1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
//! Markov chain generator
//!
//! # Documenation
//!
//! ## Look a head size
//! When generating a new term, it looks at the previous X items that it has already output to
//! decide the next item. This number controls this.
//!
//! # Example
//!
//! ```
//! use warkov::MarkovChain;
//!
//! // Create a new generator
//! let mut mc = MarkovChain::new(5);
//!
//! // Train it on some words
//! mc.train("foo".chars());
//! mc.train("bar".chars());
//! mc.train("baz".chars());
//!
//! // Generate a new word
//! let new_word: Vec<char> = mc.generate();
//! ```
extern crate rand;

use std::collections::{HashMap, BTreeMap};
use std::hash::Hash;
use std::fmt::Debug;
pub use rand::Rng;

/// A Markov Chain.
///
#[derive(Default)]
pub struct MarkovChain<T, R>
    where T: Hash + Eq + Clone + Default + Ord + Debug,
          R: Rng,
{
    size: usize,
    rng: R,
    stages: HashMap<Vec<Option<T>>, (usize, BTreeMap<Option<T>, usize>)>,
    alphabet: (usize, BTreeMap<T, usize>),
}

impl<T> MarkovChain<T, rand::ThreadRng>
    where T: Hash + Eq + Clone + Default + Ord + Debug,
{
    /// Creates a MarkovChain with the max look a head size.
    /// Uses the stock thread local random number generator
    ///
    /// # Panics
    /// If size is 0.
    pub fn new(size: usize) -> Self {
        MarkovChain::new_with_rng(size, rand::thread_rng())
    }
}

impl<T, R> MarkovChain<T, R>
    where T: Hash + Eq + Clone + Default + Ord + Debug,
          R: Rng,
{
    /// Creates a MarkovChain with the specified random number generator, and max look a head size
    ///
    /// # Panics
    /// If size is 0.
    pub fn new_with_rng(size: usize, rng: R) -> Self {
        assert!(size > 0);
        MarkovChain{ size, rng: rng,  stages: HashMap::new(), alphabet: (0, BTreeMap::new()) }
    }

    /// Change the random number generation for this object to `rng`.
    pub fn set_rng(&mut self, rng: R) {
        self.rng = rng
    }

    fn record_occurance(&mut self, mut stage: &[Option<T>], next: Option<T>) {
        while !stage.is_empty() {
            let stage_stat = self.stages.entry(stage.to_vec()).or_default();
            stage_stat.0 += 1;
            *stage_stat.1.entry(next.clone()).or_default() += 1;

            stage = &stage[1..];
        }
    }

    /// Teach the markov chain this `term`.
    pub fn train(&mut self, term: impl Iterator<Item=T>) {
        let term: Vec<T> = term.into_iter().collect();
        self.alphabet.0 += term.len();
        for t in term.iter() {
            *self.alphabet.1.entry(t.clone()).or_default() += 1;
        }
        let mut term: Vec<Option<T>> = term.into_iter().map(|s| Some(s)).collect();
        term.insert(0, None);
        term.push(None);

        for idx in 1..term.len() {

            for len in 1..(self.size+1) {
                if len <= idx {
                    self.record_occurance(&term[idx-len..idx], term[idx].clone());
                }
            }
        }

    }

    /// Generates a term.
    /// Uses the lookbehind value this was created with.
    pub fn generate(&mut self) -> Vec<T> {
        let curr_size = self.size;
        self.generate_max_look(curr_size)
    }

    /// Generates a new term with a custom lookbehind.
    /// # Panics
    /// If `max_lookbehind` is 0 or greater than the lookbehind this was created with.
    pub fn generate_max_look(&mut self, max_lookbehind: usize) -> Vec<T> {
        assert!(max_lookbehind >= 1 && max_lookbehind <= self.size);

        let mut result = Vec::new();
        let mut curr: Vec<Option<T>> = vec![None];
        let mut next: Option<T>;


        loop {
            loop {
                match self.stages.get(&curr) {
                    None => {
                        if curr.len() == 1 {
                            next = Some(weighted_choice(&mut self.rng, &self.alphabet));
                            break;
                        } else {
                            curr.remove(0);
                            continue;
                        }
                    },
                    Some(stats) => {
                        next = weighted_choice(&mut self.rng, stats);
                        break;
                    }
                }

            }

            if next == None {
                // we're at end
                break;
            } else {
                curr.push(next.clone());
                while curr.len() > max_lookbehind {
                    curr.remove(0);
                }
                result.push(next.clone().unwrap());
            }
        }

        result
    }

}

fn weighted_choice<'a, T: Debug+Clone+Default, R: Rng>(rng: &mut R, options: &'a (usize, BTreeMap<T, usize>)) -> T {
    debug_assert_eq!(options.0, options.1.values().sum());
    let random_number = rng.gen_range(0, options.0);
    let mut curr_value = 0;
    let mut last_key = &T::default();
    for (key, value) in options.1.iter() {
        last_key = key;
        if random_number >= curr_value && random_number < curr_value+value {
            return key.clone();
        }
        curr_value += value;
    }

    return last_key.to_owned();
}


#[cfg(test)]
mod tests {
    use super::*;
    use rand::SeedableRng;

    fn has_key<R: Rng>(mc: &MarkovChain<char, R>, k: &str) -> bool {
        let k: Vec<Option<char>> = k.chars().map(|s| Some(s.clone())).collect();
        mc.stages.contains_key(&k)
    }

    fn has_key_w_none_prefix<R: Rng>(mc: &MarkovChain<char, R>, k: &str) -> bool {
        let mut k: Vec<Option<char>> = k.chars().map(|s| Some(s.clone())).collect();
        k.insert(0, None);
        mc.stages.contains_key(&k)
    }

    fn has_key_w_none_predict<R: Rng>(mc: &MarkovChain<char, R>, k: &str) -> bool {
        let k: Vec<Option<char>> = k.chars().map(|s| Some(s.clone())).collect();
        mc.stages.get(&k).map(|stats| stats.1.contains_key(&None)).unwrap_or(false)
    }

    #[test]
    fn simple1() {
        let mut mc = MarkovChain::new(2);

        mc.train("abc".chars());
        //assert_eq!(mc.stages.len(), 4, "{:?}", mc.stages);
        assert!(mc.stages.contains_key(&vec![None]));
        assert!(has_key_w_none_prefix(&mc, "a"));
        assert!(!has_key_w_none_prefix(&mc, "ab"));
        assert!(!has_key_w_none_prefix(&mc, "abc"));

        assert!(has_key_w_none_predict(&mc, "c"));
        assert!(has_key_w_none_predict(&mc, "bc"));
        assert!(!has_key_w_none_predict(&mc, "abc"));

        assert!(has_key(&mc, "ab"));
        assert!(has_key(&mc, "ab"));
        assert!(has_key(&mc, "bc"));
        assert!(!has_key(&mc, "ac"));

        assert!(has_key(&mc, "a"));
        assert!(has_key(&mc, "b"));
        assert!(has_key(&mc, "c"));
        assert!(!has_key(&mc, "d"));

    }

    #[test]
    fn simple2() {
        let mut mc = MarkovChain::new(3);

        mc.train("abc".chars());
        assert!(mc.stages.contains_key(&vec![None]));
        assert!(has_key_w_none_prefix(&mc, "a"));
        assert!(has_key_w_none_prefix(&mc, "ab"));
        assert!(!has_key_w_none_prefix(&mc, "abc"));

        assert!(has_key(&mc, "abc"));

        assert!(has_key(&mc, "ab"));
        assert!(has_key(&mc, "ab"));
        assert!(has_key(&mc, "bc"));
        assert!(!has_key(&mc, "ac"));

        assert!(has_key(&mc, "a"));
        assert!(has_key(&mc, "b"));
        assert!(has_key(&mc, "c"));
        assert!(!has_key(&mc, "d"));

        mc.train("rust".chars());
        assert!(mc.stages.contains_key(&vec![None]));
        assert!(has_key_w_none_prefix(&mc, "r"));
        assert!(has_key_w_none_prefix(&mc, "ru"));
        assert!(!has_key_w_none_prefix(&mc, "rus"));
        assert!(!has_key_w_none_prefix(&mc, "rust"));
        assert!(has_key(&mc, "r"));
        assert!(has_key(&mc, "u"));
        assert!(has_key(&mc, "s"));
        assert!(has_key(&mc, "t"));
        assert!(has_key(&mc, "ru"));
        assert!(has_key(&mc, "us"));
        assert!(has_key(&mc, "st"));
        assert!(has_key(&mc, "rus"));
        assert!(has_key(&mc, "ust"));
        assert!(!has_key(&mc, "rust"));

    }


    fn easy_rng() -> impl Rng {
        rand::prng::XorShiftRng::from_seed([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16])
    }

    #[test]
    fn weighted_choice1() {
        let mut rng = easy_rng();
        let mut data = BTreeMap::new();
        data.insert(Some('a'), 1);
        data.insert(Some('b'), 2);
        let data = (data.values().sum(), data);
        let mut stats: HashMap<Option<char>, usize> = HashMap::new();

        for _ in 0..1000 {
            let choice = weighted_choice(&mut rng, &data);
            *stats.entry(choice).or_default() += 1;
        }
        assert_eq!(stats[&Some('a')], 328);
        assert_eq!(stats[&Some('b')], 672);
        
    }

    #[test]
    fn weighted_choice2() {
        let mut rng = easy_rng();
        let mut data = BTreeMap::new();
        data.insert(Some('a'), 1);
        data.insert(Some('b'), 200);
        data.insert(Some('c'), 200);
        data.insert(Some('d'), 200);
        let data = (data.values().sum(), data);
        let mut stats: HashMap<Option<char>, usize> = HashMap::new();

        for _ in 0..10_000 {
            let choice = weighted_choice(&mut rng, &data);
            *stats.entry(choice).or_default() += 1;
        }
        assert_eq!(stats[&Some('a')], 15);
        assert_eq!(stats[&Some('b')], 3293);
        assert_eq!(stats[&Some('c')], 3405);
        assert_eq!(stats[&Some('d')], 3287);
        
    }

    fn prediction_result<R: Rng>(mc: &mut MarkovChain<char, R>) -> String {
        mc.generate().into_iter().map(|c| c.to_string()).collect::<Vec<String>>().join("")
    }

    fn prediction_result_size<R: Rng>(mc: &mut MarkovChain<char, R>, size: usize) -> String {
        mc.generate_max_look(size).into_iter().map(|c| c.to_string()).collect::<Vec<String>>().join("")
    }

    #[test]
    fn predict1() {
        let mut mc = MarkovChain::new_with_rng(2, easy_rng());

        mc.train("abc".chars());
        mc.train("bbc".chars());
        mc.train("acb".chars());

        assert_eq!(prediction_result(&mut mc), "abc");
        assert_eq!(prediction_result(&mut mc), "bbc");
        assert_eq!(prediction_result(&mut mc), "bbc");

        assert_eq!(prediction_result_size(&mut mc, 1), "abbbc");
        assert_eq!(prediction_result_size(&mut mc, 1), "bc");
        assert_eq!(prediction_result_size(&mut mc, 1), "acbc");
        assert_eq!(prediction_result_size(&mut mc, 1), "ac");

    }
}