1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
//! Transformation for wasm-bindgen to enable usage of `anyref` in a wasm
//! module.
//!
//! This crate is in charge of enabling code using `wasm-bindgen` to use the
//! `anyref` type inside of the wasm module. This transformation pass primarily
//! wraps exports and imports in shims which use `anyref`, but quickly turn them
//! into `i32` value types. This is all largely a stopgap until Rust has
//! first-class support for the `anyref` type, but that's thought to be in the
//! far future and will take quite some time to implement. In the meantime, we
//! have this!
//!
//! The pass here works by collecting information during binding generation
//! about imports and exports. Afterwards this pass runs in one go against a
//! wasm module, updating exports, imports, calls to these functions, etc. The
//! goal at least is to have valid wasm modules coming in that don't use
//! `anyref` and valid wasm modules going out which use `anyref` at the fringes.

use anyhow::{anyhow, bail, Error};
use std::cmp;
use std::collections::{BTreeMap, HashMap, HashSet};
use walrus::ir::*;
use walrus::{ExportId, ImportId, InstrLocId, TypeId};
use walrus::{FunctionId, GlobalId, InitExpr, Module, TableId, ValType};

// must be kept in sync with src/lib.rs and ANYREF_HEAP_START
const DEFAULT_MIN: u32 = 32;

/// State of the anyref pass, used to collect information while bindings are
/// generated and used eventually to actually execute the entire pass.
#[derive(Default)]
pub struct Context {
    // Functions within the module that we're gonna be wrapping, organized by
    // type. The `Function` contains information about what arguments/return
    // values in the function signature should turn into anyref.
    imports: HashMap<ImportId, Function>,
    exports: HashMap<ExportId, Function>,
    elements: BTreeMap<u32, (u32, Function)>,

    // When wrapping closures with new shims, this is the index of the next
    // table entry that we'll be handing out.
    next_element: u32,

    // The anyref table we'll be using, injected after construction
    table: Option<TableId>,
}

pub struct Meta {
    pub table: TableId,
    pub alloc: Option<FunctionId>,
    pub drop_slice: Option<FunctionId>,
    pub live_count: Option<FunctionId>,
}

struct Transform<'a> {
    cx: &'a mut Context,

    // A map of functions to intrinsics that they represent
    intrinsic_map: HashMap<FunctionId, Intrinsic>,
    // A map of old import functions to the new internally-defined shims which
    // call the correct new import functions
    import_map: HashMap<FunctionId, FunctionId>,
    // A set of all shims we've created
    shims: HashSet<FunctionId>,

    // Indices of items that we have injected or found. This state is maintained
    // during the pass execution.
    table: TableId,
    clone_ref: Option<FunctionId>,
    heap_alloc: Option<FunctionId>,
    heap_dealloc: Option<FunctionId>,
    stack_pointer: GlobalId,
}

struct Function {
    // A map of argument index to whether it's an owned or borrowed anyref
    // (owned = true)
    args: HashMap<usize, bool>,
    ret_anyref: bool,
}

enum Intrinsic {
    TableGrow,
    TableSetNull,
    DropRef,
    CloneRef,
}

impl Context {
    /// Executed first very early over a wasm module, used to learn about how
    /// large the function table is so we know what indexes to hand out when
    /// we're appending entries.
    pub fn prepare(&mut self, module: &mut Module) -> Result<(), Error> {
        // Figure out what the maximum index of functions pointers are. We'll
        // be adding new entries to the function table later (maybe) so
        // precalculate this ahead of time.
        let mut tables = module.tables.iter().filter_map(|t| match &t.kind {
            walrus::TableKind::Function(f) => Some(f),
            _ => None,
        });
        if let Some(t) = tables.next() {
            if tables.next().is_some() {
                bail!("more than one function table present")
            }
            self.next_element = t.elements.len() as u32;
        }
        drop(tables);

        // Add in an anyref table to the module, which we'll be using for
        // our transform below.
        let kind = walrus::TableKind::Anyref(Default::default());
        self.table = Some(module.tables.add_local(DEFAULT_MIN, None, kind));

        Ok(())
    }

    /// Store information about an imported function that needs to be
    /// transformed. The actual transformation happens later during `run`.
    pub fn import_xform(
        &mut self,
        id: ImportId,
        anyref: &[(usize, bool)],
        ret_anyref: bool,
    ) -> &mut Self {
        if let Some(f) = self.function(anyref, ret_anyref) {
            self.imports.insert(id, f);
        }
        self
    }

    /// Store information about an exported function that needs to be
    /// transformed. The actual transformation happens later during `run`.
    pub fn export_xform(
        &mut self,
        id: ExportId,
        anyref: &[(usize, bool)],
        ret_anyref: bool,
    ) -> &mut Self {
        if let Some(f) = self.function(anyref, ret_anyref) {
            self.exports.insert(id, f);
        }
        self
    }

    /// Store information about a function pointer that needs to be transformed.
    /// The actual transformation happens later during `run`. Returns an index
    /// that the new wrapped function pointer will be injected at.
    pub fn table_element_xform(
        &mut self,
        idx: u32,
        anyref: &[(usize, bool)],
        ret_anyref: bool,
    ) -> Option<u32> {
        self.function(anyref, ret_anyref).map(|f| {
            let ret = self.next_element;
            self.next_element += 1;
            self.elements.insert(ret, (idx, f));
            ret
        })
    }

    fn function(&self, anyref: &[(usize, bool)], ret_anyref: bool) -> Option<Function> {
        if !ret_anyref && anyref.len() == 0 {
            return None;
        }
        Some(Function {
            args: anyref.iter().cloned().collect(),
            ret_anyref,
        })
    }

    pub fn run(&mut self, module: &mut Module) -> Result<Meta, Error> {
        let table = self.table.unwrap();

        // Inject a stack pointer global which will be used for managing the
        // stack on the anyref table.
        let init = InitExpr::Value(Value::I32(DEFAULT_MIN as i32));
        let stack_pointer = module.globals.add_local(ValType::I32, true, init);

        let mut heap_alloc = None;
        let mut heap_dealloc = None;
        let mut drop_slice = None;
        let mut live_count = None;

        // Find exports of some intrinsics which we only need for a runtime
        // implementation.
        let mut to_delete = Vec::new();
        for export in module.exports.iter() {
            let f = match export.item {
                walrus::ExportItem::Function(f) => f,
                _ => continue,
            };
            match export.name.as_str() {
                "__anyref_table_alloc" => heap_alloc = Some(f),
                "__anyref_table_dealloc" => heap_dealloc = Some(f),
                "__anyref_drop_slice" => drop_slice = Some(f),
                "__anyref_heap_live_count" => live_count = Some(f),
                _ => continue,
            }
            to_delete.push(export.id());
        }
        for id in to_delete {
            module.exports.delete(id);
        }
        let mut clone_ref = None;
        if let Some(heap_alloc) = heap_alloc {
            // Create a shim function that looks like:
            //
            // (func __wbindgen_object_clone_ref (param i32) (result i32)
            //      (local i32)
            //      (table.set
            //          (tee_local 1 (call $heap_alloc))
            //          (table.get (local.get 0)))
            //      (local.get 1))
            let mut builder =
                walrus::FunctionBuilder::new(&mut module.types, &[ValType::I32], &[ValType::I32]);
            let arg = module.locals.add(ValType::I32);
            let local = module.locals.add(ValType::I32);

            let mut body = builder.func_body();
            body.call(heap_alloc)
                .local_tee(local)
                .local_get(arg)
                .table_get(table)
                .table_set(table)
                .local_get(local);

            let func = builder.finish(vec![arg], &mut module.funcs);
            let name = "__wbindgen_object_clone_ref".to_string();
            module.funcs.get_mut(func).name = Some(name);
            clone_ref = Some(func);
        }

        // And run the transformation!
        Transform {
            cx: self,
            intrinsic_map: HashMap::new(),
            import_map: HashMap::new(),
            shims: HashSet::new(),
            table,
            clone_ref,
            heap_alloc,
            heap_dealloc,
            stack_pointer,
        }
        .run(module)?;

        Ok(Meta {
            table,
            alloc: heap_alloc,
            drop_slice,
            live_count,
        })
    }
}

impl Transform<'_> {
    fn run(&mut self, module: &mut Module) -> Result<(), Error> {
        // Detect all the various intrinsics and such. This will also along the
        // way inject an intrinsic for cloning an anyref.
        self.find_intrinsics(module)?;

        // Perform transformations of imports, exports, and function pointers.
        self.process_imports(module)?;
        assert!(self.cx.imports.is_empty());
        self.process_exports(module)?;
        assert!(self.cx.exports.is_empty());
        self.process_elements(module)?;
        assert!(self.cx.elements.is_empty());

        // If we didn't actually transform anything, no need to inject or
        // rewrite anything from below.
        if self.shims.is_empty() {
            return Ok(());
        }

        // Perform all instruction transformations to rewrite calls between
        // functions and make sure everything is still hooked up right.
        self.rewrite_calls(module)?;

        Ok(())
    }

    fn find_intrinsics(&mut self, module: &mut Module) -> Result<(), Error> {
        // Build up a map of various imported intrinsics to wire them up to
        // different implementations or different functions.
        for import in module.imports.iter_mut() {
            let f = match import.kind {
                walrus::ImportKind::Function(f) => f,
                _ => continue,
            };
            if import.module == "__wbindgen_anyref_xform__" {
                match import.name.as_str() {
                    "__wbindgen_anyref_table_grow" => {
                        self.intrinsic_map.insert(f, Intrinsic::TableGrow);
                    }
                    "__wbindgen_anyref_table_set_null" => {
                        self.intrinsic_map.insert(f, Intrinsic::TableSetNull);
                    }
                    n => bail!("unknown intrinsic: {}", n),
                }
            } else if import.module == "__wbindgen_placeholder__" {
                match import.name.as_str() {
                    "__wbindgen_object_drop_ref" => {
                        self.intrinsic_map.insert(f, Intrinsic::DropRef);
                    }
                    "__wbindgen_object_clone_ref" => {
                        self.intrinsic_map.insert(f, Intrinsic::CloneRef);
                    }
                    _ => continue,
                }
            } else {
                continue;
            }

            // Make sure we don't actually end up using the original import
            // because any invocation of them should be remapped to something
            // else.
            import.name = format!("{}_unused", import.name);
        }

        Ok(())
    }

    fn heap_alloc(&self) -> Result<FunctionId, Error> {
        self.heap_alloc
            .ok_or_else(|| anyhow!("failed to find the `__wbindgen_anyref_table_alloc` function"))
    }

    fn clone_ref(&self) -> Result<FunctionId, Error> {
        self.clone_ref
            .ok_or_else(|| anyhow!("failed to find intrinsics to enable `clone_ref` function"))
    }

    fn heap_dealloc(&self) -> Result<FunctionId, Error> {
        self.heap_dealloc
            .ok_or_else(|| anyhow!("failed to find the `__wbindgen_anyref_table_dealloc` function"))
    }

    fn process_imports(&mut self, module: &mut Module) -> Result<(), Error> {
        for import in module.imports.iter_mut() {
            let f = match import.kind {
                walrus::ImportKind::Function(f) => f,
                _ => continue,
            };
            let func = match self.cx.imports.remove(&import.id()) {
                Some(s) => s,
                None => continue,
            };

            let (shim, anyref_ty) = self.append_shim(
                f,
                &import.name,
                func,
                &mut module.types,
                &mut module.funcs,
                &mut module.locals,
            )?;
            self.import_map.insert(f, shim);
            match &mut module.funcs.get_mut(f).kind {
                walrus::FunctionKind::Import(f) => f.ty = anyref_ty,
                _ => unreachable!(),
            }
        }
        Ok(())
    }

    fn process_exports(&mut self, module: &mut Module) -> Result<(), Error> {
        // let mut new_exports = Vec::new();
        for export in module.exports.iter_mut() {
            let f = match export.item {
                walrus::ExportItem::Function(f) => f,
                _ => continue,
            };
            let function = match self.cx.exports.remove(&export.id()) {
                Some(s) => s,
                None => continue,
            };
            let (shim, _anyref_ty) = self.append_shim(
                f,
                &export.name,
                function,
                &mut module.types,
                &mut module.funcs,
                &mut module.locals,
            )?;
            export.item = shim.into();
        }
        Ok(())
    }

    fn process_elements(&mut self, module: &mut Module) -> Result<(), Error> {
        let table = match module.tables.main_function_table()? {
            Some(t) => t,
            None => return Ok(()),
        };
        let table = module.tables.get_mut(table);
        let kind = match &mut table.kind {
            walrus::TableKind::Function(f) => f,
            _ => unreachable!(),
        };
        if kind.relative_elements.len() > 0 {
            bail!("not compatible with relative element initializers yet");
        }

        // Create shims for all our functions and append them all to the segment
        // which places elements at the end.
        while let Some((idx, function)) = self.cx.elements.remove(&(kind.elements.len() as u32)) {
            let target = kind.elements[idx as usize].unwrap();
            let (shim, _anyref_ty) = self.append_shim(
                target,
                &format!("closure{}", idx),
                function,
                &mut module.types,
                &mut module.funcs,
                &mut module.locals,
            )?;
            kind.elements.push(Some(shim));
        }

        // ... and next update the limits of the table in case any are listed.
        table.initial = cmp::max(table.initial, kind.elements.len() as u32);
        if let Some(max) = table.maximum {
            table.maximum = Some(cmp::max(max, kind.elements.len() as u32));
        }

        Ok(())
    }

    fn append_shim(
        &mut self,
        shim_target: FunctionId,
        name: &str,
        mut func: Function,
        types: &mut walrus::ModuleTypes,
        funcs: &mut walrus::ModuleFunctions,
        locals: &mut walrus::ModuleLocals,
    ) -> Result<(FunctionId, TypeId), Error> {
        let target = funcs.get_mut(shim_target);
        let (is_export, ty) = match &target.kind {
            walrus::FunctionKind::Import(f) => (false, f.ty),
            walrus::FunctionKind::Local(f) => (true, f.ty()),
            _ => unreachable!(),
        };

        let target_ty = types.get(ty);
        let target_ty_params = target_ty.params().to_vec();
        let target_ty_results = target_ty.results().to_vec();

        // Learn about the various operations we're doing up front. Afterwards
        // we'll have a better idea bout what sort of code we're gonna be
        // generating.
        enum Convert {
            None,
            Store { owned: bool },
            Load { owned: bool },
        }
        let mut param_tys = Vec::new();
        let mut param_convert = Vec::new();
        let mut anyref_stack = 0;

        for (i, old_ty) in target_ty.params().iter().enumerate() {
            let is_owned = func.args.remove(&i);
            let new_ty = is_owned
                .map(|_which| ValType::Anyref)
                .unwrap_or(old_ty.clone());
            param_tys.push(new_ty.clone());
            if new_ty == *old_ty {
                param_convert.push(Convert::None);
            } else if is_export {
                // We're calling an export, so we need to push this anyref into
                // a table somehow.
                param_convert.push(Convert::Store {
                    owned: is_owned.unwrap(),
                });
                if is_owned == Some(false) {
                    anyref_stack += 1;
                }
            } else {
                // We're calling an import, so we just need to fetch our table
                // value.
                param_convert.push(Convert::Load {
                    owned: is_owned.unwrap(),
                });
            }
        }

        let new_ret = if func.ret_anyref {
            assert_eq!(target_ty.results(), &[ValType::I32]);
            vec![ValType::Anyref]
        } else {
            target_ty.results().to_vec()
        };
        let anyref_ty = types.add(&param_tys, &new_ret);

        // If we're an export then our shim is what's actually going to get
        // exported, and it's going to have the anyref signature.
        //
        // If we're an import, then our shim is what the Rust code calls, which
        // means it'll have the original signature. The existing import's
        // signature, however, is transformed to be an anyref signature.
        let shim_ty = if is_export { anyref_ty } else { ty };

        let mut builder = walrus::FunctionBuilder::new(
            types,
            if is_export {
                &param_tys
            } else {
                &target_ty_params
            },
            if is_export {
                &new_ret
            } else {
                &target_ty_results
            },
        );
        let mut body = builder.func_body();
        let params = types
            .get(shim_ty)
            .params()
            .iter()
            .cloned()
            .map(|ty| locals.add(ty))
            .collect::<Vec<_>>();

        // Unconditionally allocate some locals which get cleaned up in later
        // gc passes if we don't actually end up using them.
        let fp = locals.add(ValType::I32);
        let scratch_i32 = locals.add(ValType::I32);
        let scratch_anyref = locals.add(ValType::Anyref);

        // Update our stack pointer if there's any borrowed anyref objects.
        if anyref_stack > 0 {
            body.global_get(self.stack_pointer)
                .const_(Value::I32(anyref_stack))
                .binop(BinaryOp::I32Sub)
                .local_tee(fp)
                .global_set(self.stack_pointer);
        }
        let mut next_stack_offset = 0;

        for (i, convert) in param_convert.iter().enumerate() {
            match *convert {
                Convert::None => {
                    body.local_get(params[i]);
                }
                Convert::Load { owned: true } => {
                    // load the anyref onto the stack, then afterwards
                    // deallocate our index, leaving the anyref on the stack.
                    body.local_get(params[i])
                        .table_get(self.table)
                        .local_get(params[i])
                        .call(self.heap_dealloc()?);
                }
                Convert::Load { owned: false } => {
                    body.local_get(params[i]).table_get(self.table);
                }
                Convert::Store { owned: true } => {
                    // Allocate space for the anyref, store it, and then leave
                    // the index of the allocated anyref on the stack.
                    body.call(self.heap_alloc()?)
                        .local_tee(scratch_i32)
                        .local_get(params[i])
                        .table_set(self.table)
                        .local_get(scratch_i32);
                }
                Convert::Store { owned: false } => {
                    // Store an anyref at an offset from our function's stack
                    // pointer frame.
                    body.local_get(fp);
                    let idx_local = if next_stack_offset == 0 {
                        fp
                    } else {
                        body.i32_const(next_stack_offset)
                            .binop(BinaryOp::I32Add)
                            .local_tee(scratch_i32);
                        scratch_i32
                    };
                    next_stack_offset += 1;
                    body.local_get(params[i])
                        .table_set(self.table)
                        .local_get(idx_local);
                }
            }
        }

        // Now that we've converted all the arguments, call the original
        // function. This may be either an import or an export which we're
        // wrapping.
        body.call(shim_target);

        // If an anyref value is returned, then we need to be sure to apply
        // special treatment to convert it to an i32 as well. Note that only
        // owned anyref values can be returned, so that's all that's handled
        // here.
        if func.ret_anyref {
            if is_export {
                // We're an export so we have an i32 on the stack and need to
                // convert it to an anyref, basically by doing the same as an
                // owned load above: get the value then deallocate our slot.
                body.local_tee(scratch_i32)
                    .table_get(self.table)
                    .local_get(scratch_i32)
                    .call(self.heap_dealloc()?);
            } else {
                // Imports are the opposite, we have any anyref on the stack
                // and convert it to an i32 by allocating space for it and
                // storing it there.
                body.local_set(scratch_anyref)
                    .call(self.heap_alloc()?)
                    .local_tee(scratch_i32)
                    .local_get(scratch_anyref)
                    .table_set(self.table)
                    .local_get(scratch_i32);
            }
        }

        // On function exit restore our anyref stack pointer if we decremented
        // it to start off.
        //
        // Note that we pave over all our stack slots with `ref.null` to ensure
        // that the table doesn't accidentally hold a strong reference to items
        // no longer in use by our wasm instance.
        //
        // TODO: use `table.fill` once that's spec'd
        if anyref_stack > 0 {
            for i in 0..anyref_stack {
                body.local_get(fp);
                if i > 0 {
                    body.i32_const(i).binop(BinaryOp::I32Add);
                }
                body.ref_null();
                body.table_set(self.table);
            }

            body.local_get(fp)
                .i32_const(anyref_stack)
                .binop(BinaryOp::I32Add)
                .global_set(self.stack_pointer);
        }

        // Create the final expression node and then finish the function builder
        // with a fresh type we've been calculating so far. Give the function a
        // nice name for debugging and then we're good to go!
        let id = builder.finish(params, funcs);
        let name = format!("{} anyref shim", name);
        funcs.get_mut(id).name = Some(name);
        self.shims.insert(id);
        Ok((id, anyref_ty))
    }

    fn rewrite_calls(&mut self, module: &mut Module) -> Result<(), Error> {
        for (id, func) in module.funcs.iter_local_mut() {
            if self.shims.contains(&id) {
                continue;
            }
            let entry = func.entry_block();
            dfs_pre_order_mut(
                &mut Rewrite {
                    clone_ref: self.clone_ref()?,
                    heap_dealloc: self.heap_dealloc()?,
                    xform: self,
                },
                func,
                entry,
            );
        }

        return Ok(());

        struct Rewrite<'a, 'b> {
            xform: &'a Transform<'b>,
            clone_ref: FunctionId,
            heap_dealloc: FunctionId,
        }

        impl VisitorMut for Rewrite<'_, '_> {
            fn start_instr_seq_mut(&mut self, seq: &mut InstrSeq) {
                for i in (0..seq.instrs.len()).rev() {
                    let call = match &mut seq.instrs[i].0 {
                        Instr::Call(call) => call,
                        _ => continue,
                    };
                    let intrinsic = match self.xform.intrinsic_map.get(&call.func) {
                        Some(f) => f,
                        None => {
                            // If this wasn't a call of an intrinsic, but it was a
                            // call of one of our old import functions then we
                            // switch the functions we're calling here.
                            if let Some(f) = self.xform.import_map.get(&call.func) {
                                call.func = *f;
                            }
                            continue;
                        }
                    };

                    match intrinsic {
                        Intrinsic::TableGrow => {
                            // Switch this to a `table.grow` instruction...
                            seq.instrs[i].0 = TableGrow {
                                table: self.xform.table,
                            }
                            .into();
                            // ... and then insert a `ref.null` before the
                            // preceding instruction as the value to grow the
                            // table with.
                            seq.instrs
                                .insert(i - 1, (RefNull {}.into(), InstrLocId::default()));
                        }
                        Intrinsic::TableSetNull => {
                            // Switch this to a `table.set` instruction...
                            seq.instrs[i].0 = TableSet {
                                table: self.xform.table,
                            }
                            .into();
                            // ... and then insert a `ref.null` as the
                            // preceding instruction
                            seq.instrs
                                .insert(i, (RefNull {}.into(), InstrLocId::default()));
                        }
                        Intrinsic::DropRef => call.func = self.heap_dealloc,
                        Intrinsic::CloneRef => call.func = self.clone_ref,
                    }
                }
            }
        }
    }
}