1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
/* Copyright 2018 Mozilla Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

use crate::limits::{MAX_WASM_FUNCTION_PARAMS, MAX_WASM_FUNCTION_RETURNS};
use crate::{BinaryReader, FromReader, Result, SectionLimited};
use std::fmt::{self, Debug, Write};

/// Represents the types of values in a WebAssembly module.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum ValType {
    /// The value type is i32.
    I32,
    /// The value type is i64.
    I64,
    /// The value type is f32.
    F32,
    /// The value type is f64.
    F64,
    /// The value type is v128.
    V128,
    /// The value type is a reference.
    Ref(RefType),
}

/// Represents storage types introduced in the GC spec for array and struct fields.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum StorageType {
    /// The storage type is i8.
    I8,
    /// The storage type is i16.
    I16,
    /// The storage type is a value type.
    Val(ValType),
}

// The size of `ValType` is performance sensitive.
const _: () = {
    assert!(std::mem::size_of::<ValType>() == 4);
};

impl From<RefType> for ValType {
    fn from(ty: RefType) -> ValType {
        ValType::Ref(ty)
    }
}

impl ValType {
    /// Alias for the wasm `funcref` type.
    pub const FUNCREF: ValType = ValType::Ref(RefType::FUNCREF);

    /// Alias for the wasm `externref` type.
    pub const EXTERNREF: ValType = ValType::Ref(RefType::EXTERNREF);

    /// Returns whether this value type is a "reference type".
    ///
    /// Only reference types are allowed in tables, for example, and with some
    /// instructions. Current reference types include `funcref` and `externref`.
    pub fn is_reference_type(&self) -> bool {
        matches!(self, ValType::Ref(_))
    }

    /// Whether the type is defaultable, i.e. it is not a non-nullable reference
    /// type.
    pub fn is_defaultable(&self) -> bool {
        match *self {
            Self::I32 | Self::I64 | Self::F32 | Self::F64 | Self::V128 => true,
            Self::Ref(rt) => rt.is_nullable(),
        }
    }

    pub(crate) fn is_valtype_byte(byte: u8) -> bool {
        match byte {
            0x7F | 0x7E | 0x7D | 0x7C | 0x7B | 0x70 | 0x6F | 0x6B | 0x6C | 0x6E | 0x65 | 0x69
            | 0x68 | 0x6D | 0x67 | 0x66 | 0x6A => true,
            _ => false,
        }
    }
}

impl<'a> FromReader<'a> for StorageType {
    fn from_reader(reader: &mut BinaryReader<'a>) -> Result<Self> {
        match reader.peek()? {
            0x7A => {
                reader.position += 1;
                Ok(StorageType::I8)
            }
            0x79 => {
                reader.position += 1;
                Ok(StorageType::I16)
            }
            _ => Ok(StorageType::Val(reader.read()?)),
        }
    }
}

impl<'a> FromReader<'a> for ValType {
    fn from_reader(reader: &mut BinaryReader<'a>) -> Result<Self> {
        match reader.peek()? {
            0x7F => {
                reader.position += 1;
                Ok(ValType::I32)
            }
            0x7E => {
                reader.position += 1;
                Ok(ValType::I64)
            }
            0x7D => {
                reader.position += 1;
                Ok(ValType::F32)
            }
            0x7C => {
                reader.position += 1;
                Ok(ValType::F64)
            }
            0x7B => {
                reader.position += 1;
                Ok(ValType::V128)
            }
            0x70 | 0x6F | 0x6B | 0x6C | 0x6E | 0x65 | 0x69 | 0x68 | 0x6D | 0x67 | 0x66 | 0x6A => {
                Ok(ValType::Ref(reader.read()?))
            }
            _ => bail!(reader.original_position(), "invalid value type"),
        }
    }
}

impl fmt::Display for ValType {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let s = match self {
            ValType::I32 => "i32",
            ValType::I64 => "i64",
            ValType::F32 => "f32",
            ValType::F64 => "f64",
            ValType::V128 => "v128",
            ValType::Ref(r) => return fmt::Display::fmt(r, f),
        };
        f.write_str(s)
    }
}

/// A reference type.
///
/// The reference types proposal first introduced `externref` and `funcref`.
///
/// The function references proposal introduced typed function references.
///
/// The GC proposal introduces heap types: any, eq, i31, struct, array, nofunc, noextern, none.
//
// RefType is a bit-packed enum that fits in a `u24` aka `[u8; 3]`.
// Note that its content is opaque (and subject to change), but its API is stable.
// It has the following internal structure:
// ```
// [nullable:u1] [indexed==1:u1] [kind:u2] [index:u20]
// [nullable:u1] [indexed==0:u1] [type:u4] [(unused):u18]
// ```
// , where
// - `nullable` determines nullability of the ref
// - `indexed` determines if the ref is of a dynamically defined type with an index (encoded in a following bit-packing section) or of a known fixed type
// - `kind` determines what kind of indexed type the index is pointing to:
//   ```
//   10 = struct
//   11 = array
//   01 = function
//   ```
// - `index` is the type index
// - `type` is an enumeration of known types:
//   ```
//   1111 = any
//
//   1101 = eq
//   1000 = i31
//   1001 = struct
//   1100 = array
//
//   0101 = func
//   0100 = nofunc
//
//   0011 = extern
//   0010 = noextern
//
//   0000 = none
//   ```
// - `(unused)` is unused sequence of bits
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub struct RefType([u8; 3]);

impl Debug for RefType {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match (self.is_nullable(), self.heap_type()) {
            (true, HeapType::Any) => write!(f, "anyref"),
            (false, HeapType::Any) => write!(f, "(ref any)"),
            (true, HeapType::None) => write!(f, "nullref"),
            (false, HeapType::None) => write!(f, "(ref none)"),
            (true, HeapType::NoExtern) => write!(f, "nullexternref"),
            (false, HeapType::NoExtern) => write!(f, "(ref noextern)"),
            (true, HeapType::NoFunc) => write!(f, "nullfuncref"),
            (false, HeapType::NoFunc) => write!(f, "(ref nofunc)"),
            (true, HeapType::Eq) => write!(f, "eqref"),
            (false, HeapType::Eq) => write!(f, "(ref eq)"),
            (true, HeapType::Struct) => write!(f, "structref"),
            (false, HeapType::Struct) => write!(f, "(ref struct)"),
            (true, HeapType::Array) => write!(f, "arrayref"),
            (false, HeapType::Array) => write!(f, "(ref array)"),
            (true, HeapType::I31) => write!(f, "i31ref"),
            (false, HeapType::I31) => write!(f, "(ref i31)"),
            (true, HeapType::Extern) => write!(f, "externref"),
            (false, HeapType::Extern) => write!(f, "(ref extern)"),
            (true, HeapType::Func) => write!(f, "funcref"),
            (false, HeapType::Func) => write!(f, "(ref func)"),
            (true, HeapType::Indexed(idx)) => write!(f, "(ref null {idx})"),
            (false, HeapType::Indexed(idx)) => write!(f, "(ref {idx})"),
        }
    }
}

// Static assert that we can fit indices up to `MAX_WASM_TYPES` inside `RefType`.
const _: () = {
    const fn can_roundtrip_index(index: u32) -> bool {
        assert!(RefType::can_represent_type_index(index));
        let rt = match RefType::indexed_func(true, index) {
            Some(rt) => rt,
            None => panic!(),
        };
        assert!(rt.is_nullable());
        let actual_index = match rt.type_index() {
            Some(i) => i,
            None => panic!(),
        };
        actual_index == index
    }

    assert!(can_roundtrip_index(crate::limits::MAX_WASM_TYPES as u32));
    assert!(can_roundtrip_index(0b00000000_00001111_00000000_00000000));
    assert!(can_roundtrip_index(0b00000000_00000000_11111111_00000000));
    assert!(can_roundtrip_index(0b00000000_00000000_00000000_11111111));
    assert!(can_roundtrip_index(0));
};

impl RefType {
    const NULLABLE_BIT: u32 = 1 << 23; // bit #23
    const INDEXED_BIT: u32 = 1 << 22; // bit #22

    const TYPE_MASK: u32 = 0b1111 << 18; // 4 bits #21-#18 (if `indexed == 0`)
    const ANY_TYPE: u32 = 0b1111 << 18;
    const EQ_TYPE: u32 = 0b1101 << 18;
    const I31_TYPE: u32 = 0b1000 << 18;
    const STRUCT_TYPE: u32 = 0b1001 << 18;
    const ARRAY_TYPE: u32 = 0b1100 << 18;
    const FUNC_TYPE: u32 = 0b0101 << 18;
    const NOFUNC_TYPE: u32 = 0b0100 << 18;
    const EXTERN_TYPE: u32 = 0b0011 << 18;
    const NOEXTERN_TYPE: u32 = 0b0010 << 18;
    const NONE_TYPE: u32 = 0b0000 << 18;

    const KIND_MASK: u32 = 0b11 << 20; // 2 bits #21-#20 (if `indexed == 1`)
    const STRUCT_KIND: u32 = 0b10 << 20;
    const ARRAY_KIND: u32 = 0b11 << 20;
    const FUNC_KIND: u32 = 0b01 << 20;

    const INDEX_MASK: u32 = (1 << 20) - 1; // 20 bits #19-#0 (if `indexed == 1`)

    /// A nullable untyped function reference aka `(ref null func)` aka
    /// `funcref` aka `anyfunc`.
    pub const FUNCREF: Self = RefType::FUNC.nullable();

    /// A nullable reference to an extern object aka `(ref null extern)` aka
    /// `externref`.
    pub const EXTERNREF: Self = RefType::EXTERN.nullable();

    /// A non-nullable untyped function reference aka `(ref func)`.
    pub const FUNC: Self = RefType::from_u32(Self::FUNC_TYPE);

    /// A non-nullable reference to an extern object aka `(ref extern)`.
    pub const EXTERN: Self = RefType::from_u32(Self::EXTERN_TYPE);

    /// A non-nullable reference to any object aka `(ref any)`.
    pub const ANY: Self = RefType::from_u32(Self::ANY_TYPE);

    /// A non-nullable reference to no object aka `(ref none)`.
    pub const NONE: Self = RefType::from_u32(Self::NONE_TYPE);

    /// A non-nullable reference to a noextern object aka `(ref noextern)`.
    pub const NOEXTERN: Self = RefType::from_u32(Self::NOEXTERN_TYPE);

    /// A non-nullable reference to a nofunc object aka `(ref nofunc)`.
    pub const NOFUNC: Self = RefType::from_u32(Self::NOFUNC_TYPE);

    /// A non-nullable reference to an eq object aka `(ref eq)`.
    pub const EQ: Self = RefType::from_u32(Self::EQ_TYPE);

    /// A non-nullable reference to a struct aka `(ref struct)`.
    pub const STRUCT: Self = RefType::from_u32(Self::STRUCT_TYPE);

    /// A non-nullable reference to an array aka `(ref array)`.
    pub const ARRAY: Self = RefType::from_u32(Self::ARRAY_TYPE);

    /// A non-nullable reference to an i31 object aka `(ref i31)`.
    pub const I31: Self = RefType::from_u32(Self::I31_TYPE);

    const fn can_represent_type_index(index: u32) -> bool {
        index & Self::INDEX_MASK == index
    }

    const fn u24_to_u32(bytes: [u8; 3]) -> u32 {
        let expanded_bytes = [bytes[0], bytes[1], bytes[2], 0];
        u32::from_le_bytes(expanded_bytes)
    }

    const fn u32_to_u24(x: u32) -> [u8; 3] {
        let bytes = x.to_le_bytes();
        debug_assert!(bytes[3] == 0);
        [bytes[0], bytes[1], bytes[2]]
    }

    #[inline]
    const fn as_u32(&self) -> u32 {
        Self::u24_to_u32(self.0)
    }

    #[inline]
    const fn from_u32(x: u32) -> Self {
        debug_assert!(x & (0b11111111 << 24) == 0);

        // if not indexed, type must be any/eq/i31/struct/array/func/extern/nofunc/noextern/none
        debug_assert!(
            x & Self::INDEXED_BIT != 0
                || matches!(
                    x & Self::TYPE_MASK,
                    Self::ANY_TYPE
                        | Self::EQ_TYPE
                        | Self::I31_TYPE
                        | Self::STRUCT_TYPE
                        | Self::ARRAY_TYPE
                        | Self::FUNC_TYPE
                        | Self::NOFUNC_TYPE
                        | Self::EXTERN_TYPE
                        | Self::NOEXTERN_TYPE
                        | Self::NONE_TYPE
                )
        );
        RefType(Self::u32_to_u24(x))
    }

    /// Create a reference to a typed function with the type at the given index.
    ///
    /// Returns `None` when the type index is beyond this crate's implementation
    /// limits and therefore is not representable.
    pub const fn indexed_func(nullable: bool, index: u32) -> Option<Self> {
        Self::indexed(nullable, Self::FUNC_KIND, index)
    }

    /// Create a reference to an array with the type at the given index.
    ///
    /// Returns `None` when the type index is beyond this crate's implementation
    /// limits and therefore is not representable.
    pub const fn indexed_array(nullable: bool, index: u32) -> Option<Self> {
        Self::indexed(nullable, Self::ARRAY_KIND, index)
    }

    /// Create a reference to a struct with the type at the given index.
    ///
    /// Returns `None` when the type index is beyond this crate's implementation
    /// limits and therefore is not representable.
    pub const fn indexed_struct(nullable: bool, index: u32) -> Option<Self> {
        Self::indexed(nullable, Self::STRUCT_KIND, index)
    }

    /// Create a reference to a user defined type at the given index.
    ///
    /// Returns `None` when the type index is beyond this crate's implementation
    /// limits and therefore is not representable, or when the heap type is not
    /// a typed array, struct or function.
    const fn indexed(nullable: bool, kind: u32, index: u32) -> Option<Self> {
        if Self::can_represent_type_index(index) {
            let nullable32 = Self::NULLABLE_BIT * nullable as u32;
            Some(RefType::from_u32(
                nullable32 | Self::INDEXED_BIT | kind | index,
            ))
        } else {
            None
        }
    }

    /// Create a new `RefType`.
    ///
    /// Returns `None` when the heap type's type index (if any) is beyond this
    /// crate's implementation limits and therfore is not representable.
    pub const fn new(nullable: bool, heap_type: HeapType) -> Option<Self> {
        let nullable32 = Self::NULLABLE_BIT * nullable as u32;
        match heap_type {
            HeapType::Indexed(index) => RefType::indexed(nullable, 0, index), // 0 bc we don't know the kind
            HeapType::Func => Some(Self::from_u32(nullable32 | Self::FUNC_TYPE)),
            HeapType::Extern => Some(Self::from_u32(nullable32 | Self::EXTERN_TYPE)),
            HeapType::Any => Some(Self::from_u32(nullable32 | Self::ANY_TYPE)),
            HeapType::None => Some(Self::from_u32(nullable32 | Self::NONE_TYPE)),
            HeapType::NoExtern => Some(Self::from_u32(nullable32 | Self::NOEXTERN_TYPE)),
            HeapType::NoFunc => Some(Self::from_u32(nullable32 | Self::NOFUNC_TYPE)),
            HeapType::Eq => Some(Self::from_u32(nullable32 | Self::EQ_TYPE)),
            HeapType::Struct => Some(Self::from_u32(nullable32 | Self::STRUCT_TYPE)),
            HeapType::Array => Some(Self::from_u32(nullable32 | Self::ARRAY_TYPE)),
            HeapType::I31 => Some(Self::from_u32(nullable32 | Self::I31_TYPE)),
        }
    }

    /// Is this a reference to a typed function?
    pub const fn is_typed_func_ref(&self) -> bool {
        self.is_indexed_type_ref() && self.as_u32() & Self::KIND_MASK == Self::FUNC_KIND
    }

    /// Is this a reference to an indexed type?
    pub const fn is_indexed_type_ref(&self) -> bool {
        self.as_u32() & Self::INDEXED_BIT != 0
    }

    /// If this is a reference to a typed function, get its type index.
    pub const fn type_index(&self) -> Option<u32> {
        if self.is_indexed_type_ref() {
            Some(self.as_u32() & Self::INDEX_MASK)
        } else {
            None
        }
    }

    /// Is this an untyped function reference aka `(ref null func)` aka `funcref` aka `anyfunc`?
    pub const fn is_func_ref(&self) -> bool {
        !self.is_indexed_type_ref() && self.as_u32() & Self::TYPE_MASK == Self::FUNC_TYPE
    }

    /// Is this a `(ref null extern)` aka `externref`?
    pub const fn is_extern_ref(&self) -> bool {
        !self.is_indexed_type_ref() && self.as_u32() & Self::TYPE_MASK == Self::EXTERN_TYPE
    }

    /// Is this ref type nullable?
    pub const fn is_nullable(&self) -> bool {
        self.as_u32() & Self::NULLABLE_BIT != 0
    }

    /// Get the non-nullable version of this ref type.
    pub const fn as_non_null(&self) -> Self {
        Self::from_u32(self.as_u32() & !Self::NULLABLE_BIT)
    }

    /// Get the non-nullable version of this ref type.
    pub const fn nullable(&self) -> Self {
        Self::from_u32(self.as_u32() | Self::NULLABLE_BIT)
    }

    /// Get the heap type that this is a reference to.
    pub fn heap_type(&self) -> HeapType {
        let s = self.as_u32();
        if self.is_indexed_type_ref() {
            HeapType::Indexed(self.type_index().unwrap())
        } else {
            match s & Self::TYPE_MASK {
                Self::FUNC_TYPE => HeapType::Func,
                Self::EXTERN_TYPE => HeapType::Extern,
                Self::ANY_TYPE => HeapType::Any,
                Self::NONE_TYPE => HeapType::None,
                Self::NOEXTERN_TYPE => HeapType::NoExtern,
                Self::NOFUNC_TYPE => HeapType::NoFunc,
                Self::EQ_TYPE => HeapType::Eq,
                Self::STRUCT_TYPE => HeapType::Struct,
                Self::ARRAY_TYPE => HeapType::Array,
                Self::I31_TYPE => HeapType::I31,
                _ => unreachable!(),
            }
        }
    }

    // Note that this is similar to `Display for RefType` except that it has
    // the indexes stubbed out.
    pub(crate) fn wat(&self) -> &'static str {
        match (self.is_nullable(), self.heap_type()) {
            (true, HeapType::Func) => "funcref",
            (true, HeapType::Extern) => "externref",
            (true, HeapType::Indexed(_)) => "(ref null $type)",
            (true, HeapType::Any) => "anyref",
            (true, HeapType::None) => "nullref",
            (true, HeapType::NoExtern) => "nullexternref",
            (true, HeapType::NoFunc) => "nullfuncref",
            (true, HeapType::Eq) => "eqref",
            (true, HeapType::Struct) => "structref",
            (true, HeapType::Array) => "arrayref",
            (true, HeapType::I31) => "i31ref",
            (false, HeapType::Func) => "(ref func)",
            (false, HeapType::Extern) => "(ref extern)",
            (false, HeapType::Indexed(_)) => "(ref $type)",
            (false, HeapType::Any) => "(ref any)",
            (false, HeapType::None) => "(ref none)",
            (false, HeapType::NoExtern) => "(ref noextern)",
            (false, HeapType::NoFunc) => "(ref nofunc)",
            (false, HeapType::Eq) => "(ref eq)",
            (false, HeapType::Struct) => "(ref struct)",
            (false, HeapType::Array) => "(ref array)",
            (false, HeapType::I31) => "(ref i31)",
        }
    }
}

impl<'a> FromReader<'a> for RefType {
    fn from_reader(reader: &mut BinaryReader<'a>) -> Result<Self> {
        match reader.read()? {
            0x70 => Ok(RefType::FUNC.nullable()),
            0x6F => Ok(RefType::EXTERN.nullable()),
            0x6E => Ok(RefType::ANY.nullable()),
            0x65 => Ok(RefType::NONE.nullable()),
            0x69 => Ok(RefType::NOEXTERN.nullable()),
            0x68 => Ok(RefType::NOFUNC.nullable()),
            0x6D => Ok(RefType::EQ.nullable()),
            0x67 => Ok(RefType::STRUCT.nullable()),
            0x66 => Ok(RefType::ARRAY.nullable()),
            0x6A => Ok(RefType::I31.nullable()),
            byte @ (0x6B | 0x6C) => {
                let nullable = byte == 0x6C;
                let pos = reader.original_position();
                RefType::new(nullable, reader.read()?)
                    .ok_or_else(|| crate::BinaryReaderError::new("type index too large", pos))
            }
            _ => bail!(reader.original_position(), "malformed reference type"),
        }
    }
}

impl fmt::Display for RefType {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        // Note that this is similar to `RefType::wat` except that it has the
        // indexes filled out.
        let s = match (self.is_nullable(), self.heap_type()) {
            (true, HeapType::Func) => "funcref",
            (true, HeapType::Extern) => "externref",
            (true, HeapType::Indexed(i)) => return write!(f, "(ref null {i})"),
            (true, HeapType::Any) => "anyref",
            (true, HeapType::None) => "nullref",
            (true, HeapType::NoExtern) => "nullexternref",
            (true, HeapType::NoFunc) => "nullfuncref",
            (true, HeapType::Eq) => "eqref",
            (true, HeapType::Struct) => "structref",
            (true, HeapType::Array) => "arrayref",
            (true, HeapType::I31) => "i31ref",
            (false, HeapType::Func) => "(ref func)",
            (false, HeapType::Extern) => "(ref extern)",
            (false, HeapType::Indexed(i)) => return write!(f, "(ref {i})"),
            (false, HeapType::Any) => "(ref any)",
            (false, HeapType::None) => "(ref none)",
            (false, HeapType::NoExtern) => "(ref noextern)",
            (false, HeapType::NoFunc) => "(ref nofunc)",
            (false, HeapType::Eq) => "(ref eq)",
            (false, HeapType::Struct) => "(ref struct)",
            (false, HeapType::Array) => "(ref array)",
            (false, HeapType::I31) => "(ref i31)",
        };
        f.write_str(s)
    }
}

/// A heap type from function references. When the proposal is disabled, Index
/// is an invalid type.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum HeapType {
    /// User defined type at the given index.
    Indexed(u32),
    /// Untyped (any) function.
    Func,
    /// External heap type.
    Extern,
    /// The `any` heap type. The common supertype (a.k.a. top) of all internal types.
    Any,
    /// The `none` heap type. The common subtype (a.k.a. bottom) of all internal types.
    None,
    /// The `noextern` heap type. The common subtype (a.k.a. bottom) of all external types.
    NoExtern,
    /// The `nofunc` heap type. The common subtype (a.k.a. bottom) of all function types.
    NoFunc,
    /// The `eq` heap type. The common supertype of all referenceable types on which comparison
    /// (ref.eq) is allowed.
    Eq,
    /// The `struct` heap type. The common supertype of all struct types.
    Struct,
    /// The `array` heap type. The common supertype of all array types.
    Array,
    /// The i31 heap type.
    I31,
}

impl<'a> FromReader<'a> for HeapType {
    fn from_reader(reader: &mut BinaryReader<'a>) -> Result<Self> {
        match reader.peek()? {
            0x70 => {
                reader.position += 1;
                Ok(HeapType::Func)
            }
            0x6F => {
                reader.position += 1;
                Ok(HeapType::Extern)
            }
            0x6E => {
                reader.position += 1;
                Ok(HeapType::Any)
            }
            0x65 => {
                reader.position += 1;
                Ok(HeapType::None)
            }
            0x69 => {
                reader.position += 1;
                Ok(HeapType::NoExtern)
            }
            0x68 => {
                reader.position += 1;
                Ok(HeapType::NoFunc)
            }
            0x6D => {
                reader.position += 1;
                Ok(HeapType::Eq)
            }
            0x67 => {
                reader.position += 1;
                Ok(HeapType::Struct)
            }
            0x66 => {
                reader.position += 1;
                Ok(HeapType::Array)
            }
            0x6A => {
                reader.position += 1;
                Ok(HeapType::I31)
            }
            _ => {
                let idx = match u32::try_from(reader.read_var_s33()?) {
                    Ok(idx) => idx,
                    Err(_) => {
                        bail!(reader.original_position(), "invalid indexed ref heap type");
                    }
                };
                Ok(HeapType::Indexed(idx))
            }
        }
    }
}

/// Represents a type in a WebAssembly module.
#[derive(Debug, Clone)]
pub enum Type {
    /// The type is for a function.
    Func(FuncType),
    /// The type is for an array.
    Array(ArrayType),
    // Struct(StructType),
}

/// Represents a type of a function in a WebAssembly module.
#[derive(Clone, Eq, PartialEq, Hash)]
pub struct FuncType {
    /// The combined parameters and result types.
    params_results: Box<[ValType]>,
    /// The number of parameter types.
    len_params: usize,
}

/// Represents a type of an array in a WebAssembly module.
#[derive(Debug, Clone, Eq, PartialEq, Hash)]
pub struct ArrayType {
    /// Array element type.
    pub element_type: StorageType,
    /// Are elements mutable.
    pub mutable: bool,
}

impl Debug for FuncType {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("FuncType")
            .field("params", &self.params())
            .field("returns", &self.results())
            .finish()
    }
}

impl FuncType {
    /// Creates a new [`FuncType`] from the given `params` and `results`.
    pub fn new<P, R>(params: P, results: R) -> Self
    where
        P: IntoIterator<Item = ValType>,
        R: IntoIterator<Item = ValType>,
    {
        let mut buffer = params.into_iter().collect::<Vec<_>>();
        let len_params = buffer.len();
        buffer.extend(results);
        Self {
            params_results: buffer.into(),
            len_params,
        }
    }

    /// Creates a new [`FuncType`] fom its raw parts.
    ///
    /// # Panics
    ///
    /// If `len_params` is greater than the length of `params_results` combined.
    pub(crate) fn from_raw_parts(params_results: Box<[ValType]>, len_params: usize) -> Self {
        assert!(len_params <= params_results.len());
        Self {
            params_results,
            len_params,
        }
    }

    /// Returns a shared slice to the parameter types of the [`FuncType`].
    #[inline]
    pub fn params(&self) -> &[ValType] {
        &self.params_results[..self.len_params]
    }

    /// Returns a shared slice to the result types of the [`FuncType`].
    #[inline]
    pub fn results(&self) -> &[ValType] {
        &self.params_results[self.len_params..]
    }

    pub(crate) fn desc(&self) -> String {
        let mut s = String::new();
        s.push_str("[");
        for (i, param) in self.params().iter().enumerate() {
            if i > 0 {
                s.push_str(" ");
            }
            write!(s, "{param}").unwrap();
        }
        s.push_str("] -> [");
        for (i, result) in self.results().iter().enumerate() {
            if i > 0 {
                s.push_str(" ");
            }
            write!(s, "{result}").unwrap();
        }
        s.push_str("]");
        s
    }
}

/// Represents a table's type.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct TableType {
    /// The table's element type.
    pub element_type: RefType,
    /// Initial size of this table, in elements.
    pub initial: u32,
    /// Optional maximum size of the table, in elements.
    pub maximum: Option<u32>,
}

/// Represents a memory's type.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct MemoryType {
    /// Whether or not this is a 64-bit memory, using i64 as an index. If this
    /// is false it's a 32-bit memory using i32 as an index.
    ///
    /// This is part of the memory64 proposal in WebAssembly.
    pub memory64: bool,

    /// Whether or not this is a "shared" memory, indicating that it should be
    /// send-able across threads and the `maximum` field is always present for
    /// valid types.
    ///
    /// This is part of the threads proposal in WebAssembly.
    pub shared: bool,

    /// Initial size of this memory, in wasm pages.
    ///
    /// For 32-bit memories (when `memory64` is `false`) this is guaranteed to
    /// be at most `u32::MAX` for valid types.
    pub initial: u64,

    /// Optional maximum size of this memory, in wasm pages.
    ///
    /// For 32-bit memories (when `memory64` is `false`) this is guaranteed to
    /// be at most `u32::MAX` for valid types. This field is always present for
    /// valid wasm memories when `shared` is `true`.
    pub maximum: Option<u64>,
}

impl MemoryType {
    /// Gets the index type for the memory.
    pub fn index_type(&self) -> ValType {
        if self.memory64 {
            ValType::I64
        } else {
            ValType::I32
        }
    }
}

/// Represents a global's type.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct GlobalType {
    /// The global's type.
    pub content_type: ValType,
    /// Whether or not the global is mutable.
    pub mutable: bool,
}

/// Represents a tag kind.
#[derive(Clone, Copy, Debug)]
pub enum TagKind {
    /// The tag is an exception type.
    Exception,
}

/// A tag's type.
#[derive(Clone, Copy, Debug)]
pub struct TagType {
    /// The kind of tag
    pub kind: TagKind,
    /// The function type this tag uses.
    pub func_type_idx: u32,
}

/// A reader for the type section of a WebAssembly module.
pub type TypeSectionReader<'a> = SectionLimited<'a, Type>;

impl<'a> FromReader<'a> for Type {
    fn from_reader(reader: &mut BinaryReader<'a>) -> Result<Self> {
        Ok(match reader.read_u8()? {
            0x60 => Type::Func(reader.read()?),
            0x5e => Type::Array(reader.read()?),
            x => return reader.invalid_leading_byte(x, "type"),
        })
    }
}

impl<'a> FromReader<'a> for FuncType {
    fn from_reader(reader: &mut BinaryReader<'a>) -> Result<Self> {
        let mut params_results = reader
            .read_iter(MAX_WASM_FUNCTION_PARAMS, "function params")?
            .collect::<Result<Vec<_>>>()?;
        let len_params = params_results.len();
        let results = reader.read_iter(MAX_WASM_FUNCTION_RETURNS, "function returns")?;
        params_results.reserve(results.size_hint().0);
        for result in results {
            params_results.push(result?);
        }
        Ok(FuncType::from_raw_parts(params_results.into(), len_params))
    }
}

impl<'a> FromReader<'a> for ArrayType {
    fn from_reader(reader: &mut BinaryReader<'a>) -> Result<Self> {
        let element_type = reader.read()?;
        let mutable = reader.read_u8()?;
        Ok(ArrayType {
            element_type,
            mutable: match mutable {
                0 => false,
                1 => true,
                _ => bail!(
                    reader.original_position(),
                    "invalid mutability byte for array type"
                ),
            },
        })
    }
}