1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
#[cfg(feature = "js")]
use crate::js::externals::memory as memory_impl;
#[cfg(feature = "jsc")]
use crate::jsc::externals::memory as memory_impl;
#[cfg(feature = "sys")]
use crate::sys::externals::memory as memory_impl;

use super::memory_view::MemoryView;
use crate::exports::{ExportError, Exportable};
use crate::store::{AsStoreMut, AsStoreRef};
use crate::vm::{VMExtern, VMExternMemory, VMMemory};
use crate::Extern;
use crate::MemoryAccessError;
use crate::MemoryType;
use std::mem::MaybeUninit;
use wasmer_types::{MemoryError, Pages};

/// A WebAssembly `memory` instance.
///
/// A memory instance is the runtime representation of a linear memory.
/// It consists of a vector of bytes and an optional maximum size.
///
/// The length of the vector always is a multiple of the WebAssembly
/// page size, which is defined to be the constant 65536 – abbreviated 64Ki.
/// Like in a memory type, the maximum size in a memory instance is
/// given in units of this page size.
///
/// A memory created by the host or in WebAssembly code will be accessible and
/// mutable from both host and WebAssembly.
///
/// Spec: <https://webassembly.github.io/spec/core/exec/runtime.html#memory-instances>
#[derive(Debug, Clone, PartialEq)]
pub struct Memory(pub(crate) memory_impl::Memory);

impl Memory {
    /// Creates a new host `Memory` from the provided [`MemoryType`].
    ///
    /// This function will construct the `Memory` using the store
    /// [`BaseTunables`][crate::sys::BaseTunables].
    ///
    /// # Example
    ///
    /// ```
    /// # use wasmer::{Memory, MemoryType, Pages, Store, Type, Value};
    /// # let mut store = Store::default();
    /// #
    /// let m = Memory::new(&mut store, MemoryType::new(1, None, false)).unwrap();
    /// ```
    pub fn new(store: &mut impl AsStoreMut, ty: MemoryType) -> Result<Self, MemoryError> {
        Ok(Self(memory_impl::Memory::new(store, ty)?))
    }

    /// Create a memory object from an existing memory and attaches it to the store
    pub fn new_from_existing(new_store: &mut impl AsStoreMut, memory: VMMemory) -> Self {
        Self(memory_impl::Memory::new_from_existing(new_store, memory))
    }

    /// Returns the [`MemoryType`] of the `Memory`.
    ///
    /// # Example
    ///
    /// ```
    /// # use wasmer::{Memory, MemoryType, Pages, Store, Type, Value};
    /// # let mut store = Store::default();
    /// #
    /// let mt = MemoryType::new(1, None, false);
    /// let m = Memory::new(&mut store, mt).unwrap();
    ///
    /// assert_eq!(m.ty(&mut store), mt);
    /// ```
    pub fn ty(&self, store: &impl AsStoreRef) -> MemoryType {
        self.0.ty(store)
    }

    /// Creates a view into the memory that then allows for
    /// read and write
    pub fn view<'a>(&self, store: &'a (impl AsStoreRef + ?Sized)) -> MemoryView<'a> {
        MemoryView::new(self, store)
    }

    /// Grow memory by the specified amount of WebAssembly [`Pages`] and return
    /// the previous memory size.
    ///
    /// # Example
    ///
    /// ```
    /// # use wasmer::{Memory, MemoryType, Pages, Store, Type, Value, WASM_MAX_PAGES};
    /// # let mut store = Store::default();
    /// #
    /// let m = Memory::new(&mut store, MemoryType::new(1, Some(3), false)).unwrap();
    /// let p = m.grow(&mut store, 2).unwrap();
    ///
    /// assert_eq!(p, Pages(1));
    /// assert_eq!(m.view(&mut store).size(), Pages(3));
    /// ```
    ///
    /// # Errors
    ///
    /// Returns an error if memory can't be grown by the specified amount
    /// of pages.
    ///
    /// ```should_panic
    /// # use wasmer::{Memory, MemoryType, Pages, Store, Type, Value, WASM_MAX_PAGES};
    /// # use wasmer::FunctionEnv;
    /// # let mut store = Store::default();
    /// # let env = FunctionEnv::new(&mut store, ());
    /// #
    /// let m = Memory::new(&mut store, MemoryType::new(1, Some(1), false)).unwrap();
    ///
    /// // This results in an error: `MemoryError::CouldNotGrow`.
    /// let s = m.grow(&mut store, 1).unwrap();
    /// ```
    pub fn grow<IntoPages>(
        &self,
        store: &mut impl AsStoreMut,
        delta: IntoPages,
    ) -> Result<Pages, MemoryError>
    where
        IntoPages: Into<Pages>,
    {
        self.0.grow(store, delta)
    }

    /// Attempts to duplicate this memory (if its clonable) in a new store
    /// (copied memory)
    pub fn copy_to_store(
        &self,
        store: &impl AsStoreRef,
        new_store: &mut impl AsStoreMut,
    ) -> Result<Self, MemoryError> {
        if !self.ty(store).shared {
            // We should only be able to duplicate in a new store if the memory is shared
            return Err(MemoryError::InvalidMemory {
                reason: "memory is not a shared memory type".to_string(),
            });
        }
        self.0
            .try_copy(&store)
            .map(|new_memory| Self::new_from_existing(new_store, new_memory.into()))
    }

    pub(crate) fn from_vm_extern(store: &mut impl AsStoreMut, vm_extern: VMExternMemory) -> Self {
        Self(memory_impl::Memory::from_vm_extern(store, vm_extern))
    }

    /// Checks whether this `Memory` can be used with the given context.
    pub fn is_from_store(&self, store: &impl AsStoreRef) -> bool {
        self.0.is_from_store(store)
    }

    /// Attempts to clone this memory (if its clonable)
    pub fn try_clone(&self, store: &impl AsStoreRef) -> Result<VMMemory, MemoryError> {
        self.0.try_clone(store)
    }

    /// Attempts to clone this memory (if its clonable) in a new store
    /// (cloned memory will be shared between those that clone it)
    pub fn share_in_store(
        &self,
        store: &impl AsStoreRef,
        new_store: &mut impl AsStoreMut,
    ) -> Result<Self, MemoryError> {
        if !self.ty(store).shared {
            // We should only be able to duplicate in a new store if the memory is shared
            return Err(MemoryError::InvalidMemory {
                reason: "memory is not a shared memory type".to_string(),
            });
        }
        self.0
            .try_clone(&store)
            .map(|new_memory| Self::new_from_existing(new_store, new_memory))
    }

    /// To `VMExtern`.
    pub(crate) fn to_vm_extern(&self) -> VMExtern {
        self.0.to_vm_extern()
    }
}

impl std::cmp::Eq for Memory {}

impl<'a> Exportable<'a> for Memory {
    fn get_self_from_extern(_extern: &'a Extern) -> Result<&'a Self, ExportError> {
        match _extern {
            Extern::Memory(memory) => Ok(memory),
            _ => Err(ExportError::IncompatibleType),
        }
    }
}

/// Underlying buffer for a memory.
#[derive(Debug, Copy, Clone)]
pub(crate) struct MemoryBuffer<'a>(pub(crate) memory_impl::MemoryBuffer<'a>);

impl<'a> MemoryBuffer<'a> {
    #[allow(unused)]
    pub(crate) fn read(&self, offset: u64, buf: &mut [u8]) -> Result<(), MemoryAccessError> {
        self.0.read(offset, buf)
    }

    #[allow(unused)]
    pub(crate) fn read_uninit<'b>(
        &self,
        offset: u64,
        buf: &'b mut [MaybeUninit<u8>],
    ) -> Result<&'b mut [u8], MemoryAccessError> {
        self.0.read_uninit(offset, buf)
    }

    #[allow(unused)]
    pub(crate) fn write(&self, offset: u64, data: &[u8]) -> Result<(), MemoryAccessError> {
        self.0.write(offset, data)
    }
}