1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
//! # wapc
//!
//! The `wapc` crate provides a WebAssembly host runtime that conforms to an RPC mechanism
//! called **waPC**. waPC is designed specifically to prevent either side of the call from having
//! to know anything about _how_ or _when_ memory is allocated or freed. The interface may at first appear more
//! "chatty" than other protocols, but the cleanliness, ease of use, and simplified developer experience
//! is worth the few extra nanoseconds of latency.
//! 
//! To use `wapc`, first you'll need a waPC-compliant WebAssembly module (referred to as the _guest_) to load
//! and interpret. You can find a number of these samples available in the GitHub repository,
//! and anything compiled with the [waxosuit](https://waxosuit.io) guest SDK can also be invoked
//! via waPC as it is 100% waPC compliant.
//! 
//! To make function calls, first set your `host_callback` function, a function invoked by the _guest_. 
//! Then execute `call` on the `WapcHost` instance. 
//! # Example
//! ```
//! extern crate wapc;
//! use wapc::prelude::*;
//! 
//! # fn load_file() -> Vec<u8> {
//! #    include_bytes!("../.assets/hello.wasm").to_vec()
//! # }
//! pub fn main() -> Result<(), Box<dyn std::error::Error>> {
//!     let module = load_file();
//!     let mut host = WapcHost::new(&module)?;
//! 
//!     wapc::set_host_callback(host_callback);
//!     let res = host.call("wapc:sample!Hello", b"this is a test")?;
//!     assert_eq!(res, b"hello world!");
//!     Ok(())
//! }
//! 
//! fn host_callback(op: &str, payload: &[u8]) -> Result<Vec<u8>, Box<dyn std::error::Error>> {
//!     println!("Guest invoked '{}' with payload of {} bytes", op, payload.len());
//!     Ok(vec![])
//! }
//! ```
//! 
//! # Notes
//! waPC is _reactive_. Guest modules cannot initiate host calls without first handling a call
//! initiated by the host. waPC will not automatically invoke any start functions--that decision
//! is up to the waPC library consumer. Guest modules can synchronously make as many host calls
//! as they like, but keep in mind that if a host call takes too long or fails, it'll cause the original
//! guest call to also fail.
//! 
//! In summary, keep `host_callback` functions fast and resilient, and do not spawn new threads 
//! within `host_callback` unless you must (and can synchronize memory access) because waPC 
//! assumes a single-threaded execution environment. The `host_callback` function intentionally 
//! has no references to the WebAssembly module bytes or the running instance.


#[macro_use]
extern crate log;

#[macro_use]
extern crate lazy_static;

pub mod errors;
pub mod prelude;

/// A result type for errors that occur within the wapc library
pub type Result<T> = std::result::Result<T, errors::Error>;

use std::sync::RwLock;
use wasmer_runtime::ImportObject;
use wasmer_runtime::{func, imports, instantiate, Ctx, Func, Instance, Memory};

const HOST_NAMESPACE: &str = "wapc";
const HOST_ENV_NAMESPACE: &str = "env"; // default namespace for multiple interface specs

// -- Functions called by guest, exported by host
const HOST_CONSOLE_LOG: &str = "__console_log";
const HOST_CALL: &str = "__host_call";
const GUEST_REQUEST_FN: &str = "__guest_request";
const HOST_RESPONSE_FN: &str = "__host_response";
const HOST_RESPONSE_LEN_FN: &str = "__host_response_len";
const GUEST_RESPONSE_FN: &str = "__guest_response";
const GUEST_ERROR_FN: &str = "__guest_error";
const HOST_ERROR_FN: &str = "__host_error";
const HOST_ERROR_LEN_FN: &str = "__host_error_len";

// CommonWA support (subset)
const HOST_IO_GET_STDOUT: &str = "io_get_stdout";
const HOST_RESOURCE_WRITE: &str = "resource_write";

// -- Functions called by host, exported by guest
const GUEST_CALL: &str = "__guest_call";

type HostCallback = dyn Fn(&str, &[u8]) -> std::result::Result<Vec<u8>, Box<dyn std::error::Error>> + Sync + Send + 'static;

lazy_static! {
    static ref GUEST_REQUEST: RwLock<Option<Invocation>> = RwLock::new(None);
    static ref GUEST_RESPONSE: RwLock<Option<Vec<u8>>> = RwLock::new(None);
    static ref HOST_RESPONSE: RwLock<Option<Vec<u8>>> = RwLock::new(None);
    static ref GUEST_ERROR: RwLock<Option<String>> = RwLock::new(None);
    static ref HOST_ERROR: RwLock<Option<String>> = RwLock::new(None);
    static ref HOST_CALLBACK: RwLock<Option<Box<HostCallback>>> = RwLock::new(None);
}

#[derive(Debug, Clone)]
struct Invocation {
    operation: String,
    msg: Vec<u8>,
}

impl Invocation {
    fn new(op: &str, msg: Vec<u8>) -> Invocation {
        Invocation {
            operation: op.to_string(),
            msg,
        }
    }
}

/// Sets the callback function to be invoked when the guest module makes a host call.
/// 
/// Callback functions should be single-threaded wherever possible
/// and execute quickly and be diligent about returning appropriate error results.
pub fn set_host_callback<F>(callback: F) where F: Fn(&str, &[u8]) -> std::result::Result<Vec<u8>, Box<dyn std::error::Error>> + Sync + Send + 'static {
    *HOST_CALLBACK.write().unwrap() = Some(Box::new(callback))
}

/// A WebAssembly host runtime for waPC-compliant WebAssembly modules
/// 
/// Use an instance of this struct to provide a means of invoking procedure calls by 
/// specifying an operation name and a set of bytes representing the opaque operation payload. 
/// `WapcHost` makes no assumptions about the contents or format of either the payload or the 
/// operation name.
pub struct WapcHost {
    instance: Instance,
}

impl WapcHost {
    /// Creates a new instance of a waPC-compliant WebAssembly host runtime
    pub fn new(buf: &[u8]) -> Result<WapcHost> {
        let import_object = generate_imports();

        let mh = WapcHost {
            instance: instantiate(&buf, &import_object)?,
        };
        Ok(mh)
    }

    /// Invokes the `__guest_call` function within the guest module as per the waPC specification.
    /// Provide an operation name and an opaque payload of bytes and the function returns a `Result`
    /// containing either an error or an opaque reply of bytes.    
    /// 
    /// It is worth noting that the _first_ time `call` is invoked, the WebAssembly module
    /// will be JIT-compiled. This can take up to a few seconds on debug .wasm files, but
    /// all subsequent calls will be "hot" and run at near-native speeds.    
    pub fn call(&mut self, op: &str, payload: &[u8]) -> Result<Vec<u8>> {
        let inv = Invocation::new(op, payload.to_vec());

        {
            *GUEST_RESPONSE.write().unwrap() = None;
            *GUEST_REQUEST.write().unwrap() = Some((inv).clone());
            *GUEST_ERROR.write().unwrap() = None;
        }

        let callresult = self
            .guest_call_fn()?
            .call(inv.operation.len() as _, inv.msg.len() as _)?;

        if callresult == 0 {
            // invocation failed
            match *GUEST_ERROR.read().unwrap() {
                Some(ref s) => Err(errors::new(errors::ErrorKind::GuestCallFailure(s.clone()))),
                None => Err(errors::new(errors::ErrorKind::GuestCallFailure(
                    "No error message set for call failure".to_string(),
                ))),
            }
        } else {
            // invocation succeeded
            let resp = GUEST_RESPONSE.read().unwrap();
            match *resp {
                Some(ref e) => Ok(e.clone()),
                None => match *GUEST_ERROR.read().unwrap() {
                    Some(ref s) => Err(errors::new(errors::ErrorKind::GuestCallFailure(s.clone()))),
                    None => Err(errors::new(errors::ErrorKind::GuestCallFailure(
                        "No error message OR response set for call success".to_string(),
                    ))),
                },
            }
        }
    }

    /// Performs a live "hot swap" of the WebAssembly module. Since execution is assumed to be
    /// single-threaded within the environment of the `WapcHost`, this will not cause any pending function
    /// calls to be lost. This will replace the currently executing WebAssembly module with the new
    /// bytes.
    /// 
    /// **Note**: you will lose all JITted functions for this module, so the first `call` after a 
    /// hot swap will be "cold" and take longer than regular calls. There are an enormous number of
    /// ways in which a hot swap could go horribly wrong, so please ensure you have the proper guards
    /// in place before invoking it. For example, [Waxosuit](https://waxosuit.io) implements JWT-based
    /// security that consults [Open Policy Agent](https://openpolicyagent.org) before allowing a hot wap.
    pub fn replace_module(&mut self, module: &[u8]) -> Result<()> {
        info!(
            "HOT SWAP - Replacing existing WebAssembly module with new buffer, {} bytes",
            module.len()
        );
        self.instance = create_instance_from_buf(module)?;
        info!("HOT SWAP - Success");
        Ok(())
    }

    fn guest_call_fn(&self) -> Result<Func<(i32, i32), i32>> {
        let f: Func<(i32, i32), i32> = self.instance.func(GUEST_CALL)?;
        Ok(f)
    }
}

fn create_instance_from_buf(buf: &[u8]) -> Result<Instance> {
    let import_object = generate_imports();

    match instantiate(&buf, &import_object) {
        Ok(instance) => Ok(instance),
        Err(e) => Err(errors::new(errors::ErrorKind::WasmMisc(e))),
    }
}

fn generate_imports() -> ImportObject {
    imports! {
            HOST_NAMESPACE => {
                HOST_CONSOLE_LOG => func!(console_log),
                HOST_CALL => func!(host_call),
                GUEST_REQUEST_FN => func!(guest_request),
                GUEST_RESPONSE_FN => func!(guest_response),
                GUEST_ERROR_FN => func!(guest_error),
                HOST_RESPONSE_FN => func!(host_response),
                HOST_RESPONSE_LEN_FN => func!(host_response_len),
                HOST_ERROR_FN => func!(host_error),
                HOST_ERROR_LEN_FN => func!(host_error_len),
            },
            // These are here to attempt to make Go's wasm binaries happy
            HOST_ENV_NAMESPACE => {
                HOST_IO_GET_STDOUT => func!(io_get_stdout),
                HOST_RESOURCE_WRITE => func!(resource_write),
            },
    }
}

// -- Host Functions Follow --

/// Invoked by the guest to populate the request and operation name at the given pointer locations
fn guest_request(ctx: &mut Ctx, op_ptr: i32, ptr: i32) {
    let invocation = GUEST_REQUEST.read().unwrap();
    if let Some(ref inv) = *invocation {
        write_bytes_to_memory(&ctx.memory(0), ptr, &inv.msg);
        write_bytes_to_memory(&ctx.memory(0), op_ptr, &inv.operation.as_bytes());
    }
}

/// Invoked by the guest to set a string describing a failure that occurred during `__guest_call`
fn guest_error(ctx: &mut Ctx, ptr: i32, len: i32) {
    let vec = get_vec_from_memory(&ctx.memory(0), ptr, len);
    *GUEST_ERROR.write().unwrap() = Some(String::from_utf8(vec).unwrap());
}

/// Invoked by the guest to set a response. The existence of a response is an assertion that `__guest_call` finished successfully
fn guest_response(ctx: &mut Ctx, ptr: i32, len: i32) {
    let vec = get_vec_from_memory(&ctx.memory(0), ptr, len);
    *GUEST_RESPONSE.write().unwrap() = Some(vec);
}

/// Invoked by the guest to query the response from the host after `__host_call`
fn host_response(ctx: &mut Ctx, ptr: i32) {
    let resp = HOST_RESPONSE.write().unwrap();
    if let Some(ref e) = *resp {
        write_bytes_to_memory(&ctx.memory(0), ptr, &e);
    }
}

/// Invoked by the guest to obtain the length of the response from the host after `__host_call`
fn host_response_len(_ctx: &mut Ctx) -> i32 {
    let resp = HOST_RESPONSE.read().unwrap();
    match *resp {
        Some(ref e) => e.len() as _,
        None => 0,
    }
}

/// Invoked by the guest to determine the size (if any) of a host failure that occurred during RPC
fn host_error_len(_ctx: &mut Ctx) -> i32 {
    let err = HOST_ERROR.read().unwrap();
    match *err {
        Some(ref e) => e.len() as _,
        None => 0,
    }
}

/// If an error occurred during `__host_call`, the guest module invokes this function to fill a pointer
/// with the string corresponding to that error
fn host_error(ctx: &mut Ctx, ptr: i32) {
    let err = HOST_ERROR.read().unwrap();
    if let Some(ref e) = *err {
        write_bytes_to_memory(&ctx.memory(0), ptr, e.as_bytes());
    }
}

/// Invoked by the guest module when it wants to make a call to a capability
/// The flow of function calls is as follows:
/// 1. Guest invokes `__host_call` with ptr+len pairs for the operation name and the binary payload
/// 2. Host performs requested operation, sets state accordingly
/// 3. Host returns
/// 4. Guest calls `__host_error_len()`, if this is greater than zero, guest invokes `__host_error(ptr)` to obtain the error string
/// 5. Guest calls `__host_response_len()` if no error occurred, then calls `__host_response(ptr)` to obtain the host reply data
fn host_call(ctx: &mut Ctx, op_ptr: i32, op_len: i32, ptr: i32, len: i32) -> i32 {
    {
        *HOST_RESPONSE.write().unwrap() = None;
        *HOST_ERROR.write().unwrap() = None;
    }

    let vec = get_vec_from_memory(&ctx.memory(0), ptr, len);
    let op_vec = get_vec_from_memory(&ctx.memory(0), op_ptr, op_len);
    let op = std::str::from_utf8(&op_vec).unwrap();
    info!("Guest module invoking host call for operation {}", op);

    let result = {
        let lock = HOST_CALLBACK.read().unwrap();
        match *lock {
            Some(ref f) => f(op, &vec),
            None => Err("missing host callback function".into()),         
        }
    };
    match result {
        Ok(invresp) => {
            *HOST_RESPONSE.write().unwrap() = Some(invresp);
            1
        }
        Err(e) => {
            *HOST_ERROR.write().unwrap() = Some(format!("{}", e));
            0
        }
    }
}

/// A CWA-subset function provided in case some languages compile with a CWA subset requirement
/// This function writes a pointer (String) to a resource. waPC only supports the STDOUT resource
/// as resource 0
fn resource_write(ctx: &mut Ctx, resource: i32, ptr: i32, len: i32) -> i32 {
    if resource != 0 {
        warn!("Ignoring non-zero resource write (STDOUT is the only Waxosuit-supported resource)");
        return 0;
    }
    console_log(ctx, ptr, len);
    0
}

/// CWA-subset function that returns the resource identifier for the STDOUT resource. We do not
/// need to do any unique handle acquisition, so the ID of the STDOUT resource will always be
/// 0.
fn io_get_stdout(_ctx: &mut Ctx) -> i32 {
    0
}

/// Emits a UTF-8 encoded string to the stdout device
fn console_log(ctx: &mut Ctx, ptr: i32, len: i32) {
    let vec = get_vec_from_memory(&ctx.memory(0), ptr, len);

    info!("Wasm Guest: {}", std::str::from_utf8(&vec).unwrap());
}

fn get_vec_from_memory(mem: &Memory, ptr: i32, len: i32) -> Vec<u8> {
    mem.view()[ptr as usize..(ptr + len) as usize]
        .iter()
        .map(|cell| cell.get())
        .collect()
}

fn write_bytes_to_memory(memory: &Memory, ptr: i32, slice: &[u8]) {
    let start: usize = ptr as usize;
    let finish: usize = start + slice.len();
    for (&byte, cell) in slice
        .to_vec()
        .iter()
        .zip(memory.view()[start..finish].iter())
    {
        cell.set(byte);
    }
}