1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
//! Types relating to type information provided by validation.

use super::{
    component::{ComponentState, ExternKind},
    core::Module,
};
use crate::validator::names::KebabString;
use crate::{
    ArrayType, BinaryReaderError, Export, ExternalKind, FuncType, GlobalType, Import, MemoryType,
    PrimitiveValType, RefType, Result, StructType, StructuralType, SubType, TableType, TypeRef,
    ValType,
};
use indexmap::{IndexMap, IndexSet};
use std::collections::HashMap;
use std::collections::HashSet;
use std::ops::Index;
use std::sync::atomic::{AtomicU64, Ordering};
use std::{
    borrow::Borrow,
    hash::{Hash, Hasher},
    mem,
    ops::{Deref, DerefMut},
    sync::Arc,
};

/// The maximum number of parameters in the canonical ABI that can be passed by value.
///
/// Functions that exceed this limit will instead pass parameters indirectly from
/// linear memory via a single pointer parameter.
const MAX_FLAT_FUNC_PARAMS: usize = 16;
/// The maximum number of results in the canonical ABI that can be returned by a function.
///
/// Functions that exceed this limit have their results written to linear memory via an
/// additional pointer parameter (imports) or return a single pointer value (exports).
const MAX_FLAT_FUNC_RESULTS: usize = 1;

/// The maximum lowered types, including a possible type for a return pointer parameter.
const MAX_LOWERED_TYPES: usize = MAX_FLAT_FUNC_PARAMS + 1;

/// A simple alloc-free list of types used for calculating lowered function signatures.
pub(crate) struct LoweredTypes {
    types: [ValType; MAX_LOWERED_TYPES],
    len: usize,
    max: usize,
}

impl LoweredTypes {
    fn new(max: usize) -> Self {
        assert!(max <= MAX_LOWERED_TYPES);
        Self {
            types: [ValType::I32; MAX_LOWERED_TYPES],
            len: 0,
            max,
        }
    }

    fn len(&self) -> usize {
        self.len
    }

    fn maxed(&self) -> bool {
        self.len == self.max
    }

    fn get_mut(&mut self, index: usize) -> Option<&mut ValType> {
        if index < self.len {
            Some(&mut self.types[index])
        } else {
            None
        }
    }

    fn push(&mut self, ty: ValType) -> bool {
        if self.maxed() {
            return false;
        }

        self.types[self.len] = ty;
        self.len += 1;
        true
    }

    fn clear(&mut self) {
        self.len = 0;
    }

    pub fn as_slice(&self) -> &[ValType] {
        &self.types[..self.len]
    }

    pub fn iter(&self) -> impl Iterator<Item = ValType> + '_ {
        self.as_slice().iter().copied()
    }
}

/// Represents information about a component function type lowering.
pub(crate) struct LoweringInfo {
    pub(crate) params: LoweredTypes,
    pub(crate) results: LoweredTypes,
    pub(crate) requires_memory: bool,
    pub(crate) requires_realloc: bool,
}

impl LoweringInfo {
    pub(crate) fn into_func_type(self) -> FuncType {
        FuncType::new(
            self.params.as_slice().iter().copied(),
            self.results.as_slice().iter().copied(),
        )
    }
}

impl Default for LoweringInfo {
    fn default() -> Self {
        Self {
            params: LoweredTypes::new(MAX_FLAT_FUNC_PARAMS),
            results: LoweredTypes::new(MAX_FLAT_FUNC_RESULTS),
            requires_memory: false,
            requires_realloc: false,
        }
    }
}

fn push_primitive_wasm_types(ty: &PrimitiveValType, lowered_types: &mut LoweredTypes) -> bool {
    match ty {
        PrimitiveValType::Bool
        | PrimitiveValType::S8
        | PrimitiveValType::U8
        | PrimitiveValType::S16
        | PrimitiveValType::U16
        | PrimitiveValType::S32
        | PrimitiveValType::U32
        | PrimitiveValType::Char => lowered_types.push(ValType::I32),
        PrimitiveValType::S64 | PrimitiveValType::U64 => lowered_types.push(ValType::I64),
        PrimitiveValType::Float32 => lowered_types.push(ValType::F32),
        PrimitiveValType::Float64 => lowered_types.push(ValType::F64),
        PrimitiveValType::String => {
            lowered_types.push(ValType::I32) && lowered_types.push(ValType::I32)
        }
    }
}

/// Represents a unique identifier for a type known to a [`crate::Validator`].
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
#[repr(C)] // use fixed field layout to ensure minimal size
pub struct TypeId {
    /// The index into the global list of types.
    pub(crate) index: usize,
    /// Metadata about this type and its recursive structure.
    pub(crate) info: TypeInfo,
    /// A unique integer assigned to this type.
    ///
    /// The purpose of this field is to ensure that two different `TypeId`
    /// representations can be handed out for two different aliased types within
    /// a component that actually point to the same underlying type (as pointed
    /// to by the `index` field).
    unique_id: u32,
}

// The size of `TypeId` was seen to have a large-ish impact in #844, so this
// assert ensures that it stays relatively small.
const _: () = {
    assert!(std::mem::size_of::<TypeId>() <= 16);
};

/// Metadata about a type and its transitive structure.
///
/// Currently contains two properties:
///
/// * The "size" of a type - a proxy to the recursive size of a type if
///   everything in the type were unique (e.g. no shared references). Not an
///   approximation of runtime size, but instead of type-complexity size if
///   someone were to visit each element of the type individually. For example
///   `u32` has size 1 and `(list u32)` has size 2 (roughly). Used to prevent
///   massive trees of types.
///
/// * Whether or not a type contains a "borrow" transitively inside of it. For
///   example `(borrow $t)` and `(list (borrow $t))` both contain borrows, but
///   `(list u32)` does not. Used to validate that component function results do
///   not contain borrows.
///
/// Currently this is represented as a compact 32-bit integer to ensure that
/// `TypeId`, which this is stored in, remains relatively small. The maximum
/// type size allowed in wasmparser is 1M at this time which is 20 bits of
/// information, and then one more bit is used for whether or not a borrow is
/// used. Currently this uses the low 24 bits for the type size and the MSB for
/// the borrow bit.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub(crate) struct TypeInfo(u32);

impl TypeInfo {
    /// Creates a new blank set of type information.
    ///
    /// Defaults to size 1 to ensure that this consumes space in the final type
    /// structure.
    pub(crate) fn new() -> TypeInfo {
        TypeInfo::_new(1, false)
    }

    /// Creates a new blank set of information about a leaf "borrow" type which
    /// has size 1.
    pub(crate) fn borrow() -> TypeInfo {
        TypeInfo::_new(1, true)
    }

    /// Creates type information corresponding to a core type of the `size`
    /// specified, meaning no borrows are contained within.
    pub(crate) fn core(size: u32) -> TypeInfo {
        TypeInfo::_new(size, false)
    }

    fn _new(size: u32, contains_borrow: bool) -> TypeInfo {
        assert!(size < (1 << 24));
        TypeInfo(size | ((contains_borrow as u32) << 31))
    }

    /// Combines another set of type information into this one, for example if
    /// this is a record which has `other` as a field.
    ///
    /// Updates the size of `self` and whether or not this type contains a
    /// borrow based on whether `other` contains a borrow.
    ///
    /// Returns an error if the type size would exceed this crate's static limit
    /// of a type size.
    pub(crate) fn combine(&mut self, other: TypeInfo, offset: usize) -> Result<()> {
        *self = TypeInfo::_new(
            super::combine_type_sizes(self.size(), other.size(), offset)?,
            self.contains_borrow() || other.contains_borrow(),
        );
        Ok(())
    }

    pub(crate) fn size(&self) -> u32 {
        self.0 & 0xffffff
    }

    pub(crate) fn contains_borrow(&self) -> bool {
        (self.0 >> 31) != 0
    }
}

/// A unified type definition for validating WebAssembly modules and components.
#[derive(Debug)]
pub enum Type {
    /// The definition is for a sub type.
    Sub(SubType),
    /// The definition is for a core module type.
    ///
    /// This variant is only supported when parsing a component.
    Module(Box<ModuleType>),
    /// The definition is for a core module instance type.
    ///
    /// This variant is only supported when parsing a component.
    Instance(Box<InstanceType>),
    /// The definition is for a component type.
    ///
    /// This variant is only supported when parsing a component.
    Component(Box<ComponentType>),
    /// The definition is for a component instance type.
    ///
    /// This variant is only supported when parsing a component.
    ComponentInstance(Box<ComponentInstanceType>),
    /// The definition is for a component function type.
    ///
    /// This variant is only supported when parsing a component.
    ComponentFunc(ComponentFuncType),
    /// The definition is for a component defined type.
    ///
    /// This variant is only supported when parsing a component.
    Defined(ComponentDefinedType),
    /// This definition is for a resource type in the component model.
    ///
    /// Each resource is identified by a unique identifier specified here.
    Resource(ResourceId),
}

impl Type {
    /// Converts the type to a core function type.
    pub fn unwrap_func(&self) -> &FuncType {
        match self {
            Type::Sub(SubType {
                structural_type: StructuralType::Func(ft),
                ..
            }) => ft,
            _ => panic!("not a function type"),
        }
    }

    /// Converts the type to an array type.
    pub fn unwrap_array(&self) -> &ArrayType {
        match self {
            Self::Sub(SubType {
                structural_type: StructuralType::Array(ty),
                ..
            }) => ty,
            _ => panic!("not an array type"),
        }
    }

    /// Converts the type to a struct type.
    pub fn unwrap_struct(&self) -> &StructType {
        match self {
            Self::Sub(SubType {
                structural_type: StructuralType::Struct(ty),
                ..
            }) => ty,
            _ => panic!("not a struct type"),
        }
    }

    /// Converts the type to a core module type.
    pub fn unwrap_module(&self) -> &ModuleType {
        match self {
            Self::Module(ty) => ty,
            _ => panic!("not a module type"),
        }
    }

    /// Converts the type to a core module instance type.
    pub fn unwrap_instance(&self) -> &InstanceType {
        match self {
            Self::Instance(ty) => ty,
            _ => panic!("not an instance type"),
        }
    }

    /// Converts the type to a component type.
    pub fn unwrap_component(&self) -> &ComponentType {
        match self {
            Self::Component(ty) => ty,
            _ => panic!("not a component type"),
        }
    }

    /// Converts the type to a component instance type.
    pub fn unwrap_component_instance(&self) -> &ComponentInstanceType {
        match self {
            Self::ComponentInstance(ty) => ty,
            _ => panic!("not a component instance type"),
        }
    }

    /// Converts the type to a component function type.
    pub fn unwrap_component_func(&self) -> &ComponentFuncType {
        match self {
            Self::ComponentFunc(ty) => ty,
            _ => panic!("not a component function type"),
        }
    }

    /// Converts the type to a component defined type.
    pub fn unwrap_defined(&self) -> &ComponentDefinedType {
        match self {
            Self::Defined(ty) => ty,
            _ => panic!("not a defined type"),
        }
    }

    /// Converts this type to a resource type, returning the corresponding id.
    pub fn unwrap_resource(&self) -> ResourceId {
        match self {
            Self::Resource(id) => *id,
            _ => panic!("not a resource type"),
        }
    }

    pub(crate) fn info(&self) -> TypeInfo {
        // TODO(#1036): calculate actual size for func, array, struct
        match self {
            Self::Sub(ty) => {
                let size = 1 + match ty.clone().structural_type {
                    StructuralType::Func(ty) => 1 + (ty.params().len() + ty.results().len()) as u32,
                    StructuralType::Array(_) => 2,
                    StructuralType::Struct(ty) => 1 + 2 * ty.fields.len() as u32,
                };
                TypeInfo::core(size)
            }
            Self::Module(ty) => ty.info,
            Self::Instance(ty) => ty.info,
            Self::Component(ty) => ty.info,
            Self::ComponentInstance(ty) => ty.info,
            Self::ComponentFunc(ty) => ty.info,
            Self::Defined(ty) => ty.info(),
            Self::Resource(_) => TypeInfo::new(),
        }
    }
}

/// A component value type.
#[derive(Debug, Clone, Copy)]
pub enum ComponentValType {
    /// The value type is one of the primitive types.
    Primitive(PrimitiveValType),
    /// The type is represented with the given type identifier.
    Type(TypeId),
}

impl ComponentValType {
    pub(crate) fn contains_ptr(&self, types: &TypeList) -> bool {
        match self {
            ComponentValType::Primitive(ty) => ty.contains_ptr(),
            ComponentValType::Type(ty) => types[*ty].unwrap_defined().contains_ptr(types),
        }
    }

    fn push_wasm_types(&self, types: &TypeList, lowered_types: &mut LoweredTypes) -> bool {
        match self {
            Self::Primitive(ty) => push_primitive_wasm_types(ty, lowered_types),
            Self::Type(id) => types[*id]
                .unwrap_defined()
                .push_wasm_types(types, lowered_types),
        }
    }

    pub(crate) fn info(&self) -> TypeInfo {
        match self {
            Self::Primitive(_) => TypeInfo::new(),
            Self::Type(id) => id.info,
        }
    }
}

/// The entity type for imports and exports of a module.
#[derive(Debug, Clone, Copy)]
pub enum EntityType {
    /// The entity is a function.
    Func(TypeId),
    /// The entity is a table.
    Table(TableType),
    /// The entity is a memory.
    Memory(MemoryType),
    /// The entity is a global.
    Global(GlobalType),
    /// The entity is a tag.
    Tag(TypeId),
}

impl EntityType {
    pub(crate) fn desc(&self) -> &'static str {
        match self {
            Self::Func(_) => "func",
            Self::Table(_) => "table",
            Self::Memory(_) => "memory",
            Self::Global(_) => "global",
            Self::Tag(_) => "tag",
        }
    }

    pub(crate) fn info(&self) -> TypeInfo {
        match self {
            Self::Func(id) | Self::Tag(id) => id.info,
            Self::Table(_) | Self::Memory(_) | Self::Global(_) => TypeInfo::new(),
        }
    }
}

trait ModuleImportKey {
    fn module(&self) -> &str;
    fn name(&self) -> &str;
}

impl<'a> Borrow<dyn ModuleImportKey + 'a> for (String, String) {
    fn borrow(&self) -> &(dyn ModuleImportKey + 'a) {
        self
    }
}

impl Hash for (dyn ModuleImportKey + '_) {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.module().hash(state);
        self.name().hash(state);
    }
}

impl PartialEq for (dyn ModuleImportKey + '_) {
    fn eq(&self, other: &Self) -> bool {
        self.module() == other.module() && self.name() == other.name()
    }
}

impl Eq for (dyn ModuleImportKey + '_) {}

impl ModuleImportKey for (String, String) {
    fn module(&self) -> &str {
        &self.0
    }

    fn name(&self) -> &str {
        &self.1
    }
}

impl ModuleImportKey for (&str, &str) {
    fn module(&self) -> &str {
        self.0
    }

    fn name(&self) -> &str {
        self.1
    }
}

/// Represents a core module type.
#[derive(Debug, Clone)]
pub struct ModuleType {
    /// Metadata about this module type
    pub(crate) info: TypeInfo,
    /// The imports of the module type.
    pub imports: IndexMap<(String, String), EntityType>,
    /// The exports of the module type.
    pub exports: IndexMap<String, EntityType>,
}

impl ModuleType {
    /// Looks up an import by its module and name.
    ///
    /// Returns `None` if the import was not found.
    pub fn lookup_import(&self, module: &str, name: &str) -> Option<&EntityType> {
        self.imports.get(&(module, name) as &dyn ModuleImportKey)
    }
}

/// Represents the kind of module instance type.
#[derive(Debug, Clone)]
pub enum InstanceTypeKind {
    /// The instance type is the result of instantiating a module type.
    Instantiated(TypeId),
    /// The instance type is the result of instantiating from exported items.
    Exports(IndexMap<String, EntityType>),
}

/// Represents a module instance type.
#[derive(Debug, Clone)]
pub struct InstanceType {
    /// Metadata about this instance type
    pub(crate) info: TypeInfo,
    /// The kind of module instance type.
    pub kind: InstanceTypeKind,
}

impl InstanceType {
    /// Gets the exports of the instance type.
    pub fn exports<'a>(&'a self, types: TypesRef<'a>) -> &'a IndexMap<String, EntityType> {
        self.internal_exports(types.list)
    }

    pub(crate) fn internal_exports<'a>(
        &'a self,
        types: &'a TypeList,
    ) -> &'a IndexMap<String, EntityType> {
        match &self.kind {
            InstanceTypeKind::Instantiated(id) => &types[*id].unwrap_module().exports,
            InstanceTypeKind::Exports(exports) => exports,
        }
    }
}

/// The entity type for imports and exports of a component.
#[derive(Debug, Clone, Copy)]
pub enum ComponentEntityType {
    /// The entity is a core module.
    Module(TypeId),
    /// The entity is a function.
    Func(TypeId),
    /// The entity is a value.
    Value(ComponentValType),
    /// The entity is a type.
    Type {
        /// This is the identifier of the type that was referenced when this
        /// entity was created.
        referenced: TypeId,
        /// This is the identifier of the type that was created when this type
        /// was imported or exported from the component.
        ///
        /// Note that the underlying type information for the `referenced`
        /// field and for this `created` field is the same, but these two types
        /// will hash to different values.
        created: TypeId,
    },
    /// The entity is a component instance.
    Instance(TypeId),
    /// The entity is a component.
    Component(TypeId),
}

impl ComponentEntityType {
    /// Determines if component entity type `a` is a subtype of `b`.
    pub fn is_subtype_of(a: &Self, at: TypesRef, b: &Self, bt: TypesRef) -> bool {
        SubtypeCx::new(at.list, bt.list)
            .component_entity_type(a, b, 0)
            .is_ok()
    }

    pub(crate) fn desc(&self) -> &'static str {
        match self {
            Self::Module(_) => "module",
            Self::Func(_) => "func",
            Self::Value(_) => "value",
            Self::Type { .. } => "type",
            Self::Instance(_) => "instance",
            Self::Component(_) => "component",
        }
    }

    pub(crate) fn info(&self) -> TypeInfo {
        match self {
            Self::Module(ty)
            | Self::Func(ty)
            | Self::Type { referenced: ty, .. }
            | Self::Instance(ty)
            | Self::Component(ty) => ty.info,
            Self::Value(ty) => ty.info(),
        }
    }
}

/// Represents a type of a component.
#[derive(Debug, Clone)]
pub struct ComponentType {
    /// Metadata about this component type
    pub(crate) info: TypeInfo,

    /// The imports of the component type.
    ///
    /// Each import has its own kebab-name and an optional URL listed. Note that
    /// the set of import names is disjoint with the set of export names.
    pub imports: IndexMap<String, ComponentEntityType>,

    /// The exports of the component type.
    ///
    /// Each export has its own kebab-name and an optional URL listed. Note that
    /// the set of export names is disjoint with the set of import names.
    pub exports: IndexMap<String, ComponentEntityType>,

    /// Universally quantified resources required to be provided when
    /// instantiating this component type.
    ///
    /// Each resource in this map is explicitly imported somewhere in the
    /// `imports` map. The "path" to where it's imported is specified by the
    /// `Vec<usize>` payload here. For more information about the indexes see
    /// the documentation on `ComponentState::imported_resources`.
    ///
    /// This should technically be inferrable from the structure of `imports`,
    /// but it's stored as an auxiliary set for subtype checking and
    /// instantiation.
    ///
    /// Note that this is not a set of all resources referred to by the
    /// `imports`. Instead it's only those created, relative to the internals of
    /// this component, by the imports.
    pub imported_resources: Vec<(ResourceId, Vec<usize>)>,

    /// The dual of the `imported_resources`, or the set of defined
    /// resources -- those created through the instantiation process which are
    /// unique to this component.
    ///
    /// This set is similar to the `imported_resources` set but it's those
    /// contained within the `exports`. Instantiating this component will
    /// create fresh new versions of all of these resources. The path here is
    /// within the `exports` array.
    pub defined_resources: Vec<(ResourceId, Vec<usize>)>,

    /// The set of all resources which are explicitly exported by this
    /// component, and where they're exported.
    ///
    /// This mapping is stored separately from `defined_resources` to ensure
    /// that it contains all exported resources, not just those which are
    /// defined. That means that this can cover reexports of imported
    /// resources, exports of local resources, or exports of closed-over
    /// resources for example.
    pub explicit_resources: IndexMap<ResourceId, Vec<usize>>,
}

/// Represents a type of a component instance.
#[derive(Debug, Clone)]
pub struct ComponentInstanceType {
    /// Metadata about this instance type
    pub(crate) info: TypeInfo,

    /// The list of exports, keyed by name, that this instance has.
    ///
    /// An optional URL and type of each export is provided as well.
    pub exports: IndexMap<String, ComponentEntityType>,

    /// The list of "defined resources" or those which are closed over in
    /// this instance type.
    ///
    /// This list is populated, for example, when the type of an instance is
    /// declared and it contains its own resource type exports defined
    /// internally. For example:
    ///
    /// ```wasm
    /// (component
    ///     (type (instance
    ///         (export "x" (type sub resource)) ;; one `defined_resources` entry
    ///     ))
    /// )
    /// ```
    ///
    /// This list is also a bit of an oddity, however, because the type of a
    /// concrete instance will always have this as empty. For example:
    ///
    /// ```wasm
    /// (component
    ///     (type $t (instance (export "x" (type sub resource))))
    ///
    ///     ;; the type of this instance has no defined resources
    ///     (import "i" (instance (type $t)))
    /// )
    /// ```
    ///
    /// This list ends up only being populated for instance types declared in a
    /// module which aren't yet "attached" to anything. Once something is
    /// instantiated, imported, exported, or otherwise refers to a concrete
    /// instance then this list is always empty. For concrete instances
    /// defined resources are tracked in the component state or component type.
    pub defined_resources: Vec<ResourceId>,

    /// The list of all resources that are explicitly exported from this
    /// instance type along with the path they're exported at.
    pub explicit_resources: IndexMap<ResourceId, Vec<usize>>,
}

/// Represents a type of a component function.
#[derive(Debug, Clone)]
pub struct ComponentFuncType {
    /// Metadata about this function type.
    pub(crate) info: TypeInfo,
    /// The function parameters.
    pub params: Box<[(KebabString, ComponentValType)]>,
    /// The function's results.
    pub results: Box<[(Option<KebabString>, ComponentValType)]>,
}

impl ComponentFuncType {
    /// Lowers the component function type to core parameter and result types for the
    /// canonical ABI.
    pub(crate) fn lower(&self, types: &TypeList, is_lower: bool) -> LoweringInfo {
        let mut info = LoweringInfo::default();

        for (_, ty) in self.params.iter() {
            // Check to see if `ty` has a pointer somewhere in it, needed for
            // any type that transitively contains either a string or a list.
            // In this situation lowered functions must specify `memory`, and
            // lifted functions must specify `realloc` as well. Lifted functions
            // gain their memory requirement through the final clause of this
            // function.
            if is_lower {
                if !info.requires_memory {
                    info.requires_memory = ty.contains_ptr(types);
                }
            } else {
                if !info.requires_realloc {
                    info.requires_realloc = ty.contains_ptr(types);
                }
            }

            if !ty.push_wasm_types(types, &mut info.params) {
                // Too many parameters to pass directly
                // Function will have a single pointer parameter to pass the arguments
                // via linear memory
                info.params.clear();
                assert!(info.params.push(ValType::I32));
                info.requires_memory = true;

                // We need realloc as well when lifting a function
                if !is_lower {
                    info.requires_realloc = true;
                }
                break;
            }
        }

        for (_, ty) in self.results.iter() {
            // Results of lowered functions that contains pointers must be
            // allocated by the callee meaning that realloc is required.
            // Results of lifted function are allocated by the guest which
            // means that no realloc option is necessary.
            if is_lower && !info.requires_realloc {
                info.requires_realloc = ty.contains_ptr(types);
            }

            if !ty.push_wasm_types(types, &mut info.results) {
                // Too many results to return directly, either a retptr parameter will be used (import)
                // or a single pointer will be returned (export)
                info.results.clear();
                if is_lower {
                    info.params.max = MAX_LOWERED_TYPES;
                    assert!(info.params.push(ValType::I32));
                } else {
                    assert!(info.results.push(ValType::I32));
                }
                info.requires_memory = true;
                break;
            }
        }

        // Memory is always required when realloc is required
        info.requires_memory |= info.requires_realloc;

        info
    }
}

/// Represents a variant case.
#[derive(Debug, Clone)]
pub struct VariantCase {
    /// The variant case type.
    pub ty: Option<ComponentValType>,
    /// The name of the variant case refined by this one.
    pub refines: Option<KebabString>,
}

/// Represents a record type.
#[derive(Debug, Clone)]
pub struct RecordType {
    /// Metadata about this record type.
    pub(crate) info: TypeInfo,
    /// The map of record fields.
    pub fields: IndexMap<KebabString, ComponentValType>,
}

/// Represents a variant type.
#[derive(Debug, Clone)]
pub struct VariantType {
    /// Metadata about this variant type.
    pub(crate) info: TypeInfo,
    /// The map of variant cases.
    pub cases: IndexMap<KebabString, VariantCase>,
}

/// Represents a tuple type.
#[derive(Debug, Clone)]
pub struct TupleType {
    /// Metadata about this tuple type.
    pub(crate) info: TypeInfo,
    /// The types of the tuple.
    pub types: Box<[ComponentValType]>,
}

/// Represents a component defined type.
#[derive(Debug, Clone)]
pub enum ComponentDefinedType {
    /// The type is a primitive value type.
    Primitive(PrimitiveValType),
    /// The type is a record.
    Record(RecordType),
    /// The type is a variant.
    Variant(VariantType),
    /// The type is a list.
    List(ComponentValType),
    /// The type is a tuple.
    Tuple(TupleType),
    /// The type is a set of flags.
    Flags(IndexSet<KebabString>),
    /// The type is an enumeration.
    Enum(IndexSet<KebabString>),
    /// The type is an `option`.
    Option(ComponentValType),
    /// The type is a `result`.
    Result {
        /// The `ok` type.
        ok: Option<ComponentValType>,
        /// The `error` type.
        err: Option<ComponentValType>,
    },
    /// The type is an owned handle to the specified resource.
    Own(TypeId),
    /// The type is a borrowed handle to the specified resource.
    Borrow(TypeId),
}

impl ComponentDefinedType {
    pub(crate) fn contains_ptr(&self, types: &TypeList) -> bool {
        match self {
            Self::Primitive(ty) => ty.contains_ptr(),
            Self::Record(r) => r.fields.values().any(|ty| ty.contains_ptr(types)),
            Self::Variant(v) => v
                .cases
                .values()
                .any(|case| case.ty.map(|ty| ty.contains_ptr(types)).unwrap_or(false)),
            Self::List(_) => true,
            Self::Tuple(t) => t.types.iter().any(|ty| ty.contains_ptr(types)),
            Self::Flags(_) | Self::Enum(_) | Self::Own(_) | Self::Borrow(_) => false,
            Self::Option(ty) => ty.contains_ptr(types),
            Self::Result { ok, err } => {
                ok.map(|ty| ty.contains_ptr(types)).unwrap_or(false)
                    || err.map(|ty| ty.contains_ptr(types)).unwrap_or(false)
            }
        }
    }

    pub(crate) fn info(&self) -> TypeInfo {
        match self {
            Self::Primitive(_) | Self::Flags(_) | Self::Enum(_) | Self::Own(_) => TypeInfo::new(),
            Self::Borrow(_) => TypeInfo::borrow(),
            Self::Record(r) => r.info,
            Self::Variant(v) => v.info,
            Self::Tuple(t) => t.info,
            Self::List(ty) | Self::Option(ty) => ty.info(),
            Self::Result { ok, err } => {
                let default = TypeInfo::new();
                let mut info = ok.map(|ty| ty.info()).unwrap_or(default);
                info.combine(err.map(|ty| ty.info()).unwrap_or(default), 0)
                    .unwrap();
                info
            }
        }
    }

    fn push_wasm_types(&self, types: &TypeList, lowered_types: &mut LoweredTypes) -> bool {
        match self {
            Self::Primitive(ty) => push_primitive_wasm_types(ty, lowered_types),
            Self::Record(r) => r
                .fields
                .iter()
                .all(|(_, ty)| ty.push_wasm_types(types, lowered_types)),
            Self::Variant(v) => Self::push_variant_wasm_types(
                v.cases.iter().filter_map(|(_, case)| case.ty.as_ref()),
                types,
                lowered_types,
            ),
            Self::List(_) => lowered_types.push(ValType::I32) && lowered_types.push(ValType::I32),
            Self::Tuple(t) => t
                .types
                .iter()
                .all(|ty| ty.push_wasm_types(types, lowered_types)),
            Self::Flags(names) => {
                (0..(names.len() + 31) / 32).all(|_| lowered_types.push(ValType::I32))
            }
            Self::Enum(_) | Self::Own(_) | Self::Borrow(_) => lowered_types.push(ValType::I32),
            Self::Option(ty) => {
                Self::push_variant_wasm_types([ty].into_iter(), types, lowered_types)
            }
            Self::Result { ok, err } => {
                Self::push_variant_wasm_types(ok.iter().chain(err.iter()), types, lowered_types)
            }
        }
    }

    fn push_variant_wasm_types<'a>(
        cases: impl Iterator<Item = &'a ComponentValType>,
        types: &TypeList,
        lowered_types: &mut LoweredTypes,
    ) -> bool {
        // Push the discriminant
        if !lowered_types.push(ValType::I32) {
            return false;
        }

        let start = lowered_types.len();

        for ty in cases {
            let mut temp = LoweredTypes::new(lowered_types.max);

            if !ty.push_wasm_types(types, &mut temp) {
                return false;
            }

            for (i, ty) in temp.iter().enumerate() {
                match lowered_types.get_mut(start + i) {
                    Some(prev) => *prev = Self::join_types(*prev, ty),
                    None => {
                        if !lowered_types.push(ty) {
                            return false;
                        }
                    }
                }
            }
        }

        true
    }

    fn join_types(a: ValType, b: ValType) -> ValType {
        use ValType::*;

        match (a, b) {
            (I32, I32) | (I64, I64) | (F32, F32) | (F64, F64) => a,
            (I32, F32) | (F32, I32) => I32,
            (_, I64 | F64) | (I64 | F64, _) => I64,
            _ => panic!("unexpected wasm type for canonical ABI"),
        }
    }

    fn desc(&self) -> &'static str {
        match self {
            ComponentDefinedType::Record(_) => "record",
            ComponentDefinedType::Primitive(_) => "primitive",
            ComponentDefinedType::Variant(_) => "variant",
            ComponentDefinedType::Tuple(_) => "tuple",
            ComponentDefinedType::Enum(_) => "enum",
            ComponentDefinedType::Flags(_) => "flags",
            ComponentDefinedType::Option(_) => "option",
            ComponentDefinedType::List(_) => "list",
            ComponentDefinedType::Result { .. } => "result",
            ComponentDefinedType::Own(_) => "own",
            ComponentDefinedType::Borrow(_) => "borrow",
        }
    }
}

/// An opaque identifier intended to be used to distinguish whether two
/// resource types are equivalent or not.
#[derive(Debug, Clone, PartialEq, Eq, Hash, Ord, PartialOrd, Copy)]
#[repr(packed(4))] // try to not waste 4 bytes in padding
pub struct ResourceId {
    // This is a globally unique identifier which is assigned once per
    // `TypeAlloc`. This ensures that resource identifiers from different
    // instances of `Types`, for example, are considered unique.
    //
    // Technically 64-bits should be enough for all resource ids ever, but
    // they're allocated so often it's predicted that an atomic increment
    // per resource id is probably too expensive. To amortize that cost each
    // top-level wasm component gets a single globally unique identifier, and
    // then within a component contextually unique identifiers are handed out.
    globally_unique_id: u64,

    // A contextually unique id within the globally unique id above. This is
    // allocated within a `TypeAlloc` with its own counter, and allocations of
    // this are cheap as nothing atomic is required.
    //
    // The 32-bit storage here should ideally be enough for any component
    // containing resources. If memory usage becomes an issue (this struct is
    // 12 bytes instead of 8 or 4) then this coudl get folded into the globally
    // unique id with everything using an atomic increment perhaps.
    contextually_unique_id: u32,
}

#[allow(clippy::large_enum_variant)]
enum TypesKind {
    Module(Arc<Module>),
    Component(ComponentState),
}

/// Represents the types known to a [`crate::Validator`] once validation has completed.
///
/// The type information is returned via the [`crate::Validator::end`] method.
pub struct Types {
    list: TypeList,
    kind: TypesKind,
}

#[derive(Clone, Copy)]
enum TypesRefKind<'a> {
    Module(&'a Module),
    Component(&'a ComponentState),
}

/// Represents the types known to a [`crate::Validator`] during validation.
///
/// Retrieved via the [`crate::Validator::types`] method.
#[derive(Clone, Copy)]
pub struct TypesRef<'a> {
    list: &'a TypeList,
    kind: TypesRefKind<'a>,
}

impl<'a> TypesRef<'a> {
    pub(crate) fn from_module(types: &'a TypeList, module: &'a Module) -> Self {
        Self {
            list: types,
            kind: TypesRefKind::Module(module),
        }
    }

    pub(crate) fn from_component(types: &'a TypeList, component: &'a ComponentState) -> Self {
        Self {
            list: types,
            kind: TypesRefKind::Component(component),
        }
    }

    /// Gets a type based on its type id.
    ///
    /// Returns `None` if the type id is unknown.
    pub fn get(&self, id: TypeId) -> Option<&'a Type> {
        self.list.get(id.index)
    }

    /// Gets a core WebAssembly type id from a type index.
    ///
    /// Note that this is in contrast to [`TypesRef::component_type_at`] which
    /// gets a component type from its index.
    ///
    /// # Panics
    ///
    /// This will panic if the `index` provided is out of bounds.
    pub fn core_type_at(&self, index: u32) -> TypeId {
        match &self.kind {
            TypesRefKind::Module(module) => module.types[index as usize],
            TypesRefKind::Component(component) => component.core_types[index as usize],
        }
    }

    /// Gets a type id from a type index.
    ///
    /// # Panics
    ///
    /// Panics if `index` is not a valid function index or if this type
    /// information represents a core module.
    pub fn component_type_at(&self, index: u32) -> TypeId {
        match &self.kind {
            TypesRefKind::Module(_) => panic!("not a component"),
            TypesRefKind::Component(component) => component.types[index as usize],
        }
    }

    /// Returns the number of core types defined so far.
    pub fn core_type_count(&self) -> u32 {
        match &self.kind {
            TypesRefKind::Module(module) => module.types.len() as u32,
            TypesRefKind::Component(component) => component.core_types.len() as u32,
        }
    }

    /// Returns the number of component types defined so far.
    pub fn component_type_count(&self) -> u32 {
        match &self.kind {
            TypesRefKind::Module(_module) => 0,
            TypesRefKind::Component(component) => component.types.len() as u32,
        }
    }

    /// Gets the type of a table at the given table index.
    ///
    /// # Panics
    ///
    /// This will panic if the `index` provided is out of bounds.
    pub fn table_at(&self, index: u32) -> TableType {
        let tables = match &self.kind {
            TypesRefKind::Module(module) => &module.tables,
            TypesRefKind::Component(component) => &component.core_tables,
        };
        tables[index as usize]
    }

    /// Returns the number of tables defined so far.
    pub fn table_count(&self) -> u32 {
        match &self.kind {
            TypesRefKind::Module(module) => module.tables.len() as u32,
            TypesRefKind::Component(component) => component.core_tables.len() as u32,
        }
    }

    /// Gets the type of a memory at the given memory index.
    ///
    /// # Panics
    ///
    /// This will panic if the `index` provided is out of bounds.
    pub fn memory_at(&self, index: u32) -> MemoryType {
        let memories = match &self.kind {
            TypesRefKind::Module(module) => &module.memories,
            TypesRefKind::Component(component) => &component.core_memories,
        };

        memories[index as usize]
    }

    /// Returns the number of memories defined so far.
    pub fn memory_count(&self) -> u32 {
        match &self.kind {
            TypesRefKind::Module(module) => module.memories.len() as u32,
            TypesRefKind::Component(component) => component.core_memories.len() as u32,
        }
    }

    /// Gets the type of a global at the given global index.
    ///
    /// # Panics
    ///
    /// This will panic if the `index` provided is out of bounds.
    pub fn global_at(&self, index: u32) -> GlobalType {
        let globals = match &self.kind {
            TypesRefKind::Module(module) => &module.globals,
            TypesRefKind::Component(component) => &component.core_globals,
        };

        globals[index as usize]
    }

    /// Returns the number of globals defined so far.
    pub fn global_count(&self) -> u32 {
        match &self.kind {
            TypesRefKind::Module(module) => module.globals.len() as u32,
            TypesRefKind::Component(component) => component.core_globals.len() as u32,
        }
    }

    /// Gets the type of a tag at the given tag index.
    ///
    /// # Panics
    ///
    /// This will panic if the `index` provided is out of bounds.
    pub fn tag_at(&self, index: u32) -> TypeId {
        let tags = match &self.kind {
            TypesRefKind::Module(module) => &module.tags,
            TypesRefKind::Component(component) => &component.core_tags,
        };
        tags[index as usize]
    }

    /// Returns the number of tags defined so far.
    pub fn tag_count(&self) -> u32 {
        match &self.kind {
            TypesRefKind::Module(module) => module.tags.len() as u32,
            TypesRefKind::Component(component) => component.core_tags.len() as u32,
        }
    }

    /// Gets the type of a core function at the given function index.
    ///
    /// # Panics
    ///
    /// This will panic if the `index` provided is out of bounds.
    pub fn function_at(&self, index: u32) -> TypeId {
        match &self.kind {
            TypesRefKind::Module(module) => module.types[module.functions[index as usize] as usize],
            TypesRefKind::Component(component) => component.core_funcs[index as usize],
        }
    }

    /// Gets the count of core functions defined so far.
    ///
    /// Note that this includes imported functions, defined functions, and for
    /// components lowered/aliased functions.
    pub fn function_count(&self) -> u32 {
        match &self.kind {
            TypesRefKind::Module(module) => module.functions.len() as u32,
            TypesRefKind::Component(component) => component.core_funcs.len() as u32,
        }
    }

    /// Gets the type of an element segment at the given element segment index.
    ///
    /// # Panics
    ///
    /// This will panic if the `index` provided is out of bounds.
    pub fn element_at(&self, index: u32) -> RefType {
        match &self.kind {
            TypesRefKind::Module(module) => module.element_types[index as usize],
            TypesRefKind::Component(_) => {
                panic!("no elements on a component")
            }
        }
    }

    /// Returns the number of elements defined so far.
    pub fn element_count(&self) -> u32 {
        match &self.kind {
            TypesRefKind::Module(module) => module.element_types.len() as u32,
            TypesRefKind::Component(_) => 0,
        }
    }

    /// Gets the type of a component function at the given function index.
    ///
    /// # Panics
    ///
    /// This will panic if the `index` provided is out of bounds or if this type
    /// information represents a core module.
    pub fn component_function_at(&self, index: u32) -> TypeId {
        match &self.kind {
            TypesRefKind::Module(_) => panic!("not a component"),
            TypesRefKind::Component(component) => component.funcs[index as usize],
        }
    }

    /// Returns the number of component functions defined so far.
    pub fn component_function_count(&self) -> u32 {
        match &self.kind {
            TypesRefKind::Module(_module) => 0,
            TypesRefKind::Component(component) => component.funcs.len() as u32,
        }
    }

    /// Gets the type of a module at the given module index.
    ///
    /// # Panics
    ///
    /// This will panic if the `index` provided is out of bounds or if this type
    /// information represents a core module.
    pub fn module_at(&self, index: u32) -> TypeId {
        match &self.kind {
            TypesRefKind::Module(_) => panic!("not a component"),
            TypesRefKind::Component(component) => component.core_modules[index as usize],
        }
    }

    /// Returns the number of core wasm modules defined so far.
    pub fn module_count(&self) -> u32 {
        match &self.kind {
            TypesRefKind::Module(_module) => 0,
            TypesRefKind::Component(component) => component.core_modules.len() as u32,
        }
    }

    /// Gets the type of a module instance at the given module instance index.
    ///
    /// # Panics
    ///
    /// This will panic if the `index` provided is out of bounds or if this type
    /// information represents a core module.
    pub fn instance_at(&self, index: u32) -> TypeId {
        match &self.kind {
            TypesRefKind::Module(_) => panic!("not a component"),
            TypesRefKind::Component(component) => component.core_instances[index as usize],
        }
    }

    /// Returns the number of core wasm instances defined so far.
    pub fn instance_count(&self) -> u32 {
        match &self.kind {
            TypesRefKind::Module(_module) => 0,
            TypesRefKind::Component(component) => component.core_instances.len() as u32,
        }
    }

    /// Gets the type of a component at the given component index.
    ///
    /// # Panics
    ///
    /// This will panic if the `index` provided is out of bounds or if this type
    /// information represents a core module.
    pub fn component_at(&self, index: u32) -> TypeId {
        match &self.kind {
            TypesRefKind::Module(_) => panic!("not a component"),
            TypesRefKind::Component(component) => component.components[index as usize],
        }
    }

    /// Returns the number of components defined so far.
    pub fn component_count(&self) -> u32 {
        match &self.kind {
            TypesRefKind::Module(_module) => 0,
            TypesRefKind::Component(component) => component.components.len() as u32,
        }
    }

    /// Gets the type of an component instance at the given component instance index.
    ///
    /// # Panics
    ///
    /// This will panic if the `index` provided is out of bounds or if this type
    /// information represents a core module.
    pub fn component_instance_at(&self, index: u32) -> TypeId {
        match &self.kind {
            TypesRefKind::Module(_) => panic!("not a component"),
            TypesRefKind::Component(component) => component.instances[index as usize],
        }
    }

    /// Returns the number of component instances defined so far.
    pub fn component_instance_count(&self) -> u32 {
        match &self.kind {
            TypesRefKind::Module(_module) => 0,
            TypesRefKind::Component(component) => component.instances.len() as u32,
        }
    }

    /// Gets the type of a value at the given value index.
    ///
    /// # Panics
    ///
    /// This will panic if the `index` provided is out of bounds or if this type
    /// information represents a core module.
    pub fn value_at(&self, index: u32) -> ComponentValType {
        match &self.kind {
            TypesRefKind::Module(_) => panic!("not a component"),
            TypesRefKind::Component(component) => component.values[index as usize].0,
        }
    }

    /// Gets the entity type for the given import.
    pub fn entity_type_from_import(&self, import: &Import) -> Option<EntityType> {
        match &self.kind {
            TypesRefKind::Module(module) => Some(match import.ty {
                TypeRef::Func(idx) => EntityType::Func(*module.types.get(idx as usize)?),
                TypeRef::Table(ty) => EntityType::Table(ty),
                TypeRef::Memory(ty) => EntityType::Memory(ty),
                TypeRef::Global(ty) => EntityType::Global(ty),
                TypeRef::Tag(ty) => EntityType::Tag(*module.types.get(ty.func_type_idx as usize)?),
            }),
            TypesRefKind::Component(_) => None,
        }
    }

    /// Gets the entity type from the given export.
    pub fn entity_type_from_export(&self, export: &Export) -> Option<EntityType> {
        match &self.kind {
            TypesRefKind::Module(module) => Some(match export.kind {
                ExternalKind::Func => EntityType::Func(
                    module.types[*module.functions.get(export.index as usize)? as usize],
                ),
                ExternalKind::Table => {
                    EntityType::Table(*module.tables.get(export.index as usize)?)
                }
                ExternalKind::Memory => {
                    EntityType::Memory(*module.memories.get(export.index as usize)?)
                }
                ExternalKind::Global => {
                    EntityType::Global(*module.globals.get(export.index as usize)?)
                }
                ExternalKind::Tag => EntityType::Tag(
                    module.types[*module.functions.get(export.index as usize)? as usize],
                ),
            }),
            TypesRefKind::Component(_) => None,
        }
    }

    /// Gets the component entity type for the given component import.
    pub fn component_entity_type_of_import(&self, name: &str) -> Option<ComponentEntityType> {
        match &self.kind {
            TypesRefKind::Module(_) => None,
            TypesRefKind::Component(component) => Some(*component.imports.get(name)?),
        }
    }

    /// Gets the component entity type for the given component export.
    pub fn component_entity_type_of_export(&self, name: &str) -> Option<ComponentEntityType> {
        match &self.kind {
            TypesRefKind::Module(_) => None,
            TypesRefKind::Component(component) => Some(*component.exports.get(name)?),
        }
    }
}

impl Index<TypeId> for TypesRef<'_> {
    type Output = Type;
    fn index(&self, id: TypeId) -> &Type {
        &self.list[id.index]
    }
}

impl Types {
    pub(crate) fn from_module(types: TypeList, module: Arc<Module>) -> Self {
        Self {
            list: types,
            kind: TypesKind::Module(module),
        }
    }

    pub(crate) fn from_component(types: TypeList, component: ComponentState) -> Self {
        Self {
            list: types,
            kind: TypesKind::Component(component),
        }
    }

    /// Gets a reference to this validation type information.
    pub fn as_ref(&self) -> TypesRef {
        TypesRef {
            list: &self.list,
            kind: match &self.kind {
                TypesKind::Module(module) => TypesRefKind::Module(module),
                TypesKind::Component(component) => TypesRefKind::Component(component),
            },
        }
    }

    /// Gets a type based on its type id.
    ///
    /// Returns `None` if the type id is unknown.
    pub fn get(&self, id: TypeId) -> Option<&Type> {
        self.as_ref().get(id)
    }

    /// Gets a core WebAssembly type at the given type index.
    ///
    /// Note that this is in contrast to [`TypesRef::component_type_at`] which
    /// gets a component type from its index.
    ///
    /// # Panics
    ///
    /// Panics if `index` is not a valid function index.
    pub fn core_type_at(&self, index: u32) -> TypeId {
        self.as_ref().core_type_at(index)
    }

    /// Gets a component type from the given component type index.
    ///
    /// # Panics
    ///
    /// Panics if `index` is not a valid function index or if this type
    /// information represents a core module.
    pub fn component_type_at(&self, index: u32) -> TypeId {
        self.as_ref().component_type_at(index)
    }

    /// Gets the count of core types.
    pub fn type_count(&self) -> usize {
        match &self.kind {
            TypesKind::Module(module) => module.types.len(),
            TypesKind::Component(component) => component.core_types.len(),
        }
    }

    /// Gets the type of a table at the given table index.
    ///
    /// # Panics
    ///
    /// Panics if `index` is not a valid function index.
    pub fn table_at(&self, index: u32) -> TableType {
        self.as_ref().table_at(index)
    }

    /// Gets the count of imported and defined tables.
    pub fn table_count(&self) -> usize {
        match &self.kind {
            TypesKind::Module(module) => module.tables.len(),
            TypesKind::Component(component) => component.core_tables.len(),
        }
    }

    /// Gets the type of a memory at the given memory index.
    ///
    /// # Panics
    ///
    /// Panics if `index` is not a valid function index.
    pub fn memory_at(&self, index: u32) -> MemoryType {
        self.as_ref().memory_at(index)
    }

    /// Gets the count of imported and defined memories.
    pub fn memory_count(&self) -> u32 {
        self.as_ref().memory_count()
    }

    /// Gets the type of a global at the given global index.
    ///
    /// # Panics
    ///
    /// Panics if `index` is not a valid function index.
    pub fn global_at(&self, index: u32) -> GlobalType {
        self.as_ref().global_at(index)
    }

    /// Gets the count of imported and defined globals.
    pub fn global_count(&self) -> u32 {
        self.as_ref().global_count()
    }

    /// Gets the type of a tag at the given tag index.
    ///
    /// # Panics
    ///
    /// Panics if `index` is not a valid function index.
    pub fn tag_at(&self, index: u32) -> TypeId {
        self.as_ref().tag_at(index)
    }

    /// Gets the count of imported and defined tags.
    pub fn tag_count(&self) -> u32 {
        self.as_ref().tag_count()
    }

    /// Gets the type of a core function at the given function index.
    ///
    /// # Panics
    ///
    /// Panics if `index` is not a valid function index.
    pub fn function_at(&self, index: u32) -> TypeId {
        self.as_ref().function_at(index)
    }

    /// Gets the count of core functions defined so far.
    ///
    /// Note that this includes imported functions, defined functions, and for
    /// components lowered/aliased functions.
    pub fn function_count(&self) -> u32 {
        self.as_ref().function_count()
    }

    /// Gets the type of an element segment at the given element segment index.
    ///
    /// # Panics
    ///
    /// This will panic if the `index` provided is out of bounds.
    pub fn element_at(&self, index: u32) -> RefType {
        self.as_ref().element_at(index)
    }

    /// Gets the count of element segments.
    pub fn element_count(&self) -> u32 {
        self.as_ref().element_count()
    }

    /// Gets the type of a component function at the given function index.
    ///
    /// # Panics
    ///
    /// This will panic if the `index` provided is out of bounds or if this type
    /// information represents a core module.
    pub fn component_function_at(&self, index: u32) -> TypeId {
        self.as_ref().component_function_at(index)
    }

    /// Gets the count of imported, exported, or aliased component functions.
    pub fn component_function_count(&self) -> u32 {
        self.as_ref().component_function_count()
    }

    /// Gets the type of a module at the given module index.
    ///
    /// # Panics
    ///
    /// This will panic if the `index` provided is out of bounds or if this type
    /// information represents a core module.
    pub fn module_at(&self, index: u32) -> TypeId {
        self.as_ref().module_at(index)
    }

    /// Gets the count of imported, exported, or aliased modules.
    pub fn module_count(&self) -> usize {
        match &self.kind {
            TypesKind::Module(_) => 0,
            TypesKind::Component(component) => component.core_modules.len(),
        }
    }

    /// Gets the type of a module instance at the given module instance index.
    ///
    /// # Panics
    ///
    /// This will panic if the `index` provided is out of bounds or if this type
    /// information represents a core module.
    pub fn instance_at(&self, index: u32) -> TypeId {
        self.as_ref().instance_at(index)
    }

    /// Gets the count of imported, exported, or aliased core module instances.
    pub fn instance_count(&self) -> usize {
        match &self.kind {
            TypesKind::Module(_) => 0,
            TypesKind::Component(component) => component.core_instances.len(),
        }
    }

    /// Gets the type of a component at the given component index.
    ///
    /// # Panics
    ///
    /// This will panic if the `index` provided is out of bounds or if this type
    /// information represents a core module.
    pub fn component_at(&self, index: u32) -> TypeId {
        self.as_ref().component_at(index)
    }

    /// Gets the count of imported, exported, or aliased components.
    pub fn component_count(&self) -> usize {
        match &self.kind {
            TypesKind::Module(_) => 0,
            TypesKind::Component(component) => component.components.len(),
        }
    }

    /// Gets the type of an component instance at the given component instance index.
    ///
    /// # Panics
    ///
    /// This will panic if the `index` provided is out of bounds or if this type
    /// information represents a core module.
    pub fn component_instance_at(&self, index: u32) -> TypeId {
        self.as_ref().component_instance_at(index)
    }

    /// Gets the count of imported, exported, or aliased component instances.
    pub fn component_instance_count(&self) -> usize {
        match &self.kind {
            TypesKind::Module(_) => 0,
            TypesKind::Component(component) => component.instances.len(),
        }
    }

    /// Gets the type of a value at the given value index.
    ///
    /// # Panics
    ///
    /// This will panic if the `index` provided is out of bounds or if this type
    /// information represents a core module.
    pub fn value_at(&self, index: u32) -> ComponentValType {
        self.as_ref().value_at(index)
    }

    /// Gets the count of imported, exported, or aliased values.
    pub fn value_count(&self) -> usize {
        match &self.kind {
            TypesKind::Module(_) => 0,
            TypesKind::Component(component) => component.values.len(),
        }
    }

    /// Gets the entity type from the given import.
    pub fn entity_type_from_import(&self, import: &Import) -> Option<EntityType> {
        self.as_ref().entity_type_from_import(import)
    }

    /// Gets the entity type from the given export.
    pub fn entity_type_from_export(&self, export: &Export) -> Option<EntityType> {
        self.as_ref().entity_type_from_export(export)
    }

    /// Gets the component entity type for the given component import name.
    pub fn component_entity_type_of_import(&self, name: &str) -> Option<ComponentEntityType> {
        self.as_ref().component_entity_type_of_import(name)
    }

    /// Gets the component entity type for the given component export name.
    pub fn component_entity_type_of_export(&self, name: &str) -> Option<ComponentEntityType> {
        self.as_ref().component_entity_type_of_export(name)
    }

    /// Attempts to lookup the type id that `ty` is an alias of.
    ///
    /// Returns `None` if `ty` wasn't listed as aliasing a prior type.
    pub fn peel_alias(&self, ty: TypeId) -> Option<TypeId> {
        self.list.peel_alias(ty)
    }
}

impl Index<TypeId> for Types {
    type Output = Type;

    fn index(&self, id: TypeId) -> &Type {
        &self.list[id.index]
    }
}

/// This is a type which mirrors a subset of the `Vec<T>` API, but is intended
/// to be able to be cheaply snapshotted and cloned.
///
/// When each module's code sections start we "commit" the current list of types
/// in the global list of types. This means that the temporary `cur` vec here is
/// pushed onto `snapshots` and wrapped up in an `Arc`. At that point we clone
/// this entire list (which is then O(modules), not O(types in all modules)) and
/// pass out as a context to each function validator.
///
/// Otherwise, though, this type behaves as if it were a large `Vec<T>`, but
/// it's represented by lists of contiguous chunks.
pub(crate) struct SnapshotList<T> {
    // All previous snapshots, the "head" of the list that this type represents.
    // The first entry in this pair is the starting index for all elements
    // contained in the list, and the second element is the list itself. Note
    // the `Arc` wrapper around sub-lists, which makes cloning time for this
    // `SnapshotList` O(snapshots) rather than O(snapshots_total), which for
    // us in this context means the number of modules, not types.
    //
    // Note that this list is sorted least-to-greatest in order of the index for
    // binary searching.
    snapshots: Vec<Arc<Snapshot<T>>>,

    // This is the total length of all lists in the `snapshots` array.
    snapshots_total: usize,

    // The current list of types for the current snapshot that are being built.
    cur: Vec<T>,

    unique_mappings: HashMap<u32, u32>,
    unique_counter: u32,
}

struct Snapshot<T> {
    prior_types: usize,
    unique_counter: u32,
    unique_mappings: HashMap<u32, u32>,
    items: Vec<T>,
}

impl<T> SnapshotList<T> {
    /// Same as `<&[T]>::get`
    pub(crate) fn get(&self, index: usize) -> Option<&T> {
        // Check to see if this index falls on our local list
        if index >= self.snapshots_total {
            return self.cur.get(index - self.snapshots_total);
        }
        // ... and failing that we do a binary search to figure out which bucket
        // it's in. Note the `i-1` in the `Err` case because if we don't find an
        // exact match the type is located in the previous bucket.
        let i = match self
            .snapshots
            .binary_search_by_key(&index, |snapshot| snapshot.prior_types)
        {
            Ok(i) => i,
            Err(i) => i - 1,
        };
        let snapshot = &self.snapshots[i];
        Some(&snapshot.items[index - snapshot.prior_types])
    }

    /// Same as `Vec::push`
    pub(crate) fn push(&mut self, val: T) {
        self.cur.push(val);
    }

    /// Same as `<[T]>::len`
    pub(crate) fn len(&self) -> usize {
        self.cur.len() + self.snapshots_total
    }

    /// Reserve space for an additional count of items.
    pub(crate) fn reserve(&mut self, additional: usize) {
        self.cur.reserve(additional);
    }

    /// Commits previously pushed types into this snapshot vector, and returns a
    /// clone of this list.
    ///
    /// The returned `SnapshotList` can be used to access all the same types as
    /// this list itself. This list also is not changed (from an external
    /// perspective) and can continue to access all the same types.
    pub(crate) fn commit(&mut self) -> SnapshotList<T> {
        // If the current chunk has new elements, commit them in to an
        // `Arc`-wrapped vector in the snapshots list. Note the `shrink_to_fit`
        // ahead of time to hopefully keep memory usage lower than it would
        // otherwise be. Additionally note that the `unique_counter` is bumped
        // here to ensure that the previous value of the unique counter is
        // never used for an actual type so it's suitable for lookup via a
        // binary search.
        let len = self.cur.len();
        if len > 0 {
            self.unique_counter += 1;
            self.cur.shrink_to_fit();
            self.snapshots.push(Arc::new(Snapshot {
                prior_types: self.snapshots_total,
                unique_counter: self.unique_counter - 1,
                unique_mappings: mem::take(&mut self.unique_mappings),
                items: mem::take(&mut self.cur),
            }));
            self.snapshots_total += len;
        }
        SnapshotList {
            snapshots: self.snapshots.clone(),
            snapshots_total: self.snapshots_total,
            unique_mappings: HashMap::new(),
            unique_counter: self.unique_counter,
            cur: Vec::new(),
        }
    }

    /// Modifies a `TypeId` to have the same contents but a fresh new unique id.
    ///
    /// This is used during aliasing with components to assign types a unique
    /// identifier that isn't equivalent to anything else but still
    /// points to the same underlying type.
    pub fn with_unique(&mut self, mut ty: TypeId) -> TypeId {
        self.unique_mappings
            .insert(self.unique_counter, ty.unique_id);
        ty.unique_id = self.unique_counter;
        self.unique_counter += 1;
        ty
    }

    /// Attempts to lookup the type id that `ty` is an alias of.
    ///
    /// Returns `None` if `ty` wasn't listed as aliasing a prior type.
    pub fn peel_alias(&self, ty: TypeId) -> Option<TypeId> {
        // The unique counter in each snapshot is the unique counter at the
        // time of the snapshot so it's guaranteed to never be used, meaning
        // that `Ok` should never show up here. With an `Err` it's where the
        // index would be placed meaning that the index in question is the
        // smallest value over the unique id's value, meaning that slot has the
        // mapping we're interested in.
        let i = match self
            .snapshots
            .binary_search_by_key(&ty.unique_id, |snapshot| snapshot.unique_counter)
        {
            Ok(_) => unreachable!(),
            Err(i) => i,
        };

        // If the `i` index is beyond the snapshot array then lookup in the
        // current mappings instead since it may refer to a type not snapshot
        // yet.
        let unique_id = match self.snapshots.get(i) {
            Some(snapshot) => *snapshot.unique_mappings.get(&ty.unique_id)?,
            None => *self.unique_mappings.get(&ty.unique_id)?,
        };
        Some(TypeId { unique_id, ..ty })
    }
}

impl<T> Index<usize> for SnapshotList<T> {
    type Output = T;

    #[inline]
    fn index(&self, index: usize) -> &T {
        self.get(index).unwrap()
    }
}

impl<T> Index<TypeId> for SnapshotList<T> {
    type Output = T;

    #[inline]
    fn index(&self, id: TypeId) -> &T {
        self.get(id.index).unwrap()
    }
}

impl<T> Default for SnapshotList<T> {
    fn default() -> SnapshotList<T> {
        SnapshotList {
            snapshots: Vec::new(),
            snapshots_total: 0,
            cur: Vec::new(),
            unique_counter: 1,
            unique_mappings: HashMap::new(),
        }
    }
}

/// A snapshot list of types.
pub(crate) type TypeList = SnapshotList<Type>;

/// Thin wrapper around `TypeList` which provides an allocator of unique ids for
/// types contained within this list.
pub(crate) struct TypeAlloc {
    list: TypeList,

    // This is assigned at creation of a `TypeAlloc` and then never changed.
    // It's used in one entry for all `ResourceId`s contained within.
    globally_unique_id: u64,

    // This is a counter that's incremeneted each time `alloc_resource_id` is
    // called.
    next_resource_id: u32,
}

impl Default for TypeAlloc {
    fn default() -> TypeAlloc {
        static NEXT_GLOBAL_ID: AtomicU64 = AtomicU64::new(0);
        TypeAlloc {
            list: TypeList::default(),
            globally_unique_id: NEXT_GLOBAL_ID.fetch_add(1, Ordering::Relaxed),
            next_resource_id: 0,
        }
    }
}

impl Deref for TypeAlloc {
    type Target = TypeList;
    fn deref(&self) -> &TypeList {
        &self.list
    }
}

impl DerefMut for TypeAlloc {
    fn deref_mut(&mut self) -> &mut TypeList {
        &mut self.list
    }
}

impl TypeAlloc {
    /// Pushes a new type into this list, returning an identifier which can be
    /// used to later retrieve it.
    ///
    /// The returned identifier is unique within this `TypeAlloc` and won't be
    /// hash-equivalent to anything else.
    pub fn push_ty(&mut self, ty: Type) -> TypeId {
        let index = self.list.len();
        let info = ty.info();
        self.list.push(ty);
        TypeId {
            index,
            info,
            unique_id: 0,
        }
    }

    /// Allocates a new unique resource identifier.
    ///
    /// Note that uniqueness is only a property within this `TypeAlloc`.
    pub fn alloc_resource_id(&mut self) -> ResourceId {
        let contextually_unique_id = self.next_resource_id;
        self.next_resource_id = self.next_resource_id.checked_add(1).unwrap();
        ResourceId {
            globally_unique_id: self.globally_unique_id,
            contextually_unique_id,
        }
    }

    /// Adds the set of "free variables" of the `id` provided to the `set`
    /// provided.
    ///
    /// Free variables are defined as resources. Any resource, perhaps
    /// transitively, referred to but not defined by `id` is added to the `set`
    /// and returned.
    pub fn free_variables_type_id(&self, id: TypeId, set: &mut IndexSet<ResourceId>) {
        match &self[id] {
            // Core wasm constructs cannot reference resources.
            Type::Sub(_) | Type::Module(_) | Type::Instance(_) => {}

            // Recurse on the imports/exports of components, but remove the
            // imported and defined resources within the component itself.
            //
            // Technically this needs to add all the free variables of the
            // exports, remove the defined resources, then add the free
            // variables of imports, then remove the imported resources. Given
            // prior validation of component types, however, the defined
            // and imported resources are disjoint and imports can't refer to
            // defined resources, so doing this all in one go should be
            // equivalent.
            Type::Component(i) => {
                for ty in i.imports.values().chain(i.exports.values()) {
                    self.free_variables_component_entity(ty, set);
                }
                for (id, _path) in i.imported_resources.iter().chain(&i.defined_resources) {
                    set.remove(id);
                }
            }

            // Like components, add in all the free variables of referenced
            // types but then remove those defined by this component instance
            // itself.
            Type::ComponentInstance(i) => {
                for ty in i.exports.values() {
                    self.free_variables_component_entity(ty, set);
                }
                for id in i.defined_resources.iter() {
                    set.remove(id);
                }
            }

            Type::Resource(r) => {
                set.insert(*r);
            }

            Type::ComponentFunc(i) => {
                for ty in i
                    .params
                    .iter()
                    .map(|(_, ty)| ty)
                    .chain(i.results.iter().map(|(_, ty)| ty))
                {
                    self.free_variables_valtype(ty, set);
                }
            }

            Type::Defined(i) => match i {
                ComponentDefinedType::Primitive(_)
                | ComponentDefinedType::Flags(_)
                | ComponentDefinedType::Enum(_) => {}
                ComponentDefinedType::Record(r) => {
                    for ty in r.fields.values() {
                        self.free_variables_valtype(ty, set);
                    }
                }
                ComponentDefinedType::Tuple(r) => {
                    for ty in r.types.iter() {
                        self.free_variables_valtype(ty, set);
                    }
                }
                ComponentDefinedType::Variant(r) => {
                    for ty in r.cases.values() {
                        if let Some(ty) = &ty.ty {
                            self.free_variables_valtype(ty, set);
                        }
                    }
                }
                ComponentDefinedType::List(ty) | ComponentDefinedType::Option(ty) => {
                    self.free_variables_valtype(ty, set);
                }
                ComponentDefinedType::Result { ok, err } => {
                    if let Some(ok) = ok {
                        self.free_variables_valtype(ok, set);
                    }
                    if let Some(err) = err {
                        self.free_variables_valtype(err, set);
                    }
                }
                ComponentDefinedType::Own(id) | ComponentDefinedType::Borrow(id) => {
                    self.free_variables_type_id(*id, set);
                }
            },
        }
    }

    /// Same as `free_variables_type_id`, but for `ComponentEntityType`.
    pub fn free_variables_component_entity(
        &self,
        ty: &ComponentEntityType,
        set: &mut IndexSet<ResourceId>,
    ) {
        match ty {
            ComponentEntityType::Module(id)
            | ComponentEntityType::Func(id)
            | ComponentEntityType::Instance(id)
            | ComponentEntityType::Component(id) => self.free_variables_type_id(*id, set),
            ComponentEntityType::Type { created, .. } => {
                self.free_variables_type_id(*created, set);
            }
            ComponentEntityType::Value(ty) => self.free_variables_valtype(ty, set),
        }
    }

    /// Same as `free_variables_type_id`, but for `ComponentValType`.
    fn free_variables_valtype(&self, ty: &ComponentValType, set: &mut IndexSet<ResourceId>) {
        match ty {
            ComponentValType::Primitive(_) => {}
            ComponentValType::Type(id) => self.free_variables_type_id(*id, set),
        }
    }

    /// Returns whether the type `id` is "named" where named types are presented
    /// via the provided `set`.
    ///
    /// This requires that `id` is a `Defined` type.
    pub(crate) fn type_named_type_id(&self, id: TypeId, set: &HashSet<TypeId>) -> bool {
        let ty = self[id].unwrap_defined();
        match ty {
            // Primitives are always considered named
            ComponentDefinedType::Primitive(_) => true,

            // These structures are never allowed to be anonymous, so they
            // themselves must be named.
            ComponentDefinedType::Flags(_)
            | ComponentDefinedType::Enum(_)
            | ComponentDefinedType::Record(_)
            | ComponentDefinedType::Variant(_) => set.contains(&id),

            // All types below here are allowed to be anonymous, but their
            // own components must be appropriately named.
            ComponentDefinedType::Tuple(r) => {
                r.types.iter().all(|t| self.type_named_valtype(t, set))
            }
            ComponentDefinedType::Result { ok, err } => {
                ok.as_ref()
                    .map(|t| self.type_named_valtype(t, set))
                    .unwrap_or(true)
                    && err
                        .as_ref()
                        .map(|t| self.type_named_valtype(t, set))
                        .unwrap_or(true)
            }
            ComponentDefinedType::List(ty) | ComponentDefinedType::Option(ty) => {
                self.type_named_valtype(ty, set)
            }

            // own/borrow themselves don't have to be named, but the resource
            // they refer to must be named.
            ComponentDefinedType::Own(id) | ComponentDefinedType::Borrow(id) => set.contains(id),
        }
    }

    pub(crate) fn type_named_valtype(&self, ty: &ComponentValType, set: &HashSet<TypeId>) -> bool {
        match ty {
            ComponentValType::Primitive(_) => true,
            ComponentValType::Type(id) => self.type_named_type_id(*id, set),
        }
    }
}

/// A helper trait to provide the functionality necessary to resources within a
/// type.
///
/// This currently exists to abstract over `TypeAlloc` and `SubtypeArena` which
/// both need to perform remapping operations.
pub(crate) trait Remap: Index<TypeId, Output = Type> {
    /// Pushes a new anonymous type within this object, returning an identifier
    /// which can be used to refer to it.
    fn push_ty(&mut self, ty: Type) -> TypeId;

    /// Applies a resource and type renaming map to the `id` specified,
    /// returning `true` if the `id` was modified or `false` if it didn't need
    /// changing.
    ///
    /// This will recursively modify the structure of the `id` specified and
    /// update all references to resources found. The resource identifier keys
    /// in the `map` specified will become the corresponding value, in addition
    /// to any existing types in `map` becoming different tyeps.
    ///
    /// The `id` argument will be rewritten to a new identifier if `true` is
    /// returned.
    fn remap_type_id(&mut self, id: &mut TypeId, map: &mut Remapping) -> bool {
        if let Some(new) = map.types.get(id) {
            let changed = *new != *id;
            *id = *new;
            return changed;
        }

        // This function attempts what ends up probably being a relatively
        // minor optimization where a new `id` isn't manufactured unless
        // something about the type actually changed. That means that if the
        // type doesn't actually use any resources, for example, then no new
        // id is allocated.
        let mut any_changed = false;

        let map_map = |tmp: &mut IndexMap<ResourceId, Vec<usize>>,
                       any_changed: &mut bool,
                       map: &mut Remapping| {
            for (id, path) in mem::take(tmp) {
                let id = match map.resources.get(&id) {
                    Some(id) => {
                        *any_changed = true;
                        *id
                    }
                    None => id,
                };
                tmp.insert(id, path);
            }
        };

        let ty = match &self[*id] {
            // Core wasm functions/modules/instances don't have resource types
            // in them.
            Type::Sub(_) | Type::Module(_) | Type::Instance(_) => return false,

            Type::Component(i) => {
                let mut tmp = i.clone();
                for ty in tmp.imports.values_mut().chain(tmp.exports.values_mut()) {
                    if self.remap_component_entity(ty, map) {
                        any_changed = true;
                    }
                }
                for (id, _) in tmp
                    .imported_resources
                    .iter_mut()
                    .chain(&mut tmp.defined_resources)
                {
                    if let Some(new) = map.resources.get(id) {
                        *id = *new;
                        any_changed = true;
                    }
                }
                map_map(&mut tmp.explicit_resources, &mut any_changed, map);
                Type::Component(tmp)
            }

            Type::ComponentInstance(i) => {
                let mut tmp = i.clone();
                for ty in tmp.exports.values_mut() {
                    if self.remap_component_entity(ty, map) {
                        any_changed = true;
                    }
                }
                for id in tmp.defined_resources.iter_mut() {
                    if let Some(new) = map.resources.get(id) {
                        *id = *new;
                        any_changed = true;
                    }
                }
                map_map(&mut tmp.explicit_resources, &mut any_changed, map);
                Type::ComponentInstance(tmp)
            }

            Type::Resource(id) => {
                let id = match map.resources.get(id).copied() {
                    Some(id) => id,
                    None => return false,
                };
                any_changed = true;
                Type::Resource(id)
            }

            Type::ComponentFunc(i) => {
                let mut tmp = i.clone();
                for ty in tmp
                    .params
                    .iter_mut()
                    .map(|(_, ty)| ty)
                    .chain(tmp.results.iter_mut().map(|(_, ty)| ty))
                {
                    if self.remap_valtype(ty, map) {
                        any_changed = true;
                    }
                }
                Type::ComponentFunc(tmp)
            }
            Type::Defined(i) => {
                let mut tmp = i.clone();
                match &mut tmp {
                    ComponentDefinedType::Primitive(_)
                    | ComponentDefinedType::Flags(_)
                    | ComponentDefinedType::Enum(_) => {}
                    ComponentDefinedType::Record(r) => {
                        for ty in r.fields.values_mut() {
                            if self.remap_valtype(ty, map) {
                                any_changed = true;
                            }
                        }
                    }
                    ComponentDefinedType::Tuple(r) => {
                        for ty in r.types.iter_mut() {
                            if self.remap_valtype(ty, map) {
                                any_changed = true;
                            }
                        }
                    }
                    ComponentDefinedType::Variant(r) => {
                        for ty in r.cases.values_mut() {
                            if let Some(ty) = &mut ty.ty {
                                if self.remap_valtype(ty, map) {
                                    any_changed = true;
                                }
                            }
                        }
                    }
                    ComponentDefinedType::List(ty) | ComponentDefinedType::Option(ty) => {
                        if self.remap_valtype(ty, map) {
                            any_changed = true;
                        }
                    }
                    ComponentDefinedType::Result { ok, err } => {
                        if let Some(ok) = ok {
                            if self.remap_valtype(ok, map) {
                                any_changed = true;
                            }
                        }
                        if let Some(err) = err {
                            if self.remap_valtype(err, map) {
                                any_changed = true;
                            }
                        }
                    }
                    ComponentDefinedType::Own(id) | ComponentDefinedType::Borrow(id) => {
                        if self.remap_type_id(id, map) {
                            any_changed = true;
                        }
                    }
                }
                Type::Defined(tmp)
            }
        };

        let new = if any_changed { self.push_ty(ty) } else { *id };
        let prev = map.types.insert(*id, new);
        assert!(prev.is_none());
        let changed = *id != new;
        *id = new;
        changed
    }

    /// Same as `remap_type_id`, but works with `ComponentEntityType`.
    fn remap_component_entity(
        &mut self,
        ty: &mut ComponentEntityType,
        map: &mut Remapping,
    ) -> bool {
        match ty {
            ComponentEntityType::Module(id)
            | ComponentEntityType::Func(id)
            | ComponentEntityType::Instance(id)
            | ComponentEntityType::Component(id) => self.remap_type_id(id, map),
            ComponentEntityType::Type {
                referenced,
                created,
            } => {
                let changed = self.remap_type_id(referenced, map);
                if *referenced == *created {
                    *created = *referenced;
                    changed
                } else {
                    self.remap_type_id(created, map) || changed
                }
            }
            ComponentEntityType::Value(ty) => self.remap_valtype(ty, map),
        }
    }

    /// Same as `remap_type_id`, but works with `ComponentValType`.
    fn remap_valtype(&mut self, ty: &mut ComponentValType, map: &mut Remapping) -> bool {
        match ty {
            ComponentValType::Primitive(_) => false,
            ComponentValType::Type(id) => self.remap_type_id(id, map),
        }
    }
}

#[derive(Default)]
pub(crate) struct Remapping {
    /// A mapping from old resource ID to new resource ID.
    pub(crate) resources: HashMap<ResourceId, ResourceId>,

    /// A mapping filled in during the remapping process which records how a
    /// type was remapped, if applicable. This avoids remapping multiple
    /// references to the same type and instead only processing it once.
    types: HashMap<TypeId, TypeId>,
}

impl Remap for TypeAlloc {
    fn push_ty(&mut self, ty: Type) -> TypeId {
        <TypeAlloc>::push_ty(self, ty)
    }
}

impl Index<TypeId> for TypeAlloc {
    type Output = Type;

    #[inline]
    fn index(&self, id: TypeId) -> &Type {
        &self.list[id]
    }
}

/// Helper structure used to perform subtyping computations.
///
/// This type is used whenever a subtype needs to be tested in one direction or
/// the other. The methods of this type are the various entry points for
/// subtyping.
///
/// Internally this contains arenas for two lists of types. The `a` arena is
/// intended to be used for lookup of the first argument to all of the methods
/// below, and the `b` arena is used for lookup of the second argument.
///
/// Arenas here are used specifically for component-based subtyping queries. In
/// these situations new types must be created based on substitution mappings,
/// but the types all have temporary lifetimes. Everything in these arenas is
/// thrown away once the subtyping computation has finished.
///
/// Note that this subtyping context also explicitly supports being created
/// from to different lists `a` and `b` originally, for testing subtyping
/// between two different components for example.
pub(crate) struct SubtypeCx<'a> {
    pub(crate) a: SubtypeArena<'a>,
    pub(crate) b: SubtypeArena<'a>,
}

impl<'a> SubtypeCx<'a> {
    pub(crate) fn new(a: &'a TypeList, b: &'a TypeList) -> SubtypeCx<'a> {
        SubtypeCx {
            a: SubtypeArena::new(a),
            b: SubtypeArena::new(b),
        }
    }

    fn swap(&mut self) {
        mem::swap(&mut self.a, &mut self.b);
    }

    /// Executes the closure `f`, resetting the internal arenas to their
    /// original size after the closure finishes.
    ///
    /// This enables `f` to modify the internal arenas while relying on all
    /// changes being discarded after the closure finishes.
    fn mark<T>(&mut self, f: impl FnOnce(&mut Self) -> T) -> T {
        let a_len = self.a.list.len();
        let b_len = self.b.list.len();
        let result = f(self);
        self.a.list.truncate(a_len);
        self.b.list.truncate(b_len);
        result
    }

    /// Tests whether `a` is a subtype of `b`.
    ///
    /// Errors are reported at the `offset` specified.
    pub fn component_entity_type(
        &mut self,
        a: &ComponentEntityType,
        b: &ComponentEntityType,
        offset: usize,
    ) -> Result<()> {
        use ComponentEntityType::*;

        match (a, b) {
            (Module(a), Module(b)) => {
                // For module type subtyping, all exports in the other module
                // type must be present in this module type's exports (i.e. it
                // can export *more* than what this module type needs).
                // However, for imports, the check is reversed (i.e. it is okay
                // to import *less* than what this module type needs).
                self.swap();
                let a_imports = &self.b[*a].unwrap_module().imports;
                let b_imports = &self.a[*b].unwrap_module().imports;
                for (k, a) in a_imports {
                    match b_imports.get(k) {
                        Some(b) => self.entity_type(b, a, offset).with_context(|| {
                            format!("type mismatch in import `{}::{}`", k.0, k.1)
                        })?,
                        None => bail!(offset, "missing expected import `{}::{}`", k.0, k.1),
                    }
                }
                self.swap();
                let a = self.a[*a].unwrap_module();
                let b = self.b[*b].unwrap_module();
                for (k, b) in b.exports.iter() {
                    match a.exports.get(k) {
                        Some(a) => self
                            .entity_type(a, b, offset)
                            .with_context(|| format!("type mismatch in export `{k}`"))?,
                        None => bail!(offset, "missing expected export `{k}`"),
                    }
                }
                Ok(())
            }
            (Module(_), b) => bail!(offset, "expected {}, found module", b.desc()),

            (Func(a), Func(b)) => {
                let a = self.a[*a].unwrap_component_func();
                let b = self.b[*b].unwrap_component_func();

                // Note that this intentionally diverges from the upstream
                // specification in terms of subtyping. This is a full
                // type-equality check which ensures that the structure of `a`
                // exactly matches the structure of `b`. The rationale for this
                // is:
                //
                // * Primarily in Wasmtime subtyping based on function types is
                //   not implemented. This includes both subtyping a host
                //   import and additionally handling subtyping as functions
                //   cross component boundaries. The host import subtyping (or
                //   component export subtyping) is not clear how to handle at
                //   all at this time. The subtyping of functions between
                //   components can more easily be handled by extending the
                //   `fact` compiler, but that hasn't been done yet.
                //
                // * The upstream specification is currently pretty
                //   intentionally vague precisely what subtyping is allowed.
                //   Implementing a strict check here is intended to be a
                //   conservative starting point for the component model which
                //   can be extended in the future if necessary.
                //
                // * The interaction with subtyping on bindings generation, for
                //   example, is a tricky problem that doesn't have a clear
                //   answer at this time.  Effectively this is more rationale
                //   for being conservative in the first pass of the component
                //   model.
                //
                // So, in conclusion, the test here (and other places that
                // reference this comment) is for exact type equality with no
                // differences.
                if a.params.len() != b.params.len() {
                    bail!(
                        offset,
                        "expected {} parameters, found {}",
                        b.params.len(),
                        a.params.len(),
                    );
                }
                if a.results.len() != b.results.len() {
                    bail!(
                        offset,
                        "expected {} results, found {}",
                        b.results.len(),
                        a.results.len(),
                    );
                }
                for ((an, a), (bn, b)) in a.params.iter().zip(b.params.iter()) {
                    if an != bn {
                        bail!(offset, "expected parameter named `{bn}`, found `{an}`");
                    }
                    self.component_val_type(a, b, offset)
                        .with_context(|| format!("type mismatch in function parameter `{an}`"))?;
                }
                for ((an, a), (bn, b)) in a.results.iter().zip(b.results.iter()) {
                    if an != bn {
                        bail!(offset, "mismatched result names");
                    }
                    self.component_val_type(a, b, offset)
                        .with_context(|| "type mismatch with result type")?;
                }
                Ok(())
            }
            (Func(_), b) => bail!(offset, "expected {}, found func", b.desc()),

            (Value(a), Value(b)) => self.component_val_type(a, b, offset),
            (Value(_), b) => bail!(offset, "expected {}, found value", b.desc()),

            (Type { referenced: a, .. }, Type { referenced: b, .. }) => {
                use self::Type::*;
                match (&self.a[*a], &self.b[*b]) {
                    (Defined(a), Defined(b)) => self.component_defined_type(a, b, offset),
                    (Defined(_), Resource(_)) => bail!(offset, "expected resource, found type"),
                    (Resource(a), Resource(b)) => {
                        if a == b {
                            Ok(())
                        } else {
                            bail!(offset, "resource types are not the same")
                        }
                    }
                    (Resource(_), Defined(_)) => bail!(offset, "expected type, found resource"),
                    _ => unreachable!(),
                }
            }
            (Type { .. }, b) => bail!(offset, "expected {}, found type", b.desc()),

            (Instance(a_id), Instance(b_id)) => {
                // For instance type subtyping, all exports in the other
                // instance type must be present in this instance type's
                // exports (i.e. it can export *more* than what this instance
                // type needs).
                let a = self.a[*a_id].unwrap_component_instance();
                let b = self.b[*b_id].unwrap_component_instance();

                let mut exports = Vec::with_capacity(b.exports.len());
                for (k, b) in b.exports.iter() {
                    match a.exports.get(k) {
                        Some(a) => exports.push((*a, *b)),
                        None => bail!(offset, "missing expected export `{k}`"),
                    }
                }
                for (i, (a, b)) in exports.iter().enumerate() {
                    let err = match self.component_entity_type(a, b, offset) {
                        Ok(()) => continue,
                        Err(e) => e,
                    };
                    // On failure attach the name of this export as context to
                    // the error message to leave a breadcrumb trail.
                    let (name, _) = self.b[*b_id]
                        .unwrap_component_instance()
                        .exports
                        .get_index(i)
                        .unwrap();
                    return Err(
                        err.with_context(|| format!("type mismatch in instance export `{name}`"))
                    );
                }
                Ok(())
            }
            (Instance(_), b) => bail!(offset, "expected {}, found instance", b.desc()),

            (Component(a), Component(b)) => {
                // Components are ... tricky. They follow the same basic
                // structure as core wasm modules, but they also have extra
                // logic to handle resource types. Resources are effectively
                // abstract types so this is sort of where an ML module system
                // in the component model becomes a reality.
                //
                // This also leverages the `open_instance_type` method below
                // heavily which internally has its own quite large suite of
                // logic. More-or-less what's happening here is:
                //
                // 1. Pretend that the imports of B are given as values to the
                //    imports of A. If A didn't import anything, for example,
                //    that's great and the subtyping definitely passes there.
                //    This operation produces a mapping of all the resources of
                //    A's imports to resources in B's imports.
                //
                // 2. This mapping is applied to all of A's exports. This means
                //    that all exports of A referring to A's imported resources
                //    now instead refer to B's. Note, though that A's exports
                //    still refer to its own defined resources.
                //
                // 3. The same `open_instance_type` method used during the
                //    first step is used again, but this time on the exports
                //    in the reverse direction. This performs a similar
                //    operation, though, by creating a mapping from B's
                //    defined resources to A's defined resources. The map
                //    itself is discarded as it's not needed.
                //
                // The order that everything passed here is intentional, but
                // also subtle. I personally think of it as
                // `open_instance_type` takes a list of things to satisfy a
                // signature and produces a mapping of resources in the
                // signature to those provided in the list of things. The
                // order of operations then goes:
                //
                // * Someone thinks they have a component of type B, but they
                //   actually have a component of type A (e.g. due to this
                //   subtype check passing).
                // * This person provides the imports of B and that must be
                //   sufficient to satisfy the imports of A. This is the first
                //   `open_instance_type` check.
                // * Now though the resources provided by B are substituted
                //   into A's exports since that's what was provided.
                // * A's exports are then handed back to the original person,
                //   and these exports must satisfy the signature required by B
                //   since that's what they're expecting.
                // * This is the second `open_instance_type` which, to get
                //   resource types to line up, will map from A's defined
                //   resources to B's defined resources.
                //
                // If all that passes then the resources should all line up
                // perfectly. Any misalignment is reported as a subtyping
                // error.
                let b_imports = self.b[*b]
                    .unwrap_component()
                    .imports
                    .iter()
                    .map(|(name, ty)| (name.clone(), ty.clone()))
                    .collect();
                self.swap();
                let mut import_mapping =
                    self.open_instance_type(&b_imports, *a, ExternKind::Import, offset)?;
                self.swap();
                self.mark(|this| {
                    let mut a_exports = this.a[*a]
                        .unwrap_component()
                        .exports
                        .iter()
                        .map(|(name, ty)| (name.clone(), ty.clone()))
                        .collect::<IndexMap<_, _>>();
                    for ty in a_exports.values_mut() {
                        this.a.remap_component_entity(ty, &mut import_mapping);
                    }
                    this.open_instance_type(&a_exports, *b, ExternKind::Export, offset)?;
                    Ok(())
                })
            }
            (Component(_), b) => bail!(offset, "expected {}, found component", b.desc()),
        }
    }

    /// The building block for subtyping checks when components are
    /// instantiated and when components are tested if they're subtypes of each
    /// other.
    ///
    /// This method takes a number of arguments:
    ///
    /// * `a` - this is a list of typed items which can be thought of as
    ///   concrete values to test against `b`.
    /// * `b` - this `TypeId` must point to `Type::Component`.
    /// * `kind` - indicates whether the `imports` or `exports` of `b` are
    ///   being tested against for the values in `a`.
    /// * `offset` - the binary offset at which to report errors if one happens.
    ///
    /// This will attempt to determine if the items in `a` satisfy the
    /// signature required by the `kind` items of `b`. For example component
    /// instantiation will have `a` as the list of arguments provided to
    /// instantiation, `b` is the component being instantiated, and `kind` is
    /// `ExternKind::Import`.
    ///
    /// This function, if successful, will return a mapping of the resources in
    /// `b` to the resources in `a` provided. This mapping is guaranteed to
    /// contain all the resources for `b` (all imported resources for
    /// `ExternKind::Import` or all defined resources for `ExternKind::Export`).
    pub fn open_instance_type(
        &mut self,
        a: &IndexMap<String, ComponentEntityType>,
        b: TypeId,
        kind: ExternKind,
        offset: usize,
    ) -> Result<Remapping> {
        // First, determine the mapping from resources in `b` to those supplied
        // by arguments in `a`.
        //
        // This loop will iterate over all the appropriate resources in `b`
        // and find the corresponding resource in `args`. The exact lists
        // in use here depend on the `kind` provided. This necessarily requires
        // a sequence of string lookups to find the corresponding items in each
        // list.
        //
        // The path to each resource in `resources` is precomputed as a list of
        // indexes. The first index is into `b`'s list of `entities`, and gives
        // the name that `b` assigns to the resource.  Each subsequent index,
        // if present, means that this resource was present through a layer of
        // an instance type, and the index is into the instance type's exports.
        // More information about this can be found on
        // `ComponentState::imported_resources`.
        //
        // This loop will follow the list of indices for each resource and, at
        // the same time, walk through the arguments supplied to instantiating
        // the `component_type`. This means that within `component_type`
        // index-based lookups are performed while in `args` name-based
        // lookups are performed.
        //
        // Note that here it's possible that `args` doesn't actually supply the
        // correct type of import for each item since argument checking has
        // not proceeded yet. These type errors, however, aren't handled by
        // this loop and are deferred below to the main subtyping check. That
        // means that `mapping` won't necessarily have a mapping for all
        // imported resources into `component_type`, but that should be ok.
        let component_type = self.b[b].unwrap_component();
        let entities = match kind {
            ExternKind::Import => &component_type.imports,
            ExternKind::Export => &component_type.exports,
        };
        let resources = match kind {
            ExternKind::Import => &component_type.imported_resources,
            ExternKind::Export => &component_type.defined_resources,
        };
        let mut mapping = Remapping::default();
        'outer: for (resource, path) in resources.iter() {
            // Lookup the first path item in `imports` and the corresponding
            // entry in `args` by name.
            let (name, ty) = entities.get_index(path[0]).unwrap();
            let mut ty = *ty;
            let mut arg = a.get(name);

            // Lookup all the subsequent `path` entries, if any, by index in
            // `ty` and by name in `arg`. Type errors in `arg` are skipped over
            // entirely.
            for i in path.iter().skip(1).copied() {
                let id = match ty {
                    ComponentEntityType::Instance(id) => id,
                    _ => unreachable!(),
                };
                let (name, next_ty) = self.b[id]
                    .unwrap_component_instance()
                    .exports
                    .get_index(i)
                    .unwrap();
                ty = *next_ty;
                arg = match arg {
                    Some(ComponentEntityType::Instance(id)) => {
                        self.a[*id].unwrap_component_instance().exports.get(name)
                    }
                    _ => continue 'outer,
                };
            }

            // Double-check that `ty`, the leaf type of `component_type`, is
            // indeed the expected resource.
            if cfg!(debug_assertions) {
                let id = match ty {
                    ComponentEntityType::Type { created, .. } => match &self.a[created] {
                        Type::Resource(r) => *r,
                        _ => unreachable!(),
                    },
                    _ => unreachable!(),
                };
                assert_eq!(id, *resource);
            }

            // The leaf of `arg` should be a type which is a resource. If not
            // it's skipped and this'll wind up generating an error later on in
            // subtype checking below.
            if let Some(ComponentEntityType::Type { created, .. }) = arg {
                if let Type::Resource(r) = &self.b[*created] {
                    mapping.resources.insert(*resource, *r);
                }
            }
        }

        // Now that a mapping from the resources in `b` to the resources in `a`
        // has been determined it's possible to perform the actual subtype
        // check.
        //
        // This subtype check notably needs to ensure that all resource types
        // line up. To achieve this the `mapping` previously calculated is used
        // to perform a substitution on each component entity type.
        //
        // The first loop here performs a name lookup to create a list of
        // values from `a` to expected items in `b`. Once the list is created
        // the substitution check is performed on each element.
        let mut to_typecheck = Vec::new();
        for (name, expected) in entities.iter() {
            match a.get(name) {
                Some(arg) => to_typecheck.push((arg.clone(), expected.clone())),
                None => bail!(offset, "missing {} named `{name}`", kind.desc()),
            }
        }
        let mut type_map = HashMap::new();
        for (i, (actual, expected)) in to_typecheck.into_iter().enumerate() {
            let result = self.mark(|this| {
                let mut expected = expected;
                this.b.remap_component_entity(&mut expected, &mut mapping);
                mapping.types.clear();
                this.component_entity_type(&actual, &expected, offset)
            });
            let err = match result {
                Ok(()) => {
                    // On a successful type-check record a mapping of
                    // type-to-type in `type_map` for any type imports that were
                    // satisfied. This is then used afterwards when performing
                    // type substitution to remap all component-local types to
                    // those that were provided in the imports.
                    self.register_type_renamings(actual, expected, &mut type_map);
                    continue;
                }
                Err(e) => e,
            };

            // If an error happens then attach the name of the entity to the
            // error message using the `i` iteration counter.
            let component_type = self.b[b].unwrap_component();
            let entities = match kind {
                ExternKind::Import => &component_type.imports,
                ExternKind::Export => &component_type.exports,
            };
            let (name, _) = entities.get_index(i).unwrap();
            return Err(err.with_context(|| format!("type mismatch for {} `{name}`", kind.desc())));
        }
        mapping.types = type_map;
        Ok(mapping)
    }

    pub(crate) fn entity_type(&self, a: &EntityType, b: &EntityType, offset: usize) -> Result<()> {
        macro_rules! limits_match {
            ($a:expr, $b:expr) => {{
                let a = $a;
                let b = $b;
                a.initial >= b.initial
                    && match b.maximum {
                        Some(b_max) => match a.maximum {
                            Some(a_max) => a_max <= b_max,
                            None => false,
                        },
                        None => true,
                    }
            }};
        }

        match (a, b) {
            (EntityType::Func(a), EntityType::Func(b)) => {
                self.func_type(self.a[*a].unwrap_func(), self.b[*b].unwrap_func(), offset)
            }
            (EntityType::Func(_), b) => bail!(offset, "expected {}, found func", b.desc()),
            (EntityType::Table(a), EntityType::Table(b)) => {
                if a.element_type != b.element_type {
                    bail!(
                        offset,
                        "expected table element type {}, found {}",
                        b.element_type,
                        a.element_type,
                    )
                }
                if limits_match!(a, b) {
                    Ok(())
                } else {
                    bail!(offset, "mismatch in table limits")
                }
            }
            (EntityType::Table(_), b) => bail!(offset, "expected {}, found table", b.desc()),
            (EntityType::Memory(a), EntityType::Memory(b)) => {
                if a.shared != b.shared {
                    bail!(offset, "mismatch in the shared flag for memories")
                }
                if a.memory64 != b.memory64 {
                    bail!(offset, "mismatch in index type used for memories")
                }
                if limits_match!(a, b) {
                    Ok(())
                } else {
                    bail!(offset, "mismatch in memory limits")
                }
            }
            (EntityType::Memory(_), b) => bail!(offset, "expected {}, found memory", b.desc()),
            (EntityType::Global(a), EntityType::Global(b)) => {
                if a.mutable != b.mutable {
                    bail!(offset, "global types differ in mutability")
                }
                if a.content_type == b.content_type {
                    Ok(())
                } else {
                    bail!(
                        offset,
                        "expected global type {}, found {}",
                        b.content_type,
                        a.content_type,
                    )
                }
            }
            (EntityType::Global(_), b) => bail!(offset, "expected {}, found global", b.desc()),
            (EntityType::Tag(a), EntityType::Tag(b)) => {
                self.func_type(self.a[*a].unwrap_func(), self.b[*b].unwrap_func(), offset)
            }
            (EntityType::Tag(_), b) => bail!(offset, "expected {}, found tag", b.desc()),
        }
    }

    fn func_type(&self, a: &FuncType, b: &FuncType, offset: usize) -> Result<()> {
        if a == b {
            Ok(())
        } else {
            bail!(
                offset,
                "expected: {}\n\
                 found:    {}",
                b.desc(),
                a.desc(),
            )
        }
    }

    pub(crate) fn component_val_type(
        &self,
        a: &ComponentValType,
        b: &ComponentValType,
        offset: usize,
    ) -> Result<()> {
        match (a, b) {
            (ComponentValType::Primitive(a), ComponentValType::Primitive(b)) => {
                self.primitive_val_type(*a, *b, offset)
            }
            (ComponentValType::Type(a), ComponentValType::Type(b)) => self.component_defined_type(
                self.a[*a].unwrap_defined(),
                self.b[*b].unwrap_defined(),
                offset,
            ),
            (ComponentValType::Primitive(a), ComponentValType::Type(b)) => {
                match self.b[*b].unwrap_defined() {
                    ComponentDefinedType::Primitive(b) => self.primitive_val_type(*a, *b, offset),
                    b => bail!(offset, "expected {}, found {a}", b.desc()),
                }
            }
            (ComponentValType::Type(a), ComponentValType::Primitive(b)) => {
                match self.a[*a].unwrap_defined() {
                    ComponentDefinedType::Primitive(a) => self.primitive_val_type(*a, *b, offset),
                    a => bail!(offset, "expected {b}, found {}", a.desc()),
                }
            }
        }
    }

    fn component_defined_type(
        &self,
        a: &ComponentDefinedType,
        b: &ComponentDefinedType,
        offset: usize,
    ) -> Result<()> {
        use ComponentDefinedType::*;

        // Note that the implementation of subtyping here diverges from the
        // upstream specification intentionally, see the documentation on
        // function subtyping for more information.
        match (a, b) {
            (Primitive(a), Primitive(b)) => self.primitive_val_type(*a, *b, offset),
            (Primitive(a), b) => bail!(offset, "expected {}, found {a}", b.desc()),
            (Record(a), Record(b)) => {
                if a.fields.len() != b.fields.len() {
                    bail!(
                        offset,
                        "expected {} fields, found {}",
                        b.fields.len(),
                        a.fields.len(),
                    );
                }

                for ((aname, a), (bname, b)) in a.fields.iter().zip(b.fields.iter()) {
                    if aname != bname {
                        bail!(offset, "expected field name `{bname}`, found `{aname}`");
                    }
                    self.component_val_type(a, b, offset)
                        .with_context(|| format!("type mismatch in record field `{aname}`"))?;
                }
                Ok(())
            }
            (Record(_), b) => bail!(offset, "expected {}, found record", b.desc()),
            (Variant(a), Variant(b)) => {
                if a.cases.len() != b.cases.len() {
                    bail!(
                        offset,
                        "expected {} cases, found {}",
                        b.cases.len(),
                        a.cases.len(),
                    );
                }
                for ((aname, a), (bname, b)) in a.cases.iter().zip(b.cases.iter()) {
                    if aname != bname {
                        bail!(offset, "expected case named `{bname}`, found `{aname}`");
                    }
                    match (&a.ty, &b.ty) {
                        (Some(a), Some(b)) => self
                            .component_val_type(a, b, offset)
                            .with_context(|| format!("type mismatch in variant case `{aname}`"))?,
                        (None, None) => {}
                        (None, Some(_)) => {
                            bail!(offset, "expected case `{aname}` to have a type, found none")
                        }
                        (Some(_), None) => bail!(offset, "expected case `{aname}` to have no type"),
                    }
                }
                Ok(())
            }
            (Variant(_), b) => bail!(offset, "expected {}, found variant", b.desc()),
            (List(a), List(b)) | (Option(a), Option(b)) => self.component_val_type(a, b, offset),
            (List(_), b) => bail!(offset, "expected {}, found list", b.desc()),
            (Option(_), b) => bail!(offset, "expected {}, found option", b.desc()),
            (Tuple(a), Tuple(b)) => {
                if a.types.len() != b.types.len() {
                    bail!(
                        offset,
                        "expected {} types, found {}",
                        b.types.len(),
                        a.types.len(),
                    );
                }
                for (i, (a, b)) in a.types.iter().zip(b.types.iter()).enumerate() {
                    self.component_val_type(a, b, offset)
                        .with_context(|| format!("type mismatch in tuple field {i}"))?;
                }
                Ok(())
            }
            (Tuple(_), b) => bail!(offset, "expected {}, found tuple", b.desc()),
            (at @ Flags(a), Flags(b)) | (at @ Enum(a), Enum(b)) => {
                let desc = match at {
                    Flags(_) => "flags",
                    _ => "enum",
                };
                if a.len() == b.len() && a.iter().eq(b.iter()) {
                    Ok(())
                } else {
                    bail!(offset, "mismatch in {desc} elements")
                }
            }
            (Flags(_), b) => bail!(offset, "expected {}, found flags", b.desc()),
            (Enum(_), b) => bail!(offset, "expected {}, found enum", b.desc()),
            (Result { ok: ao, err: ae }, Result { ok: bo, err: be }) => {
                match (ao, bo) {
                    (None, None) => {}
                    (Some(a), Some(b)) => self
                        .component_val_type(a, b, offset)
                        .with_context(|| "type mismatch in ok variant")?,
                    (None, Some(_)) => bail!(offset, "expected ok type, but found none"),
                    (Some(_), None) => bail!(offset, "expected ok type to not be present"),
                }
                match (ae, be) {
                    (None, None) => {}
                    (Some(a), Some(b)) => self
                        .component_val_type(a, b, offset)
                        .with_context(|| "type mismatch in err variant")?,
                    (None, Some(_)) => bail!(offset, "expected err type, but found none"),
                    (Some(_), None) => bail!(offset, "expected err type to not be present"),
                }
                Ok(())
            }
            (Result { .. }, b) => bail!(offset, "expected {}, found result", b.desc()),
            (Own(a), Own(b)) | (Borrow(a), Borrow(b)) => {
                let a = self.a[*a].unwrap_resource();
                let b = self.b[*b].unwrap_resource();
                if a == b {
                    Ok(())
                } else {
                    bail!(offset, "resource types are not the same")
                }
            }
            (Own(_), b) => bail!(offset, "expected {}, found own", b.desc()),
            (Borrow(_), b) => bail!(offset, "expected {}, found borrow", b.desc()),
        }
    }

    fn primitive_val_type(
        &self,
        a: PrimitiveValType,
        b: PrimitiveValType,
        offset: usize,
    ) -> Result<()> {
        // Note that this intentionally diverges from the upstream specification
        // at this time and only considers exact equality for subtyping
        // relationships.
        //
        // More information can be found in the subtyping implementation for
        // component functions.
        if a == b {
            Ok(())
        } else {
            bail!(offset, "expected primitive `{b}` found primitive `{a}`")
        }
    }

    fn register_type_renamings(
        &self,
        actual: ComponentEntityType,
        expected: ComponentEntityType,
        type_map: &mut HashMap<TypeId, TypeId>,
    ) {
        match (expected, actual) {
            (
                ComponentEntityType::Type {
                    created: expected, ..
                },
                ComponentEntityType::Type {
                    created: actual, ..
                },
            ) => {
                let prev = type_map.insert(expected, actual);
                assert!(prev.is_none());
            }
            (ComponentEntityType::Instance(expected), ComponentEntityType::Instance(actual)) => {
                let actual = self.a[actual].unwrap_component_instance();
                for (name, expected) in self.b[expected].unwrap_component_instance().exports.iter()
                {
                    let actual = actual.exports[name];
                    self.register_type_renamings(actual, *expected, type_map);
                }
            }
            _ => {}
        }
    }
}

/// A helper typed used purely during subtyping as part of `SubtypeCx`.
///
/// This takes a `types` list as input which is the "base" of the ids that can
/// be indexed through this arena. All future types pushed into this, if any,
/// are stored in `self.list`.
///
/// This is intended to have arena-like behavior where everything pushed onto
/// `self.list` is thrown away after a subtyping computation is performed. All
/// new types pushed into this arena are purely temporary.
pub(crate) struct SubtypeArena<'a> {
    types: &'a TypeList,
    list: Vec<Type>,
}

impl<'a> SubtypeArena<'a> {
    fn new(types: &'a TypeList) -> SubtypeArena<'a> {
        SubtypeArena {
            types,
            list: Vec::new(),
        }
    }
}

impl Index<TypeId> for SubtypeArena<'_> {
    type Output = Type;

    fn index(&self, id: TypeId) -> &Type {
        if id.index < self.types.len() {
            &self.types[id]
        } else {
            &self.list[id.index - self.types.len()]
        }
    }
}

impl Remap for SubtypeArena<'_> {
    fn push_ty(&mut self, ty: Type) -> TypeId {
        let index = self.list.len() + self.types.len();
        let info = ty.info();
        self.list.push(ty);
        TypeId {
            index,
            info,
            unique_id: 0,
        }
    }
}

/// Helper trait for adding contextual information to an error, modeled after
/// `anyhow::Context`.
pub(crate) trait Context {
    fn with_context<S>(self, context: impl FnOnce() -> S) -> Self
    where
        S: Into<String>;
}

impl<T> Context for Result<T> {
    fn with_context<S>(self, context: impl FnOnce() -> S) -> Self
    where
        S: Into<String>,
    {
        match self {
            Ok(val) => Ok(val),
            Err(e) => Err(e.with_context(context)),
        }
    }
}

impl Context for BinaryReaderError {
    fn with_context<S>(mut self, context: impl FnOnce() -> S) -> Self
    where
        S: Into<String>,
    {
        self.add_context(context().into());
        self
    }
}