1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
//! The `wasm-bindgen` multi-value transformation.
//!
//! This crate provides a transformation to turn exported functions that use a
//! return pointer into exported functions that use multi-value.
//!
//! Consider the following function:
//!
//! ```
//! #[no_mangle]
//! pub extern "C" fn pair(a: u32, b: u32) -> [u32; 2] {
//!     [a, b]
//! }
//! ```
//!
//! LLVM will by default compile this down into the following Wasm:
//!
//! ```wasm
//! (func $pair (param i32 i32 i32)
//!   local.get 0
//!   local.get 2
//!   i32.store offset=4
//!   local.get 0
//!   local.get 1
//!   i32.store)
//! ```
//!
//! What's happening here is that the function is not directly returning the
//! pair at all, but instead the first `i32` parameter is a pointer to some
//! scratch space, and the return value is written into the scratch space. LLVM
//! does this because it doesn't yet have support for multi-value Wasm, and so
//! it only knows how to return a single value at a time.
//!
//! Ideally, with multi-value, what we would like instead is this:
//!
//! ```wasm
//! (func $pair (param i32 i32) (result i32 i32)
//!   local.get 0
//!   local.get 1)
//! ```
//!
//! However, that's not what this transformation does at the moment. This
//! transformation is a little simpler than mutating existing functions to
//! produce a multi-value result, instead it introduces new functions that wrap
//! the original function and translate the return pointer to multi-value
//! results in this wrapper function.
//!
//! With our running example, we end up with this:
//!
//! ```wasm
//! ;; The original function.
//! (func $pair (param i32 i32 i32)
//!   local.get 0
//!   local.get 2
//!   i32.store offset=4
//!   local.get 0
//!   local.get 1
//!   i32.store)
//!
//! (func $pairWrapper (param i32 i32) (result i32 i32)
//!   ;; Our return pointer that points to the scratch space we are allocating
//!   ;; on the shadow stack for calling `$pair`.
//!   (local i32)
//!
//!   ;; Allocate space on the shadow stack for the result.
//!   global.get $shadowStackPointer
//!   i32.const 8
//!   i32.sub
//!   local.tee 2
//!   global.set $shadowStackPointer
//!
//!   ;; Call `$pair` with our allocated shadow stack space for its results.
//!   local.get 2
//!   local.get 0
//!   local.get 1
//!   call $pair
//!
//!   ;; Copy the return values from the shadow stack to the wasm stack.
//!   local.get 2
//!   i32.load
//!   local.get 2 offset=4
//!   i32.load
//!
//!   ;; Finally, restore the shadow stack pointer.
//!   local.get 2
//!   i32.const 8
//!   i32.add
//!   global.set $shadowStackPointer)
//! ```
//!
//! This `$pairWrapper` function is what we actually end up exporting instead of
//! `$pair`.

#![deny(missing_docs, missing_debug_implementations)]

/// Run the transformation.
///
/// See the module-level docs for details on the transformation.
///
/// * `memory` is the module's memory that has the shadow stack where return
///   pointers are allocated within.
///
/// * `shadow_stack_pointer` is the global that is being used as the stack
///   pointer for the shadow stack. With LLVM, this is typically the first
///   global.
///
/// * `to_xform` is the set of exported functions we want to transform and
///   information required to transform them. The `usize` is the index of the
///   return pointer parameter that will be removed. The `Vec<walrus::ValType>`
///   is the new result type that will be returned directly instead of via the
///   return pointer.
///
/// Returns a list of wrappers which have multi value signatures and call the
/// corresponding element in the `to_xform` list.
pub fn run(
    module: &mut walrus::Module,
    memory: walrus::MemoryId,
    shadow_stack_pointer: walrus::GlobalId,
    to_xform: &[(walrus::FunctionId, usize, Vec<walrus::ValType>)],
) -> Result<Vec<walrus::FunctionId>, anyhow::Error> {
    let mut wrappers = Vec::new();
    for (func, return_pointer_index, results) in to_xform {
        wrappers.push(xform_one(
            module,
            memory,
            shadow_stack_pointer,
            *func,
            *return_pointer_index,
            results,
        )?);
    }
    Ok(wrappers)
}

// Ensure that `n` is aligned to `align`, rounding up as necessary.
fn round_up_to_alignment(n: u32, align: u32) -> u32 {
    debug_assert!(align.is_power_of_two());
    (n + align - 1) & !(align - 1)
}

fn xform_one(
    module: &mut walrus::Module,
    memory: walrus::MemoryId,
    shadow_stack_pointer: walrus::GlobalId,
    func: walrus::FunctionId,
    return_pointer_index: usize,
    results: &[walrus::ValType],
) -> Result<walrus::FunctionId, anyhow::Error> {
    if module.globals.get(shadow_stack_pointer).ty != walrus::ValType::I32 {
        anyhow::bail!("shadow stack pointer global does not have type `i32`");
    }

    // Compute the total size of all results, potentially with padding to ensure
    // that each result is aligned.
    let mut results_size = 0;
    for ty in results {
        results_size = match ty {
            walrus::ValType::I32 | walrus::ValType::F32 => {
                debug_assert_eq!(results_size % 4, 0);
                results_size + 4
            }
            walrus::ValType::I64 | walrus::ValType::F64 => {
                round_up_to_alignment(results_size, 8) + 8
            }
            walrus::ValType::V128 => round_up_to_alignment(results_size, 16) + 16,
            walrus::ValType::Externref | walrus::ValType::Funcref => anyhow::bail!(
                "cannot multi-value transform functions that return \
                     reference types, since they can't go into linear memory"
            ),
        };
    }
    // Round up to 16-byte alignment, since that's what LLVM's emitted Wasm code
    // seems to expect.
    let results_size = round_up_to_alignment(results_size, 16);

    let ty = module.funcs.get(func).ty();
    let (ty_params, ty_results) = module.types.params_results(ty);

    if !ty_results.is_empty() {
        anyhow::bail!(
            "can only multi-value transform functions that don't return any \
             results (since they should be returned on the stack via a pointer)"
        );
    }

    match ty_params.get(return_pointer_index) {
        Some(walrus::ValType::I32) => {}
        None => anyhow::bail!("the return pointer parameter doesn't exist"),
        Some(_) => anyhow::bail!("the return pointer parameter is not `i32`"),
    }

    let new_params: Vec<_> = ty_params
        .iter()
        .cloned()
        .enumerate()
        .filter_map(|(i, ty)| {
            if i == return_pointer_index {
                None
            } else {
                Some(ty)
            }
        })
        .collect();

    // The locals for the function parameters.
    let params: Vec<_> = new_params.iter().map(|ty| module.locals.add(*ty)).collect();

    // A local to hold our shadow stack-allocated return pointer.
    let return_pointer = module.locals.add(walrus::ValType::I32);

    let mut wrapper = walrus::FunctionBuilder::new(&mut module.types, &new_params, results);
    let mut body = wrapper.func_body();

    // Allocate space in the shadow stack for the call.
    body.global_get(shadow_stack_pointer)
        .i32_const(results_size as i32)
        .binop(walrus::ir::BinaryOp::I32Sub)
        .local_tee(return_pointer)
        .global_set(shadow_stack_pointer);

    // Push the parameters for calling our wrapped function -- including the
    // return pointer! -- on to the stack.
    for (i, local) in params.iter().enumerate() {
        if i == return_pointer_index {
            body.local_get(return_pointer);
        }
        body.local_get(*local);
    }
    if return_pointer_index == params.len() {
        body.local_get(return_pointer);
    }

    // Call our wrapped function.
    body.call(func);

    // Copy the return values from our shadow stack-allocated space and onto the
    // Wasm stack.
    let mut offset = 0;
    for ty in results {
        debug_assert!(offset < results_size);
        body.local_get(return_pointer);
        match ty {
            walrus::ValType::I32 => {
                debug_assert_eq!(offset % 4, 0);
                body.load(
                    memory,
                    walrus::ir::LoadKind::I32 { atomic: false },
                    walrus::ir::MemArg { align: 4, offset },
                );
                offset += 4;
            }
            walrus::ValType::I64 => {
                offset = round_up_to_alignment(offset, 8);
                body.load(
                    memory,
                    walrus::ir::LoadKind::I64 { atomic: false },
                    walrus::ir::MemArg { align: 8, offset },
                );
                offset += 8;
            }
            walrus::ValType::F32 => {
                debug_assert_eq!(offset % 4, 0);
                body.load(
                    memory,
                    walrus::ir::LoadKind::F32,
                    walrus::ir::MemArg { align: 4, offset },
                );
                offset += 4;
            }
            walrus::ValType::F64 => {
                offset = round_up_to_alignment(offset, 8);
                body.load(
                    memory,
                    walrus::ir::LoadKind::F64,
                    walrus::ir::MemArg { align: 8, offset },
                );
                offset += 8;
            }
            walrus::ValType::V128 => {
                offset = round_up_to_alignment(offset, 16);
                body.load(
                    memory,
                    walrus::ir::LoadKind::V128,
                    walrus::ir::MemArg { align: 16, offset },
                );
                offset += 16;
            }
            walrus::ValType::Externref | walrus::ValType::Funcref => unreachable!(),
        }
    }

    // Finally, restore the shadow stack pointer.
    body.local_get(return_pointer)
        .i32_const(results_size as i32)
        .binop(walrus::ir::BinaryOp::I32Add)
        .global_set(shadow_stack_pointer);

    let wrapper = wrapper.finish(params, &mut module.funcs);
    if let Some(name) = &module.funcs.get(func).name {
        module.funcs.get_mut(wrapper).name = Some(format!("{} multivalue shim", name));
    }

    Ok(wrapper)
}

#[cfg(test)]
mod tests {
    #[test]
    fn round_up_to_alignment_works() {
        for (n, align, expected) in vec![
            (0, 1, 0),
            (1, 1, 1),
            (2, 1, 2),
            (0, 2, 0),
            (1, 2, 2),
            (2, 2, 2),
            (3, 2, 4),
            (0, 4, 0),
            (1, 4, 4),
            (2, 4, 4),
            (3, 4, 4),
            (4, 4, 4),
            (5, 4, 8),
        ] {
            let actual = super::round_up_to_alignment(n, align);
            println!(
                "round_up_to_alignment(n = {}, align = {}) = {} (expected {})",
                n, align, actual, expected
            );
            assert_eq!(actual, expected);
        }
    }
}