1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
// This file contains code from external sources.
// Attributions: https://github.com/wasmerio/wasmer/blob/master/ATTRIBUTIONS.md

//! WebAssembly trap handling, which is built on top of the lower-level
//! signalhandling mechanisms.

use crate::vmcontext::{VMFunctionBody, VMFunctionEnvironment, VMTrampoline};
use crate::Trap;
use backtrace::Backtrace;
use core::ptr::{read, read_unaligned};
use corosensei::stack::DefaultStack;
use corosensei::trap::{CoroutineTrapHandler, TrapHandlerRegs};
use corosensei::{CoroutineResult, ScopedCoroutine, Yielder};
use scopeguard::defer;
use std::any::Any;
use std::cell::Cell;
use std::error::Error;
use std::io;
use std::mem;
#[cfg(unix)]
use std::mem::MaybeUninit;
use std::ptr::{self, NonNull};
use std::sync::atomic::{compiler_fence, AtomicPtr, Ordering};
use std::sync::{Mutex, Once};
use wasmer_types::TrapCode;

// TrapInformation can be stored in the "Undefined Instruction" itself.
// On x86_64, 0xC? select a "Register" for the Mod R/M part of "ud1" (so with no other bytes after)
// On Arm64, the udf alows for a 16bits values, so we'll use the same 0xC? to store the trapinfo
static MAGIC: u8 = 0xc0;

cfg_if::cfg_if! {
    if #[cfg(unix)] {
        /// Function which may handle custom signals while processing traps.
        pub type TrapHandlerFn = dyn Fn(libc::c_int, *const libc::siginfo_t, *const libc::c_void) -> bool;
    } else if #[cfg(target_os = "windows")] {
        /// Function which may handle custom signals while processing traps.
        pub type TrapHandlerFn = dyn Fn(winapi::um::winnt::PEXCEPTION_POINTERS) -> bool;
    }
}

// Process an IllegalOpcode to see if it has a TrapCode payload
unsafe fn process_illegal_op(addr: usize) -> Option<TrapCode> {
    let mut val: Option<u8> = None;
    if cfg!(target_arch = "x86_64") {
        val = if read(addr as *mut u8) & 0xf0 == 0x40
            && read((addr + 1) as *mut u8) == 0x0f
            && read((addr + 2) as *mut u8) == 0xb9
        {
            Some(read((addr + 3) as *mut u8))
        } else if read(addr as *mut u8) == 0x0f && read((addr + 1) as *mut u8) == 0xb9 {
            Some(read((addr + 2) as *mut u8))
        } else {
            None
        }
    }
    if cfg!(target_arch = "aarch64") {
        val = if read_unaligned(addr as *mut u32) & 0xffff0000 == 0 {
            Some(read(addr as *mut u8))
        } else {
            None
        }
    }
    match val.and_then(|val| {
        if val & MAGIC == MAGIC {
            Some(val & 0xf)
        } else {
            None
        }
    }) {
        None => None,
        Some(val) => match val {
            0 => Some(TrapCode::StackOverflow),
            1 => Some(TrapCode::HeapAccessOutOfBounds),
            2 => Some(TrapCode::HeapMisaligned),
            3 => Some(TrapCode::TableAccessOutOfBounds),
            4 => Some(TrapCode::OutOfBounds),
            5 => Some(TrapCode::IndirectCallToNull),
            6 => Some(TrapCode::BadSignature),
            7 => Some(TrapCode::IntegerOverflow),
            8 => Some(TrapCode::IntegerDivisionByZero),
            9 => Some(TrapCode::BadConversionToInteger),
            10 => Some(TrapCode::UnreachableCodeReached),
            11 => Some(TrapCode::UnalignedAtomic),
            _ => None,
        },
    }
}

/// A package of functionality needed by `catch_traps` to figure out what to do
/// when handling a trap.
///
/// Note that this is an `unsafe` trait at least because it's being run in the
/// context of a synchronous signal handler, so it needs to be careful to not
/// access too much state in answering these queries.
pub unsafe trait TrapHandler {
    /// Uses `call` to call a custom signal handler, if one is specified.
    ///
    /// Returns `true` if `call` returns true, otherwise returns `false`.
    fn custom_trap_handler(&self, call: &dyn Fn(&TrapHandlerFn) -> bool) -> bool;
}

cfg_if::cfg_if! {
    if #[cfg(unix)] {
        static mut PREV_SIGSEGV: MaybeUninit<libc::sigaction> = MaybeUninit::uninit();
        static mut PREV_SIGBUS: MaybeUninit<libc::sigaction> = MaybeUninit::uninit();
        static mut PREV_SIGILL: MaybeUninit<libc::sigaction> = MaybeUninit::uninit();
        static mut PREV_SIGFPE: MaybeUninit<libc::sigaction> = MaybeUninit::uninit();

        unsafe fn platform_init() {
            let register = |slot: &mut MaybeUninit<libc::sigaction>, signal: i32| {
                let mut handler: libc::sigaction = mem::zeroed();
                // The flags here are relatively careful, and they are...
                //
                // SA_SIGINFO gives us access to information like the program
                // counter from where the fault happened.
                //
                // SA_ONSTACK allows us to handle signals on an alternate stack,
                // so that the handler can run in response to running out of
                // stack space on the main stack. Rust installs an alternate
                // stack with sigaltstack, so we rely on that.
                //
                // SA_NODEFER allows us to reenter the signal handler if we
                // crash while handling the signal, and fall through to the
                // Breakpad handler by testing handlingSegFault.
                handler.sa_flags = libc::SA_SIGINFO | libc::SA_NODEFER | libc::SA_ONSTACK;
                handler.sa_sigaction = trap_handler as usize;
                libc::sigemptyset(&mut handler.sa_mask);
                if libc::sigaction(signal, &handler, slot.as_mut_ptr()) != 0 {
                    panic!(
                        "unable to install signal handler: {}",
                        io::Error::last_os_error(),
                    );
                }
            };

            // Allow handling OOB with signals on all architectures
            register(&mut PREV_SIGSEGV, libc::SIGSEGV);

            // Handle `unreachable` instructions which execute `ud2` right now
            register(&mut PREV_SIGILL, libc::SIGILL);

            // x86 uses SIGFPE to report division by zero
            if cfg!(target_arch = "x86") || cfg!(target_arch = "x86_64") {
                register(&mut PREV_SIGFPE, libc::SIGFPE);
            }

            // On ARM, handle Unaligned Accesses.
            // On Darwin, guard page accesses are raised as SIGBUS.
            if cfg!(target_arch = "arm") || cfg!(target_vendor = "apple") {
                register(&mut PREV_SIGBUS, libc::SIGBUS);
            }

            // This is necessary to support debugging under LLDB on Darwin.
            // For more details see https://github.com/mono/mono/commit/8e75f5a28e6537e56ad70bf870b86e22539c2fb7
            #[cfg(target_vendor = "apple")]
            {
                use mach::exception_types::*;
                use mach::kern_return::*;
                use mach::port::*;
                use mach::thread_status::*;
                use mach::traps::*;
                use mach::mach_types::*;

                extern "C" {
                    fn task_set_exception_ports(
                        task: task_t,
                        exception_mask: exception_mask_t,
                        new_port: mach_port_t,
                        behavior: exception_behavior_t,
                        new_flavor: thread_state_flavor_t,
                    ) -> kern_return_t;
                }

                #[allow(non_snake_case)]
                #[cfg(target_arch = "x86_64")]
                let MACHINE_THREAD_STATE = x86_THREAD_STATE64;
                #[allow(non_snake_case)]
                #[cfg(target_arch = "aarch64")]
                let MACHINE_THREAD_STATE = 6;

                task_set_exception_ports(
                    mach_task_self(),
                    EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
                    MACH_PORT_NULL,
                    EXCEPTION_STATE_IDENTITY as exception_behavior_t,
                    MACHINE_THREAD_STATE,
                );
            }
        }

        unsafe extern "C" fn trap_handler(
            signum: libc::c_int,
            siginfo: *mut libc::siginfo_t,
            context: *mut libc::c_void,
        ) {
            let previous = match signum {
                libc::SIGSEGV => &PREV_SIGSEGV,
                libc::SIGBUS => &PREV_SIGBUS,
                libc::SIGFPE => &PREV_SIGFPE,
                libc::SIGILL => &PREV_SIGILL,
                _ => panic!("unknown signal: {}", signum),
            };
            // We try to get the fault address associated to this signal
            let maybe_fault_address = match signum {
                libc::SIGSEGV | libc::SIGBUS => {
                    Some((*siginfo).si_addr() as usize)
                }
                _ => None,
            };
            let trap_code = match signum {
                // check if it was cased by a UD and if the Trap info is a payload to it
                libc::SIGILL => {
                    let addr = (*siginfo).si_addr() as usize;
                    process_illegal_op(addr)
                }
                _ => None,
            };
            let ucontext = &mut *(context as *mut libc::ucontext_t);
            let (pc, sp) = get_pc_sp(ucontext);
            let handled = TrapHandlerContext::handle_trap(
                pc,
                sp,
                maybe_fault_address,
                trap_code,
                |regs| update_context(ucontext, regs),
                |handler| handler(signum, siginfo, context),
            );

            if handled {
                return;
            }

            // This signal is not for any compiled wasm code we expect, so we
            // need to forward the signal to the next handler. If there is no
            // next handler (SIG_IGN or SIG_DFL), then it's time to crash. To do
            // this, we set the signal back to its original disposition and
            // return. This will cause the faulting op to be re-executed which
            // will crash in the normal way. If there is a next handler, call
            // it. It will either crash synchronously, fix up the instruction
            // so that execution can continue and return, or trigger a crash by
            // returning the signal to it's original disposition and returning.
            let previous = &*previous.as_ptr();
            if previous.sa_flags & libc::SA_SIGINFO != 0 {
                mem::transmute::<
                    usize,
                    extern "C" fn(libc::c_int, *mut libc::siginfo_t, *mut libc::c_void),
                >(previous.sa_sigaction)(signum, siginfo, context)
            } else if previous.sa_sigaction == libc::SIG_DFL
            {
                libc::sigaction(signum, previous, ptr::null_mut());
            } else if previous.sa_sigaction != libc::SIG_IGN {
                mem::transmute::<usize, extern "C" fn(libc::c_int)>(
                    previous.sa_sigaction
                )(signum)
            }
        }

        unsafe fn get_pc_sp(context: &libc::ucontext_t) -> (usize, usize) {
            let (pc, sp);
            cfg_if::cfg_if! {
                if #[cfg(all(
                    any(target_os = "linux", target_os = "android"),
                    target_arch = "x86_64",
                ))] {
                    pc = context.uc_mcontext.gregs[libc::REG_RIP as usize] as usize;
                    sp = context.uc_mcontext.gregs[libc::REG_RSP as usize] as usize;
                } else if #[cfg(all(
                    any(target_os = "linux", target_os = "android"),
                    target_arch = "x86",
                ))] {
                    pc = context.uc_mcontext.gregs[libc::REG_EIP as usize] as usize;
                    sp = context.uc_mcontext.gregs[libc::REG_ESP as usize] as usize;
                } else if #[cfg(all(target_os = "freebsd", target_arch = "x86"))] {
                    pc = context.uc_mcontext.mc_rip as usize;
                    sp = context.uc_mcontext.mc_rsp as usize;
                } else if #[cfg(all(target_vendor = "apple", target_arch = "x86_64"))] {
                    pc = (*context.uc_mcontext).__ss.__rip as usize;
                    sp = (*context.uc_mcontext).__ss.__rsp as usize;
                } else if #[cfg(all(
                        any(target_os = "linux", target_os = "android"),
                        target_arch = "aarch64",
                    ))] {
                    pc = context.uc_mcontext.pc as usize;
                    sp = context.uc_mcontext.sp as usize;
                } else if #[cfg(all(
                    any(target_os = "linux", target_os = "android"),
                    target_arch = "arm",
                ))] {
                    pc = context.uc_mcontext.arm_pc as usize;
                    sp = context.uc_mcontext.arm_sp as usize;
                } else if #[cfg(all(
                    any(target_os = "linux", target_os = "android"),
                    any(target_arch = "riscv64", target_arch = "riscv32"),
                ))] {
                    pc = context.uc_mcontext.__gregs[libc::REG_PC] as usize;
                    sp = context.uc_mcontext.__gregs[libc::REG_SP] as usize;
                } else if #[cfg(all(target_vendor = "apple", target_arch = "aarch64"))] {
                    pc = (*context.uc_mcontext).__ss.__pc as usize;
                    sp = (*context.uc_mcontext).__ss.__sp as usize;
                } else if #[cfg(all(target_os = "freebsd", target_arch = "aarch64"))] {
                    pc = context.uc_mcontext.mc_gpregs.gp_elr as usize;
                    sp = context.uc_mcontext.mc_gpregs.gp_sp as usize;
                } else {
                    compile_error!("Unsupported platform");
                }
            };
            (pc, sp)
        }

        unsafe fn update_context(context: &mut libc::ucontext_t, regs: TrapHandlerRegs) {
            cfg_if::cfg_if! {
                if #[cfg(all(
                        any(target_os = "linux", target_os = "android"),
                        target_arch = "x86_64",
                    ))] {
                    let TrapHandlerRegs { rip, rsp, rbp, rdi, rsi } = regs;
                    context.uc_mcontext.gregs[libc::REG_RIP as usize] = rip as i64;
                    context.uc_mcontext.gregs[libc::REG_RSP as usize] = rsp as i64;
                    context.uc_mcontext.gregs[libc::REG_RBP as usize] = rbp as i64;
                    context.uc_mcontext.gregs[libc::REG_RDI as usize] = rdi as i64;
                    context.uc_mcontext.gregs[libc::REG_RSI as usize] = rsi as i64;
                } else if #[cfg(all(
                    any(target_os = "linux", target_os = "android"),
                    target_arch = "x86",
                ))] {
                    let TrapHandlerRegs { eip, esp, ebp, ecx, edx } = regs;
                    context.uc_mcontext.gregs[libc::REG_EIP as usize] = eip as i32;
                    context.uc_mcontext.gregs[libc::REG_ESP as usize] = esp as i32;
                    context.uc_mcontext.gregs[libc::REG_EBP as usize] = ebp as i32;
                    context.uc_mcontext.gregs[libc::REG_ECX as usize] = ecx as i32;
                    context.uc_mcontext.gregs[libc::REG_EDX as usize] = edx as i32;
                } else if #[cfg(all(target_vendor = "apple", target_arch = "x86_64"))] {
                    let TrapHandlerRegs { rip, rsp, rbp, rdi, rsi } = regs;
                    (*context.uc_mcontext).__ss.__rip = rip;
                    (*context.uc_mcontext).__ss.__rsp = rsp;
                    (*context.uc_mcontext).__ss.__rbp = rbp;
                    (*context.uc_mcontext).__ss.__rdi = rdi;
                    (*context.uc_mcontext).__ss.__rsi = rsi;
                } else if #[cfg(all(target_os = "freebsd", target_arch = "x86_64"))] {
                    let TrapHandlerRegs { rip, rsp, rbp, rdi, rsi } = regs;
                    context.uc_mcontext.mc_rip = rip as libc::register_t;
                    context.uc_mcontext.mc_rsp = rsp as libc::register_t;
                    context.uc_mcontext.mc_rbp = rbp as libc::register_t;
                    context.uc_mcontext.mc_rdi = rdi as libc::register_t;
                    context.uc_mcontext.mc_rsi = rsi as libc::register_t;
                } else if #[cfg(all(
                        any(target_os = "linux", target_os = "android"),
                        target_arch = "aarch64",
                    ))] {
                    let TrapHandlerRegs { pc, sp, x0, x1, x29, lr } = regs;
                    context.uc_mcontext.pc = pc;
                    context.uc_mcontext.sp = sp;
                    context.uc_mcontext.regs[0] = x0;
                    context.uc_mcontext.regs[1] = x1;
                    context.uc_mcontext.regs[29] = x29;
                    context.uc_mcontext.regs[30] = lr;
                } else if #[cfg(all(
                        any(target_os = "linux", target_os = "android"),
                        target_arch = "arm",
                    ))] {
                    let TrapHandlerRegs {
                        pc,
                        r0,
                        r1,
                        r7,
                        r11,
                        r13,
                        r14,
                        cpsr_thumb,
                        cpsr_endian,
                    } = regs;
                    context.uc_mcontext.arm_pc = pc;
                    context.uc_mcontext.arm_r0 = r0;
                    context.uc_mcontext.arm_r1 = r1;
                    context.uc_mcontext.arm_r7 = r7;
                    context.uc_mcontext.arm_fp = r11;
                    context.uc_mcontext.arm_sp = r13;
                    context.uc_mcontext.arm_lr = r14;
                    if cpsr_thumb {
                        context.uc_mcontext.arm_cpsr |= 0x20;
                    } else {
                        context.uc_mcontext.arm_cpsr &= !0x20;
                    }
                    if cpsr_endian {
                        context.uc_mcontext.arm_cpsr |= 0x200;
                    } else {
                        context.uc_mcontext.arm_cpsr &= !0x200;
                    }
                } else if #[cfg(all(
                    any(target_os = "linux", target_os = "android"),
                    any(target_arch = "riscv64", target_arch = "riscv32"),
                ))] {
                    let TrapHandlerRegs { pc, ra, sp, a0, a1, s0 } = regs;
                    context.uc_mcontext.__gregs[libc::REG_PC] = pc as libc::c_ulong;
                    context.uc_mcontext.__gregs[libc::REG_RA] = ra as libc::c_ulong;
                    context.uc_mcontext.__gregs[libc::REG_SP] = sp as libc::c_ulong;
                    context.uc_mcontext.__gregs[libc::REG_A0] = a0 as libc::c_ulong;
                    context.uc_mcontext.__gregs[libc::REG_A0 + 1] = a1 as libc::c_ulong;
                    context.uc_mcontext.__gregs[libc::REG_S0] = s0 as libc::c_ulong;
                } else if #[cfg(all(target_vendor = "apple", target_arch = "aarch64"))] {
                    let TrapHandlerRegs { pc, sp, x0, x1, x29, lr } = regs;
                    (*context.uc_mcontext).__ss.__pc = pc;
                    (*context.uc_mcontext).__ss.__sp = sp;
                    (*context.uc_mcontext).__ss.__x[0] = x0;
                    (*context.uc_mcontext).__ss.__x[1] = x1;
                    (*context.uc_mcontext).__ss.__fp = x29;
                    (*context.uc_mcontext).__ss.__lr = lr;
                } else if #[cfg(all(target_os = "freebsd", target_arch = "aarch64"))] {
                    context.uc_mcontext.mc_gpregs.gp_pc = pc as libc::register_t;
                    context.uc_mcontext.mc_gpregs.gp_sp = sp as libc::register_t;
                    context.uc_mcontext.mc_gpregs.gp_x[0] = x0 as libc::register_t;
                    context.uc_mcontext.mc_gpregs.gp_x[1] = x1 as libc::register_t;
                    context.uc_mcontext.mc_gpregs.gp_x[29] = x29 as libc::register_t;
                    context.uc_mcontext.mc_gpregs.gp_x[30] = lr as libc::register_t;
                } else {
                    compile_error!("Unsupported platform");
                }
            };
        }
    } else if #[cfg(target_os = "windows")] {
        use winapi::um::errhandlingapi::*;
        use winapi::um::winnt::*;
        use winapi::um::minwinbase::*;
        use winapi::vc::excpt::*;

        unsafe fn platform_init() {
            // our trap handler needs to go first, so that we can recover from
            // wasm faults and continue execution, so pass `1` as a true value
            // here.
            if AddVectoredExceptionHandler(1, Some(exception_handler)).is_null() {
                panic!("failed to add exception handler: {}", io::Error::last_os_error());
            }
        }

        unsafe extern "system" fn exception_handler(
            exception_info: PEXCEPTION_POINTERS
        ) -> LONG {
            // Check the kind of exception, since we only handle a subset within
            // wasm code. If anything else happens we want to defer to whatever
            // the rest of the system wants to do for this exception.
            let record = &*(*exception_info).ExceptionRecord;
            if record.ExceptionCode != EXCEPTION_ACCESS_VIOLATION &&
                record.ExceptionCode != EXCEPTION_ILLEGAL_INSTRUCTION &&
                record.ExceptionCode != EXCEPTION_STACK_OVERFLOW &&
                record.ExceptionCode != EXCEPTION_INT_DIVIDE_BY_ZERO &&
                record.ExceptionCode != EXCEPTION_INT_OVERFLOW
            {
                return EXCEPTION_CONTINUE_SEARCH;
            }

            // FIXME: this is what the previous C++ did to make sure that TLS
            // works by the time we execute this trap handling code. This isn't
            // exactly super easy to call from Rust though and it's not clear we
            // necessarily need to do so. Leaving this here in case we need this
            // in the future, but for now we can probably wait until we see a
            // strange fault before figuring out how to reimplement this in
            // Rust.
            //
            // if (!NtCurrentTeb()->Reserved1[sThreadLocalArrayPointerIndex]) {
            //     return EXCEPTION_CONTINUE_SEARCH;
            // }

            let context = &mut *(*exception_info).ContextRecord;
            let (pc, sp) = get_pc_sp(context);

            // We try to get the fault address associated to this exception.
            let maybe_fault_address = match record.ExceptionCode {
                EXCEPTION_ACCESS_VIOLATION => Some(record.ExceptionInformation[1]),
                EXCEPTION_STACK_OVERFLOW => Some(sp),
                _ => None,
            };
            let trap_code = match record.ExceptionCode {
                // check if it was cased by a UD and if the Trap info is a payload to it
                EXCEPTION_ILLEGAL_INSTRUCTION => {
                    process_illegal_op(pc)
                }
                _ => None,
            };
            // This is basically the same as the unix version above, only with a
            // few parameters tweaked here and there.
            let handled = TrapHandlerContext::handle_trap(
                pc,
                sp,
                maybe_fault_address,
                trap_code,
                |regs| update_context(context, regs),
                |handler| handler(exception_info),
            );

            if handled {
                EXCEPTION_CONTINUE_EXECUTION
            } else {
                EXCEPTION_CONTINUE_SEARCH
            }
        }

        unsafe fn get_pc_sp(context: &CONTEXT) -> (usize, usize) {
            let (pc, sp);
            cfg_if::cfg_if! {
                if #[cfg(target_arch = "x86_64")] {
                    pc = context.Rip as usize;
                    sp = context.Rsp as usize;
                } else if #[cfg(target_arch = "x86")] {
                    pc = context.Rip as usize;
                    sp = context.Rsp as usize;
                } else {
                    compile_error!("Unsupported platform");
                }
            };
            (pc, sp)
        }

        unsafe fn update_context(context: &mut CONTEXT, regs: TrapHandlerRegs) {
            cfg_if::cfg_if! {
                if #[cfg(target_arch = "x86_64")] {
                    let TrapHandlerRegs { rip, rsp, rbp, rdi, rsi } = regs;
                    context.Rip = rip;
                    context.Rsp = rsp;
                    context.Rbp = rbp;
                    context.Rdi = rdi;
                    context.Rsi = rsi;
                } else if #[cfg(target_arch = "x86")] {
                    let TrapHandlerRegs { eip, esp, ebp, ecx, edx } = regs;
                    context.Eip = eip;
                    context.Esp = esp;
                    context.Ebp = ebp;
                    context.Ecx = ecx;
                    context.Edx = edx;
                } else {
                    compile_error!("Unsupported platform");
                }
            };
        }
    }
}

/// This function is required to be called before any WebAssembly is entered.
/// This will configure global state such as signal handlers to prepare the
/// process to receive wasm traps.
///
/// This function must not only be called globally once before entering
/// WebAssembly but it must also be called once-per-thread that enters
/// WebAssembly. Currently in wasmer's integration this function is called on
/// creation of a `Store`.
pub fn init_traps() {
    static INIT: Once = Once::new();
    INIT.call_once(|| unsafe {
        platform_init();
    });
}

/// Raises a user-defined trap immediately.
///
/// This function performs as-if a wasm trap was just executed, only the trap
/// has a dynamic payload associated with it which is user-provided. This trap
/// payload is then returned from `catch_traps` below.
///
/// # Safety
///
/// Only safe to call when wasm code is on the stack, aka `catch_traps` must
/// have been previous called and not yet returned.
/// Additionally no Rust destructors may be on the stack.
/// They will be skipped and not executed.
pub unsafe fn raise_user_trap(data: Box<dyn Error + Send + Sync>) -> ! {
    unwind_with(UnwindReason::UserTrap(data))
}

/// Raises a trap from inside library code immediately.
///
/// This function performs as-if a wasm trap was just executed. This trap
/// payload is then returned from `catch_traps` below.
///
/// # Safety
///
/// Only safe to call when wasm code is on the stack, aka `catch_traps` must
/// have been previous called and not yet returned.
/// Additionally no Rust destructors may be on the stack.
/// They will be skipped and not executed.
pub unsafe fn raise_lib_trap(trap: Trap) -> ! {
    unwind_with(UnwindReason::LibTrap(trap))
}

/// Carries a Rust panic across wasm code and resumes the panic on the other
/// side.
///
/// # Safety
///
/// Only safe to call when wasm code is on the stack, aka `catch_traps` must
/// have been previously called and not returned. Additionally no Rust destructors may be on the
/// stack. They will be skipped and not executed.
pub unsafe fn resume_panic(payload: Box<dyn Any + Send>) -> ! {
    unwind_with(UnwindReason::Panic(payload))
}

/// Call the wasm function pointed to by `callee`.
///
/// * `vmctx` - the callee vmctx argument
/// * `caller_vmctx` - the caller vmctx argument
/// * `trampoline` - the jit-generated trampoline whose ABI takes 4 values, the
///   callee vmctx, the caller vmctx, the `callee` argument below, and then the
///   `values_vec` argument.
/// * `callee` - the third argument to the `trampoline` function
/// * `values_vec` - points to a buffer which holds the incoming arguments, and to
///   which the outgoing return values will be written.
///
/// # Safety
///
/// Wildly unsafe because it calls raw function pointers and reads/writes raw
/// function pointers.
pub unsafe fn wasmer_call_trampoline(
    trap_handler: &(impl TrapHandler + 'static),
    vmctx: VMFunctionEnvironment,
    trampoline: VMTrampoline,
    callee: *const VMFunctionBody,
    values_vec: *mut u8,
) -> Result<(), Trap> {
    catch_traps(trap_handler, || {
        mem::transmute::<_, extern "C" fn(VMFunctionEnvironment, *const VMFunctionBody, *mut u8)>(
            trampoline,
        )(vmctx, callee, values_vec);
    })
}

/// Catches any wasm traps that happen within the execution of `closure`,
/// returning them as a `Result`.
///
/// Highly unsafe since `closure` won't have any dtors run.
pub unsafe fn catch_traps<F, R>(
    trap_handler: &(dyn TrapHandler + 'static),
    closure: F,
) -> Result<R, Trap>
where
    F: FnOnce() -> R,
{
    // Ensure that per-thread initialization is done.
    lazy_per_thread_init()?;

    on_wasm_stack(trap_handler, closure).map_err(UnwindReason::to_trap)
}

// We need two separate thread-local variables here:
// - YIELDER is set within the new stack and is used to unwind back to the root
//   of the stack from inside it.
// - TRAP_HANDLER is set from outside the new stack and is solely used from
//   signal handlers. It must be atomic since it is used by signal handlers.
//
// We also do per-thread signal stack initialization on the first time
// TRAP_HANDLER is accessed.
thread_local! {
    static YIELDER: Cell<Option<NonNull<Yielder<(), UnwindReason>>>> = Cell::new(None);
    static TRAP_HANDLER: AtomicPtr<TrapHandlerContext> = AtomicPtr::new(ptr::null_mut());
}

/// Read-only information that is used by signal handlers to handle and recover
/// from traps.
struct TrapHandlerContext {
    inner: *const u8,
    handle_trap: fn(
        *const u8,
        usize,
        usize,
        Option<usize>,
        Option<TrapCode>,
        &mut dyn FnMut(TrapHandlerRegs),
    ) -> bool,
    custom_trap: *const dyn TrapHandler,
}
struct TrapHandlerContextInner<T> {
    /// Information about the currently running coroutine. This is used to
    /// reset execution to the root of the coroutine when a trap is handled.
    coro_trap_handler: CoroutineTrapHandler<Result<T, UnwindReason>>,
}

impl TrapHandlerContext {
    /// Runs the given function with a trap handler context. The previous
    /// trap handler context is preserved and restored afterwards.
    fn install<T, R>(
        custom_trap: &(dyn TrapHandler + 'static),
        coro_trap_handler: CoroutineTrapHandler<Result<T, UnwindReason>>,
        f: impl FnOnce() -> R,
    ) -> R {
        // Type-erase the trap handler function so that it can be placed in TLS.
        fn func<T>(
            ptr: *const u8,
            pc: usize,
            sp: usize,
            maybe_fault_address: Option<usize>,
            trap_code: Option<TrapCode>,
            update_regs: &mut dyn FnMut(TrapHandlerRegs),
        ) -> bool {
            unsafe {
                (*(ptr as *const TrapHandlerContextInner<T>)).handle_trap(
                    pc,
                    sp,
                    maybe_fault_address,
                    trap_code,
                    update_regs,
                )
            }
        }
        let inner = TrapHandlerContextInner { coro_trap_handler };
        let ctx = TrapHandlerContext {
            inner: &inner as *const _ as *const u8,
            handle_trap: func::<T>,
            custom_trap,
        };

        compiler_fence(Ordering::Release);
        let prev = TRAP_HANDLER.with(|ptr| {
            let prev = ptr.load(Ordering::Relaxed);
            ptr.store(
                &ctx as *const TrapHandlerContext as *mut TrapHandlerContext,
                Ordering::Relaxed,
            );
            prev
        });

        defer! {
            TRAP_HANDLER.with(|ptr| ptr.store(prev, Ordering::Relaxed));
            compiler_fence(Ordering::Acquire);
        }

        f()
    }

    /// Attempts to handle the trap if it's a wasm trap.
    unsafe fn handle_trap(
        pc: usize,
        sp: usize,
        maybe_fault_address: Option<usize>,
        trap_code: Option<TrapCode>,
        mut update_regs: impl FnMut(TrapHandlerRegs),
        call_handler: impl Fn(&TrapHandlerFn) -> bool,
    ) -> bool {
        let ptr = TRAP_HANDLER.with(|ptr| ptr.load(Ordering::Relaxed));
        if ptr.is_null() {
            return false;
        }

        let ctx = &*ptr;

        // Check if this trap is handled by a custom trap handler.
        if (*ctx.custom_trap).custom_trap_handler(&call_handler) {
            return true;
        }

        (ctx.handle_trap)(
            ctx.inner,
            pc,
            sp,
            maybe_fault_address,
            trap_code,
            &mut update_regs,
        )
    }
}

impl<T> TrapHandlerContextInner<T> {
    unsafe fn handle_trap(
        &self,
        pc: usize,
        sp: usize,
        maybe_fault_address: Option<usize>,
        trap_code: Option<TrapCode>,
        update_regs: &mut dyn FnMut(TrapHandlerRegs),
    ) -> bool {
        // Check if this trap occurred while executing on the Wasm stack. We can
        // only recover from traps if that is the case.
        if !self.coro_trap_handler.stack_ptr_in_bounds(sp) {
            return false;
        }

        let signal_trap = trap_code.or_else(|| {
            maybe_fault_address.map(|addr| {
                if self.coro_trap_handler.stack_ptr_in_bounds(addr) {
                    TrapCode::StackOverflow
                } else {
                    TrapCode::HeapAccessOutOfBounds
                }
            })
        });

        // Don't try to generate a backtrace for stack overflows: unwinding
        // information is often not precise enough to properly describe what is
        // happenning during a function prologue, which can lead the unwinder to
        // read invalid memory addresses.
        //
        // See: https://github.com/rust-lang/backtrace-rs/pull/357
        let backtrace = if signal_trap == Some(TrapCode::StackOverflow) {
            Backtrace::from(vec![])
        } else {
            Backtrace::new_unresolved()
        };

        // Set up the register state for exception return to force the
        // coroutine to return to its caller with UnwindReason::WasmTrap.
        let unwind = UnwindReason::WasmTrap {
            backtrace,
            signal_trap,
            pc,
        };
        let regs = self
            .coro_trap_handler
            .setup_trap_handler(move || Err(unwind));
        update_regs(regs);
        true
    }
}

enum UnwindReason {
    /// A panic caused by the host
    Panic(Box<dyn Any + Send>),
    /// A custom error triggered by the user
    UserTrap(Box<dyn Error + Send + Sync>),
    /// A Trap triggered by a wasm libcall
    LibTrap(Trap),
    /// A trap caused by the Wasm generated code
    WasmTrap {
        backtrace: Backtrace,
        pc: usize,
        signal_trap: Option<TrapCode>,
    },
}

impl UnwindReason {
    fn to_trap(self) -> Trap {
        match self {
            UnwindReason::UserTrap(data) => Trap::User(data),
            UnwindReason::LibTrap(trap) => trap,
            UnwindReason::WasmTrap {
                backtrace,
                pc,
                signal_trap,
            } => Trap::wasm(pc, backtrace, signal_trap),
            UnwindReason::Panic(panic) => std::panic::resume_unwind(panic),
        }
    }
}

unsafe fn unwind_with(reason: UnwindReason) -> ! {
    let yielder = YIELDER
        .with(|cell| cell.replace(None))
        .expect("not running on Wasm stack");

    yielder.as_ref().suspend(reason);

    // on_wasm_stack will forcibly reset the coroutine stack after yielding.
    unreachable!();
}

/// Runs the given function on a separate stack so that its stack usage can be
/// bounded. Stack overflows and other traps can be caught and execution
/// returned to the root of the stack.
fn on_wasm_stack<F: FnOnce() -> T, T>(
    trap_handler: &(dyn TrapHandler + 'static),
    f: F,
) -> Result<T, UnwindReason> {
    // Allocating a new stack is pretty expensive since it involves several
    // system calls. We therefore keep a cache of pre-allocated stacks which
    // allows them to be reused multiple times.
    // FIXME(Amanieu): We should refactor this to avoid the lock.
    lazy_static::lazy_static! {
        static ref STACK_POOL: Mutex<Vec<DefaultStack>> = Mutex::new(vec![]);
    }
    let stack = STACK_POOL.lock().unwrap().pop().unwrap_or_default();
    let mut stack = scopeguard::guard(stack, |stack| STACK_POOL.lock().unwrap().push(stack));

    // Create a coroutine with a new stack to run the function on.
    let mut coro = ScopedCoroutine::with_stack(&mut *stack, move |yielder, ()| {
        // Save the yielder to TLS so that it can be used later.
        YIELDER.with(|cell| cell.set(Some(yielder.into())));

        Ok(f())
    });

    // Ensure that YIELDER is reset on exit even if the coroutine panics,
    defer! {
        YIELDER.with(|cell| cell.set(None));
    }

    // Set up metadata for the trap handler for the duration of the coroutine
    // execution. This is restored to its previous value afterwards.
    TrapHandlerContext::install(trap_handler, coro.trap_handler(), || {
        match coro.resume(()) {
            CoroutineResult::Yield(trap) => {
                // This came from unwind_with which requires that there be only
                // Wasm code on the stack.
                unsafe {
                    coro.force_reset();
                }
                Err(trap)
            }
            CoroutineResult::Return(result) => result,
        }
    })
}

/// When executing on the Wasm stack, temporarily switch back to the host stack
/// to perform an operation that should not be constrainted by the Wasm stack
/// limits.
///
/// This is particularly important since the usage of the Wasm stack is under
/// the control of untrusted code. Malicious code could artificially induce a
/// stack overflow in the middle of a sensitive host operations (e.g. growing
/// a memory) which would be hard to recover from.
pub fn on_host_stack<F: FnOnce() -> T, T>(f: F) -> T {
    // Reset YIEDER to None for the duration of this call to indicate that we
    // are no longer on the Wasm stack.
    let yielder_ptr = YIELDER.with(|cell| cell.replace(None));

    // If we are already on the host stack, execute the function directly. This
    // happens if a host function is called directly from the API.
    let yielder = match yielder_ptr {
        Some(ptr) => unsafe { ptr.as_ref() },
        None => return f(),
    };

    // Restore YIELDER upon exiting normally or unwinding.
    defer! {
        YIELDER.with(|cell| cell.set(yielder_ptr));
    }

    // on_parent_stack requires the closure to be Send so that the Yielder
    // cannot be called from the parent stack. This is not a problem for us
    // since we don't expose the Yielder.
    struct SendWrapper<T>(T);
    unsafe impl<T> Send for SendWrapper<T> {}
    let wrapped = SendWrapper(f);
    yielder.on_parent_stack(move || (wrapped.0)())
}

#[cfg(windows)]
pub fn lazy_per_thread_init() -> Result<(), Trap> {
    // We need additional space on the stack to handle stack overflow
    // exceptions. Rust's initialization code sets this to 0x5000 but this
    // seems to be insufficient in practice.
    use winapi::um::processthreadsapi::SetThreadStackGuarantee;
    if unsafe { SetThreadStackGuarantee(&mut 0x10000) } == 0 {
        panic!("failed to set thread stack guarantee");
    }

    Ok(())
}

/// A module for registering a custom alternate signal stack (sigaltstack).
///
/// Rust's libstd installs an alternate stack with size `SIGSTKSZ`, which is not
/// always large enough for our signal handling code. Override it by creating
/// and registering our own alternate stack that is large enough and has a guard
/// page.
#[cfg(unix)]
pub fn lazy_per_thread_init() -> Result<(), Trap> {
    use std::ptr::null_mut;

    thread_local! {
        /// Thread-local state is lazy-initialized on the first time it's used,
        /// and dropped when the thread exits.
        static TLS: Tls = unsafe { init_sigstack() };
    }

    /// The size of the sigaltstack (not including the guard, which will be
    /// added). Make this large enough to run our signal handlers.
    const MIN_STACK_SIZE: usize = 16 * 4096;

    enum Tls {
        OOM,
        Allocated {
            mmap_ptr: *mut libc::c_void,
            mmap_size: usize,
        },
        BigEnough,
    }

    unsafe fn init_sigstack() -> Tls {
        // Check to see if the existing sigaltstack, if it exists, is big
        // enough. If so we don't need to allocate our own.
        let mut old_stack = mem::zeroed();
        let r = libc::sigaltstack(ptr::null(), &mut old_stack);
        assert_eq!(r, 0, "learning about sigaltstack failed");
        if old_stack.ss_flags & libc::SS_DISABLE == 0 && old_stack.ss_size >= MIN_STACK_SIZE {
            return Tls::BigEnough;
        }

        // ... but failing that we need to allocate our own, so do all that
        // here.
        let page_size: usize = region::page::size();
        let guard_size = page_size;
        let alloc_size = guard_size + MIN_STACK_SIZE;

        let ptr = libc::mmap(
            null_mut(),
            alloc_size,
            libc::PROT_NONE,
            libc::MAP_PRIVATE | libc::MAP_ANON,
            -1,
            0,
        );
        if ptr == libc::MAP_FAILED {
            return Tls::OOM;
        }

        // Prepare the stack with readable/writable memory and then register it
        // with `sigaltstack`.
        let stack_ptr = (ptr as usize + guard_size) as *mut libc::c_void;
        let r = libc::mprotect(
            stack_ptr,
            MIN_STACK_SIZE,
            libc::PROT_READ | libc::PROT_WRITE,
        );
        assert_eq!(r, 0, "mprotect to configure memory for sigaltstack failed");
        let new_stack = libc::stack_t {
            ss_sp: stack_ptr,
            ss_flags: 0,
            ss_size: MIN_STACK_SIZE,
        };
        let r = libc::sigaltstack(&new_stack, ptr::null_mut());
        assert_eq!(r, 0, "registering new sigaltstack failed");

        Tls::Allocated {
            mmap_ptr: ptr,
            mmap_size: alloc_size,
        }
    }

    // Ensure TLS runs its initializer and return an error if it failed to
    // set up a separate stack for signal handlers.
    return TLS.with(|tls| {
        if let Tls::OOM = tls {
            Err(Trap::oom())
        } else {
            Ok(())
        }
    });

    impl Drop for Tls {
        fn drop(&mut self) {
            let (ptr, size) = match self {
                Self::Allocated {
                    mmap_ptr,
                    mmap_size,
                } => (*mmap_ptr, *mmap_size),
                _ => return,
            };
            unsafe {
                // Deallocate the stack memory.
                let r = libc::munmap(ptr, size);
                debug_assert_eq!(r, 0, "munmap failed during thread shutdown");
            }
        }
    }
}