialization, such as:
    ///
    /// * `get_cur_size_in_pages` - gets the current size, in wasm pages, of the
    ///   memory specified. For compile-time purposes this would be the memory
    ///   type's minimum size.
    ///
    /// * `get_global` - gets the value of the global specified. This is
    ///   statically, via validation, a pointer to the global of the correct
    ///   type (either u32 or u64 depending on the memory), but the value
    ///   returned here is `u64`. A `None` value can be returned to indicate
    ///   that the global's value isn't known yet.
    ///
    /// * `write` - a callback used to actually write data. This indicates that
    ///   the specified memory must receive the specified range of data at the
    ///   specified offset. This can internally return an false error if it
    ///   wants to fail.
    ///
    /// This function will return true if all memory initializers are processed
    /// successfully. If any initializer hits an error or, for example, a
    /// global value is needed but `None` is returned, then false will be
    /// returned. At compile-time this typically means that the "error" in
    /// question needs to be deferred to runtime, and at runtime this means
    /// that an invalid initializer has been found and a trap should be
    /// generated.
    pub fn init_memory<T>(
        &self,
        state: &mut T,
        init: InitMemory<'_, T>,
        mut write: impl FnMut(&mut T, MemoryIndex, &StaticMemoryInitializer) -> bool,
    ) -> bool {
        let initializers = match self {
            // Fall through below to the segmented memory one-by-one
            // initialization.
            MemoryInitialization::Segmented(list) => list,

            // If previously switched to static initialization then pass through
            // all those parameters here to the `write` callback.
            //
            // Note that existence of `Static` already guarantees that all
            // indices are in-bounds.
            MemoryInitialization::Static { map } => {
                for (index, init) in map {
                    if let Some(init) = init {
                        let result = write(state, index, init);
                        if !result {
                            return result;
                        }
                    }
                }
                return true;
            }
        };

        for initializer in initializers {
            let MemoryInitializer {
                memory_index,
                base,
                offset,
                ref data,
            } = *initializer;

            // First up determine the start/end range and verify that they're
            // in-bounds for the initial size of the memory at `memory_index`.
            // Note that this can bail if we don't have access to globals yet
            // (e.g. this is a task happening before instantiation at
            // compile-time).
            let base = match base {
                Some(index) => match &init {
                    InitMemory::Runtime {
                        get_global_as_u64, ..
                    } => get_global_as_u64(state, index),
                    InitMemory::CompileTime(_) => return false,
                },
                None => 0,
            };
            let start = match base.checked_add(offset) {
                Some(start) => start,
                None => return false,
            };
            let len = u64::try_from(data.len()).unwrap();
            let end = match start.checked_add(len) {
                Some(end) => end,
                None => return false,
            };

            let cur_size_in_pages = match &init {
                InitMemory::CompileTime(module) => module.memory_plans[memory_index].memory.minimum,
                InitMemory::Runtime {
                    memory_size_in_pages,
                    ..
                } => memory_size_in_pages(state, memory_index),
            };

            // Note that this `minimum` can overflow if `minimum` is
            // `1 << 48`, the maximum number of minimum pages for 64-bit
            // memories. If this overflow happens, though, then there's no need
            // to check the `end` value since `end` fits in a `u64` and it is
            // naturally less than the overflowed value.
            //
            // This is a bit esoteric though because it's impossible to actually
            // create a memory of `u64::MAX + 1` bytes, so this is largely just
            // here to avoid having the multiplication here overflow in debug
            // mode.
            if let Some(max) = cur_size_in_pages.checked_mul(u64::from(WASM_PAGE_SIZE)) {
                if end > max {
                    return false;
                }
            }

            // The limits of the data segment have been validated at this point
            // so the `write` callback is called with the range of data being
            // written. Any erroneous result is propagated upwards.
            let init = StaticMemoryInitializer {
                offset: start,
                data: data.clone(),
            };
            let result = write(state, memory_index, &init);
            if !result {
                return result;
            }
        }

        return true;
    }
}

/// Argument to [`MemoryInitialization::init_memory`] indicating the current
/// status of the instance.
pub enum InitMemory<'a, T> {
    /// This evaluation of memory initializers is happening at compile time.
    /// This means that the current state of memories is whatever their initial
    /// state is, and additionally globals are not available if data segments
    /// have global offsets.
    CompileTime(&'a Module),

    /// Evaluation of memory initializers is happening at runtime when the
    /// instance is available, and callbacks are provided to learn about the
    /// instance's state.
    Runtime {
        /// Returns the size, in wasm pages, of the the memory specified.
        memory_size_in_pages: &'a dyn Fn(&mut T, MemoryIndex) -> u64,
        /// Returns the value of the global, as a `u64`. Note that this may
        /// involve zero-extending a 32-bit global to a 64-bit number.
        get_global_as_u64: &'a dyn Fn(&mut T, GlobalIndex) -> u64,
    },
}

/// Implementation styles for WebAssembly tables.
#[derive(Debug, Clone, Hash, Serialize, Deserialize)]
pub enum TableStyle {
    /// Signatures are stored in the table and checked in the caller.
    CallerChecksSignature,
}

impl TableStyle {
    /// Decide on an implementation style for the given `Table`.
    pub fn for_table(_table: Table, _tunables: &Tunables) -> Self {
        Self::CallerChecksSignature
    }
}

/// A WebAssembly table description along with our chosen style for
/// implementing it.
#[derive(Debug, Clone, Hash, Serialize, Deserialize)]
pub struct TablePlan {
    /// The WebAssembly table description.
    pub table: Table,
    /// Our chosen implementation style.
    pub style: TableStyle,
}

impl TablePlan {
    /// Draw up a plan for implementing a `Table`.
    pub fn for_table(table: Table, tunables: &Tunables) -> Self {
        let style = TableStyle::for_table(table, tunables);
        Self { table, style }
    }
}

/// Table initialization data for all tables in the module.
#[derive(Debug, Default, Serialize, Deserialize)]
pub struct TableInitialization {
    /// Initial values for tables defined within the module itself.
    ///
    /// This contains the initial values and initializers for tables defined
    /// within a wasm, so excluding imported tables. This initializer can
    /// represent null-initialized tables, element-initialized tables (e.g. with
    /// the function-references proposal), or precomputed images of table
    /// initialization. For example table initializers to a table that are all
    /// in-bounds will get removed from `segment` and moved into
    /// `initial_values` here.
    pub initial_values: PrimaryMap<DefinedTableIndex, TableInitialValue>,

    /// Element segments present in the initial wasm module which are executed
    /// at instantiation time.
    ///
    /// These element segments are iterated over during instantiation to apply
    /// any segments that weren't already moved into `initial_values` above.
    pub segments: Vec<TableSegment>,
}

/// Initial value for all elements in a table.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub enum TableInitialValue {
    /// Initialize each table element to null, optionally setting some elements
    /// to non-null given the precomputed image.
    Null {
        /// A precomputed image of table initializers for this table.
        ///
        /// This image is constructed during `try_func_table_init` and
        /// null-initialized elements are represented with
        /// `FuncIndex::reserved_value()`. Note that this image is empty by
        /// default and may not encompass the entire span of the table in which
        /// case the elements are initialized to null.
        precomputed: Vec<FuncIndex>,
    },

    /// Initialize each table element to the function reference given
    /// by the `FuncIndex`.
    FuncRef(FuncIndex),

    /// At instantiation time this global is loaded and the funcref value is
    /// used to initialize the table.
    GlobalGet(GlobalIndex),
}

/// A WebAssembly table initializer segment.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct TableSegment {
    /// The index of a table to initialize.
    pub table_index: TableIndex,
    /// Optionally, a global variable giving a base index.
    pub base: Option<GlobalIndex>,
    /// The offset to add to the base.
    pub offset: u32,
    /// The values to write into the table elements.
    pub elements: TableSegmentElements,
}

/// Elements of a table segment, either a list of functions or list of arbitrary
/// expressions.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub enum TableSegmentElements {
    /// A sequential list of functions where `FuncIndex::reserved_value()`
    /// indicates a null function.
    Functions(Box<[FuncIndex]>),
    /// Arbitrary expressions, aka either functions, null or a load of a global.
    Expressions(Box<[TableElementExpression]>),
}

impl TableSegmentElements {
    /// Returns the number of elements in this segment.
    pub fn len(&self) -> u32 {
        match self {
            Self::Functions(s) => s.len() as u32,
            Self::Expressions(s) => s.len() as u32,
        }
    }
}

/// Different kinds of expression that can initialize table elements.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub enum TableElementExpression {
    /// `ref.func $f`
    Function(FuncIndex),
    /// `global.get $g`
    GlobalGet(GlobalIndex),
    /// `ref.null $ty`
    Null,
}

/// Different types that can appear in a module.
///
/// Note that each of these variants are intended to index further into a
/// separate table.
#[derive(Debug, Copy, Clone, Serialize, Deserialize)]
#[allow(missing_docs)]
pub enum ModuleType {
    Function(ModuleInternedTypeIndex),
}

impl ModuleType {
    /// Asserts this is a `ModuleType::Function`, returning the underlying
    /// `SignatureIndex`.
    pub fn unwrap_function(&self) -> ModuleInternedTypeIndex {
        match self {
            ModuleType::Function(f) => *f,
        }
    }
}

/// A translated WebAssembly module, excluding the function bodies and
/// memory initializers.
#[derive(Default, Debug, Serialize, Deserialize)]
pub struct Module {
    /// The name of this wasm module, often found in the wasm file.
    pub name: Option<String>,

    /// All import records, in the order they are declared in the module.
    pub initializers: Vec<Initializer>,

    /// Exported entities.
    pub exports: IndexMap<String, EntityIndex>,

    /// The module "start" function, if present.
    pub start_func: Option<FuncIndex>,

    /// WebAssembly table initialization data, per table.
    pub table_initialization: TableInitialization,

    /// WebAssembly linear memory initializer.
    pub memory_initialization: MemoryInitialization,

    /// WebAssembly passive elements.
    pub passive_elements: Vec<TableSegmentElements>,

    /// The map from passive element index (element segment index space) to index in `passive_elements`.
    pub passive_elements_map: BTreeMap<ElemIndex, usize>,

    /// The map from passive data index (data segment index space) to index in `passive_data`.
    pub passive_data_map: BTreeMap<DataIndex, Range<u32>>,

    /// Types declared in the wasm module.
    pub types: PrimaryMap<TypeIndex, ModuleType>,

    /// Number of imported or aliased functions in the module.
    pub num_imported_funcs: usize,

    /// Number of imported or aliased tables in the module.
    pub num_imported_tables: usize,

    /// Number of imported or aliased memories in the module.
    pub num_imported_memories: usize,

    /// Number of imported or aliased globals in the module.
    pub num_imported_globals: usize,

    /// Number of functions that "escape" from this module may need to have a
    /// `VMFuncRef` constructed for them.
    ///
    /// This is also the number of functions in the `functions` array below with
    /// an `func_ref` index (and is the maximum func_ref index).
    pub num_escaped_funcs: usize,

    /// Types of functions, imported and local.
    pub functions: PrimaryMap<FuncIndex, FunctionType>,

    /// WebAssembly tables.
    pub table_plans: PrimaryMap<TableIndex, TablePlan>,

    /// WebAssembly linear memory plans.
    pub memory_plans: PrimaryMap<MemoryIndex, MemoryPlan>,

    /// WebAssembly global variables.
    pub globals: PrimaryMap<GlobalIndex, Global>,

    /// WebAssembly global initializers for locally-defined globals.
    pub global_initializers: PrimaryMap<DefinedGlobalIndex, GlobalInit>,
}

/// Initialization routines for creating an instance, encompassing imports,
/// modules, instances, aliases, etc.
#[derive(Debug, Serialize, Deserialize)]
pub enum Initializer {
    /// An imported item is required to be provided.
    Import {
        /// Name of this import
        name: String,
        /// The field name projection of this import
        field: String,
        /// Where this import will be placed, which also has type information
        /// about the import.
        index: EntityIndex,
    },
}

impl Module {
    /// Allocates the module data structures.
    pub fn new() -> Self {
        Module::default()
    }

    /// Convert a `DefinedFuncIndex` into a `FuncIndex`.
    #[inline]
    pub fn func_index(&self, defined_func: DefinedFuncIndex) -> FuncIndex {
        FuncIndex::new(self.num_imported_funcs + defined_func.index())
    }

    /// Convert a `FuncIndex` into a `DefinedFuncIndex`. Returns None if the
    /// index is an imported function.
    #[inline]
    pub fn defined_func_index(&self, func: FuncIndex) -> Option<DefinedFuncIndex> {
        if func.index() < self.num_imported_funcs {
            None
        } else {
            Some(DefinedFuncIndex::new(
                func.index() - self.num_imported_funcs,
            ))
        }
    }

    /// Test whether the given function index is for an imported function.
    #[inline]
    pub fn is_imported_function(&self, index: FuncIndex) -> bool {
        index.index() < self.num_imported_funcs
    }

    /// Convert a `DefinedTableIndex` into a `TableIndex`.
    #[inline]
    pub fn table_index(&self, defined_table: DefinedTableIndex) -> TableIndex {
        TableIndex::new(self.num_imported_tables + defined_table.index())
    }

    /// Convert a `TableIndex` into a `DefinedTableIndex`. Returns None if the
    /// index is an imported table.
    #[inline]
    pub fn defined_table_index(&self, table: TableIndex) -> Option<DefinedTableIndex> {
        if table.index() < self.num_imported_tables {
            None
        } else {
            Some(DefinedTableIndex::new(
                table.index() - self.num_imported_tables,
            ))
        }
    }

    /// Test whether the given table index is for an imported table.
    #[inline]
    pub fn is_imported_table(&self, index: TableIndex) -> bool {
        index.index() < self.num_imported_tables
    }

    /// Convert a `DefinedMemoryIndex` into a `MemoryIndex`.
    #[inline]
    pub fn memory_index(&self, defined_memory: DefinedMemoryIndex) -> MemoryIndex {
        MemoryIndex::new(self.num_imported_memories + defined_memory.index())
    }

    /// Convert a `MemoryIndex` into a `DefinedMemoryIndex`. Returns None if the
    /// index is an imported memory.
    #[inline]
    pub fn defined_memory_index(&self, memory: MemoryIndex) -> Option<DefinedMemoryIndex> {
        if memory.index() < self.num_imported_memories {
            None
        } else {
            Some(DefinedMemoryIndex::new(
                memory.index() - self.num_imported_memories,
            ))
        }
    }

    /// Convert a `DefinedMemoryIndex` into an `OwnedMemoryIndex`. Returns None
    /// if the index is an imported memory.
    #[inline]
    pub fn owned_memory_index(&self, memory: DefinedMemoryIndex) -> OwnedMemoryIndex {
        assert!(
            memory.index() < self.memory_plans.len(),
            "non-shared memory must have an owned index"
        );

        // Once we know that the memory index is not greater than the number of
        // plans, we can iterate through the plans up to the memory index and
        // count how many are not shared (i.e., owned).
        let owned_memory_index = self
            .memory_plans
            .iter()
            .skip(self.num_imported_memories)
            .take(memory.index())
            .filter(|(_, mp)| !mp.memory.shared)
            .count();
        OwnedMemoryIndex::new(owned_memory_index)
    }

    /// Test whether the given memory index is for an imported memory.
    #[inline]
    pub fn is_imported_memory(&self, index: MemoryIndex) -> bool {
        index.index() < self.num_imported_memories
    }

    /// Convert a `DefinedGlobalIndex` into a `GlobalIndex`.
    #[inline]
    pub fn global_index(&self, defined_global: DefinedGlobalIndex) -> GlobalIndex {
        GlobalIndex::new(self.num_imported_globals + defined_global.index())
    }

    /// Convert a `GlobalIndex` into a `DefinedGlobalIndex`. Returns None if the
    /// index is an imported global.
    #[inline]
    pub fn defined_global_index(&self, global: GlobalIndex) -> Option<DefinedGlobalIndex> {
        if global.index() < self.num_imported_globals {
            None
        } else {
            Some(DefinedGlobalIndex::new(
                global.index() - self.num_imported_globals,
            ))
        }
    }

    /// Test whether the given global index is for an imported global.
    #[inline]
    pub fn is_imported_global(&self, index: GlobalIndex) -> bool {
        index.index() < self.num_imported_globals
    }

    /// Returns an iterator of all the imports in this module, along with their
    /// module name, field name, and type that's being imported.
    pub fn imports(&self) -> impl ExactSizeIterator<Item = (&str, &str, EntityType)> {
        self.initializers.iter().map(move |i| match i {
            Initializer::Import { name, field, index } => {
                (name.as_str(), field.as_str(), self.type_of(*index))
            }
        })
    }

    /// Returns the type of an item based on its index
    pub fn type_of(&self, index: EntityIndex) -> EntityType {
        match index {
            EntityIndex::Global(i) => EntityType::Global(self.globals[i]),
            EntityIndex::Table(i) => EntityType::Table(self.table_plans[i].table),
            EntityIndex::Memory(i) => EntityType::Memory(self.memory_plans[i].memory),
            EntityIndex::Function(i) => EntityType::Function(self.functions[i].signature),
        }
    }

    /// Appends a new function to this module with the given type information,
    /// used for functions that either don't escape or aren't certain whether
    /// they escape yet.
    pub fn push_function(&mut self, signature: ModuleInternedTypeIndex) -> FuncIndex {
        self.functions.push(FunctionType {
            signature,
            func_ref: FuncRefIndex::reserved_value(),
        })
    }

    /// Appends a new function to this module with the given type information.
    pub fn push_escaped_function(
        &mut self,
        signature: ModuleInternedTypeIndex,
        func_ref: FuncRefIndex,
    ) -> FuncIndex {
        self.functions.push(FunctionType {
            signature,
            func_ref,
        })
    }
}

/// Type information about functions in a wasm module.
#[derive(Debug, Serialize, Deserialize)]
pub struct FunctionType {
    /// The type of this function, indexed into the module-wide type tables for
    /// a module compilation.
    pub signature: ModuleInternedTypeIndex,
    /// The index into the funcref table, if present. Note that this is
    /// `reserved_value()` if the function does not escape from a module.
    pub func_ref: FuncRefIndex,
}

impl FunctionType {
    /// Returns whether this function's type is one that "escapes" the current
    /// module, meaning that the function is exported, used in `ref.func`, used
    /// in a table, etc.
    pub fn is_escaping(&self) -> bool {
        !self.func_ref.is_reserved_value()
    }
}

/// Index into the funcref table within a VMContext for a function.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct FuncRefIndex(u32);
cranelift_entity::entity_impl!(FuncRefIndex);