1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
// Copyright (c) 2016 The vulkano developers
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or http://opensource.org/licenses/MIT>,
// at your option. All files in the project carrying such
// notice may not be copied, modified, or distributed except
// according to those terms.

use smallvec::SmallVec;
use std::borrow::Cow;
use std::error;
use std::ffi::CStr;
use std::ffi::CString;
use std::fmt;
use std::mem;
use std::ptr;
use std::slice;
use std::sync::Arc;

use Error;
use OomError;
use VulkanObject;
use check_errors;
use instance::loader;
use instance::loader::LoadingError;
use vk;

use features::Features;
use instance::{InstanceExtensions, RawInstanceExtensions};
use version::Version;

/// An instance of a Vulkan context. This is the main object that should be created by an
/// application before everything else.
///
/// See the documentation of [the `instance` module](index.html) for an introduction about
/// Vulkan instances.
///
/// # Extensions and application infos
///
/// Please check the documentation of [the `instance` module](index.html).
///
/// # Layers
///
/// When creating an `Instance`, you have the possibility to pass a list of **layers** that will
/// be activated on the newly-created instance. The list of available layers can be retrieved by
/// calling [the `layers_list` function](fn.layers_list.html).
///
/// A layer is a component that will hook and potentially modify the Vulkan function calls.
/// For example, activating a layer could add a frames-per-second counter on the screen, or it
/// could send informations to a debugger that will debug your application.
///
/// > **Note**: From an application's point of view, layers "just exist". In practice, on Windows
/// > and Linux layers can be installed by third party installers or by package managers and can
/// > also be activated by setting the value of the `VK_INSTANCE_LAYERS` environment variable
/// > before starting the program. See the documentation of the official Vulkan loader for these
/// > platforms.
///
/// > **Note**: In practice, the most common use of layers right now is for debugging purposes.
/// > To do so, you are encouraged to set the `VK_INSTANCE_LAYERS` environment variable on Windows
/// > or Linux instead of modifying the source code of your program. For example:
/// > `export VK_INSTANCE_LAYERS=VK_LAYER_LUNARG_api_dump` on Linux if you installed the Vulkan SDK
/// > will print the list of raw Vulkan function calls.
///
/// ## Example
///
/// ```ignore
/// // FIXME: this example doesn't run because of ownership problems ; Instance::new() needs a tweak
/// use vulkano::instance;
/// use vulkano::instance::Instance;
/// use vulkano::instance::InstanceExtensions;
///
/// // For the sake of the example, we activate all the layers that contain the word "foo" in their
/// // description.
/// let layers = instance::layers_list().unwrap()
///     .filter(|l| l.description().contains("foo"))
///     .map(|l| l.name());
///
/// let instance = Instance::new(None, &InstanceExtensions::none(), layers).unwrap();
/// ```
// TODO: mention that extensions must be supported by layers as well
pub struct Instance {
    instance: vk::Instance,
    //alloc: Option<Box<Alloc + Send + Sync>>,
    physical_devices: Vec<PhysicalDeviceInfos>,
    vk: vk::InstancePointers,
    extensions: InstanceExtensions,
    layers: SmallVec<[CString; 16]>,
}

impl Instance {
    /// Initializes a new instance of Vulkan.
    ///
    /// See the documentation of `Instance` or of [the `instance` module](index.html) for more
    /// details.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use vulkano::instance::Instance;
    /// use vulkano::instance::InstanceExtensions;
    ///
    /// let instance = match Instance::new(None, &InstanceExtensions::none(), None) {
    ///     Ok(i) => i,
    ///     Err(err) => panic!("Couldn't build instance: {:?}", err)
    /// };
    /// ```
    ///
    /// # Panic
    ///
    /// - Panics if the version numbers passed in `ApplicationInfo` are too large can't be
    ///   converted into a Vulkan version number.
    /// - Panics if the application name or engine name contain a null character.
    // TODO: add a test for these ^
    // TODO: if no allocator is specified by the user, use Rust's allocator instead of leaving
    //       the choice to Vulkan
    pub fn new<'a, L, Ext>(app_infos: Option<&ApplicationInfo>, extensions: Ext, layers: L)
                           -> Result<Arc<Instance>, InstanceCreationError>
        where L: IntoIterator<Item = &'a &'a str>,
              Ext: Into<RawInstanceExtensions>
    {
        let layers = layers
            .into_iter()
            .map(|&layer| CString::new(layer).unwrap())
            .collect::<SmallVec<[_; 16]>>();

        Instance::new_inner(app_infos, extensions.into(), layers)
    }

    fn new_inner(app_infos: Option<&ApplicationInfo>, extensions: RawInstanceExtensions,
                 layers: SmallVec<[CString; 16]>)
                 -> Result<Arc<Instance>, InstanceCreationError> {
        // TODO: For now there are still buggy drivers that will segfault if you don't pass any
        //       appinfos. Therefore for now we ensure that it can't be `None`.
        let def = Default::default();
        let app_infos = match app_infos {
            Some(a) => Some(a),
            None => Some(&def),
        };

        // Building the CStrings from the `str`s within `app_infos`.
        // They need to be created ahead of time, since we pass pointers to them.
        let app_infos_strings = if let Some(app_infos) = app_infos {
            Some((app_infos
                      .application_name
                      .clone()
                      .map(|n| CString::new(n.as_bytes().to_owned()).unwrap()),
                  app_infos
                      .engine_name
                      .clone()
                      .map(|n| CString::new(n.as_bytes().to_owned()).unwrap())))
        } else {
            None
        };

        // Building the `vk::ApplicationInfo` if required.
        let app_infos = if let Some(app_infos) = app_infos {
            Some(vk::ApplicationInfo {
                sType: vk::STRUCTURE_TYPE_APPLICATION_INFO,
                pNext: ptr::null(),
                pApplicationName: app_infos_strings
                    .as_ref()
                    .unwrap()
                    .0
                    .as_ref()
                    .map(|s| s.as_ptr())
                    .unwrap_or(ptr::null()),
                applicationVersion: app_infos
                    .application_version
                    .map(|v| v.into_vulkan_version())
                    .unwrap_or(0),
                pEngineName: app_infos_strings
                    .as_ref()
                    .unwrap()
                    .1
                    .as_ref()
                    .map(|s| s.as_ptr())
                    .unwrap_or(ptr::null()),
                engineVersion: app_infos
                    .engine_version
                    .map(|v| v.into_vulkan_version())
                    .unwrap_or(0),
                apiVersion: Version {
                    major: 1,
                    minor: 0,
                    patch: 0,
                }.into_vulkan_version(), // TODO:
            })

        } else {
            None
        };

        // FIXME: check whether each layer is supported
        let layers_ptr = layers
            .iter()
            .map(|layer| layer.as_ptr())
            .collect::<SmallVec<[_; 16]>>();

        let extensions_list = extensions
            .iter()
            .map(|extension| extension.as_ptr())
            .collect::<SmallVec<[_; 32]>>();

        let entry_points = loader::entry_points()?;

        // Creating the Vulkan instance.
        let instance = unsafe {
            let mut output = mem::uninitialized();
            let infos = vk::InstanceCreateInfo {
                sType: vk::STRUCTURE_TYPE_INSTANCE_CREATE_INFO,
                pNext: ptr::null(),
                flags: 0,
                pApplicationInfo: if let Some(app) = app_infos.as_ref() {
                    app as *const _
                } else {
                    ptr::null()
                },
                enabledLayerCount: layers_ptr.len() as u32,
                ppEnabledLayerNames: layers_ptr.as_ptr(),
                enabledExtensionCount: extensions_list.len() as u32,
                ppEnabledExtensionNames: extensions_list.as_ptr(),
            };

            check_errors(entry_points.CreateInstance(&infos, ptr::null(), &mut output))?;
            output
        };

        // Loading the function pointers of the newly-created instance.
        let vk = {
            let f = loader::static_functions().unwrap(); // TODO: return proper error
            vk::InstancePointers::load(|name| unsafe {
                                           mem::transmute(f.GetInstanceProcAddr(instance,
                                                                                name.as_ptr()))
                                       })
        };

        // Enumerating all physical devices.
        let physical_devices: Vec<vk::PhysicalDevice> = unsafe {
            let mut num = 0;
            check_errors(vk.EnumeratePhysicalDevices(instance, &mut num, ptr::null_mut()))?;

            let mut devices = Vec::with_capacity(num as usize);
            check_errors(vk.EnumeratePhysicalDevices(instance, &mut num, devices.as_mut_ptr()))?;
            devices.set_len(num as usize);
            devices
        };

        // TODO: should be Into
        let extensions: InstanceExtensions = (&extensions).into();

        // Getting the properties of all physical devices.
        // If possible, we use VK_KHR_get_physical_device_properties2.
        let physical_devices = if extensions.khr_get_physical_device_properties2 {
            Instance::init_physical_devices2(&vk, physical_devices, &extensions)
        } else {
            Instance::init_physical_devices(&vk, physical_devices)
        };

        Ok(Arc::new(Instance {
                        instance: instance,
                        //alloc: None,
                        physical_devices: physical_devices,
                        vk: vk,
                        extensions: extensions,
                        layers: layers,
                    }))
    }

    /// Initialize all physical devices
    fn init_physical_devices(vk: &vk::InstancePointers, physical_devices: Vec<vk::PhysicalDevice>)
                             -> Vec<PhysicalDeviceInfos> {
        let mut output = Vec::with_capacity(physical_devices.len());

        for device in physical_devices.into_iter() {
            let properties: vk::PhysicalDeviceProperties = unsafe {
                let mut output = mem::uninitialized();
                vk.GetPhysicalDeviceProperties(device, &mut output);
                output
            };

            let queue_families = unsafe {
                let mut num = 0;
                vk.GetPhysicalDeviceQueueFamilyProperties(device, &mut num, ptr::null_mut());

                let mut families = Vec::with_capacity(num as usize);
                vk.GetPhysicalDeviceQueueFamilyProperties(device, &mut num, families.as_mut_ptr());
                families.set_len(num as usize);
                families
            };

            let memory: vk::PhysicalDeviceMemoryProperties = unsafe {
                let mut output = mem::uninitialized();
                vk.GetPhysicalDeviceMemoryProperties(device, &mut output);
                output
            };

            let available_features: vk::PhysicalDeviceFeatures = unsafe {
                let mut output = mem::uninitialized();
                vk.GetPhysicalDeviceFeatures(device, &mut output);
                output
            };

            output.push(PhysicalDeviceInfos {
                            device: device,
                            properties: properties,
                            memory: memory,
                            queue_families: queue_families,
                            available_features: Features::from(available_features),
                        });
        }
        output
    }

    /// Initialize all physical devices, but use VK_KHR_get_physical_device_properties2
    /// TODO: Query extension-specific physical device properties, once a new instance extension is supported.
    fn init_physical_devices2(vk: &vk::InstancePointers,
                              physical_devices: Vec<vk::PhysicalDevice>,
                              extensions: &InstanceExtensions)
                              -> Vec<PhysicalDeviceInfos> {
        let mut output = Vec::with_capacity(physical_devices.len());

        for device in physical_devices.into_iter() {
            let properties: vk::PhysicalDeviceProperties = unsafe {
                let mut output = vk::PhysicalDeviceProperties2KHR {
                    sType: vk::STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2_KHR,
                    pNext: ptr::null_mut(),
                    properties: mem::uninitialized(),
                };

                vk.GetPhysicalDeviceProperties2KHR(device, &mut output);
                output.properties
            };

            let queue_families = unsafe {
                let mut num = 0;
                vk.GetPhysicalDeviceQueueFamilyProperties2KHR(device, &mut num, ptr::null_mut());

                let mut families = (0 .. num)
                    .map(|_| {
                             vk::QueueFamilyProperties2KHR {
                                 sType: vk::STRUCTURE_TYPE_QUEUE_FAMILY_PROPERTIES_2_KHR,
                                 pNext: ptr::null_mut(),
                                 queueFamilyProperties: mem::uninitialized(),
                             }
                         })
                    .collect::<Vec<_>>();

                vk.GetPhysicalDeviceQueueFamilyProperties2KHR(device,
                                                              &mut num,
                                                              families.as_mut_ptr());
                families
                    .into_iter()
                    .map(|family| family.queueFamilyProperties)
                    .collect()
            };

            let memory: vk::PhysicalDeviceMemoryProperties = unsafe {
                let mut output = vk::PhysicalDeviceMemoryProperties2KHR {
                    sType: vk::STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2_KHR,
                    pNext: ptr::null_mut(),
                    memoryProperties: mem::uninitialized(),
                };
                vk.GetPhysicalDeviceMemoryProperties2KHR(device, &mut output);
                output.memoryProperties
            };

            let available_features: vk::PhysicalDeviceFeatures = unsafe {
                let mut output = vk::PhysicalDeviceFeatures2KHR {
                    sType: vk::STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2_KHR,
                    pNext: ptr::null_mut(),
                    features: mem::uninitialized(),
                };
                vk.GetPhysicalDeviceFeatures2KHR(device, &mut output);
                output.features
            };

            output.push(PhysicalDeviceInfos {
                            device: device,
                            properties: properties,
                            memory: memory,
                            queue_families: queue_families,
                            available_features: Features::from(available_features),
                        });
        }
        output
    }

    /*/// Same as `new`, but provides an allocator that will be used by the Vulkan library whenever
    /// it needs to allocate memory on the host.
    ///
    /// Note that this allocator can be overriden when you create a `Device`, a `MemoryPool`, etc.
    pub fn with_alloc(app_infos: Option<&ApplicationInfo>, alloc: Box<Alloc + Send + Sync>) -> Arc<Instance> {
        unimplemented!()
    }*/

    /// Grants access to the Vulkan functions of the instance.
    #[inline]
    pub(crate) fn pointers(&self) -> &vk::InstancePointers {
        &self.vk
    }

    /// Returns the list of extensions that have been loaded.
    ///
    /// This list is equal to what was passed to `Instance::new()`.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use vulkano::instance::Instance;
    /// use vulkano::instance::InstanceExtensions;
    ///
    /// let extensions = InstanceExtensions::supported_by_core().unwrap();
    /// let instance = Instance::new(None, &extensions, None).unwrap();
    /// assert_eq!(instance.loaded_extensions(), &extensions);
    /// ```
    #[inline]
    pub fn loaded_extensions(&self) -> &InstanceExtensions {
        &self.extensions
    }

    /// Returns the list of layers requested when creating this instance.
    #[doc(hidden)]
    #[inline]
    pub fn loaded_layers(&self) -> slice::Iter<CString> {
        self.layers.iter()
    }
}

impl fmt::Debug for Instance {
    #[inline]
    fn fmt(&self, fmt: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        write!(fmt, "<Vulkan instance {:?}>", self.instance)
    }
}

unsafe impl VulkanObject for Instance {
    type Object = vk::Instance;

    #[inline]
    fn internal_object(&self) -> vk::Instance {
        self.instance
    }
}

impl Drop for Instance {
    #[inline]
    fn drop(&mut self) {
        unsafe {
            self.vk.DestroyInstance(self.instance, ptr::null());
        }
    }
}

/// Information that can be given to the Vulkan driver so that it can identify your application.
// TODO: better documentation for struct and methods
#[derive(Debug, Clone)]
pub struct ApplicationInfo<'a> {
    /// Name of the application.
    pub application_name: Option<Cow<'a, str>>,
    /// An opaque number that contains the version number of the application.
    pub application_version: Option<Version>,
    /// Name of the engine used to power the application.
    pub engine_name: Option<Cow<'a, str>>,
    /// An opaque number that contains the version number of the engine.
    pub engine_version: Option<Version>,
}

impl<'a> ApplicationInfo<'a> {
    /// Builds an `ApplicationInfo` from the information gathered by Cargo.
    ///
    /// # Panic
    ///
    /// - Panics if the required environment variables are missing, which happens if the project
    ///   wasn't built by Cargo.
    ///
    pub fn from_cargo_toml() -> ApplicationInfo<'a> {
        let version = Version {
            major: env!("CARGO_PKG_VERSION_MAJOR").parse().unwrap(),
            minor: env!("CARGO_PKG_VERSION_MINOR").parse().unwrap(),
            patch: env!("CARGO_PKG_VERSION_PATCH").parse().unwrap(),
        };

        let name = env!("CARGO_PKG_NAME");

        ApplicationInfo {
            application_name: Some(name.into()),
            application_version: Some(version),
            engine_name: None,
            engine_version: None,
        }
    }
}

impl<'a> Default for ApplicationInfo<'a> {
    fn default() -> ApplicationInfo<'a> {
        ApplicationInfo::from_cargo_toml()
    }
}

/// Error that can happen when creating an instance.
#[derive(Clone, Debug)]
pub enum InstanceCreationError {
    /// Failed to load the Vulkan shared library.
    LoadingError(LoadingError),
    /// Not enough memory.
    OomError(OomError),
    /// Failed to initialize for an implementation-specific reason.
    InitializationFailed,
    /// One of the requested layers is missing.
    LayerNotPresent,
    /// One of the requested extensions is missing.
    ExtensionNotPresent,
    /// The version requested is not supported by the implementation.
    // TODO: more info about this once the question of the version has been resolved
    IncompatibleDriver,
}

impl error::Error for InstanceCreationError {
    #[inline]
    fn description(&self) -> &str {
        match *self {
            InstanceCreationError::LoadingError(_) => "failed to load the Vulkan shared library",
            InstanceCreationError::OomError(_) => "not enough memory available",
            InstanceCreationError::InitializationFailed => "initialization failed",
            InstanceCreationError::LayerNotPresent => "layer not present",
            InstanceCreationError::ExtensionNotPresent => "extension not present",
            InstanceCreationError::IncompatibleDriver => "incompatible driver",
        }
    }

    #[inline]
    fn cause(&self) -> Option<&error::Error> {
        match *self {
            InstanceCreationError::LoadingError(ref err) => Some(err),
            InstanceCreationError::OomError(ref err) => Some(err),
            _ => None,
        }
    }
}

impl fmt::Display for InstanceCreationError {
    #[inline]
    fn fmt(&self, fmt: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        write!(fmt, "{}", error::Error::description(self))
    }
}

impl From<OomError> for InstanceCreationError {
    #[inline]
    fn from(err: OomError) -> InstanceCreationError {
        InstanceCreationError::OomError(err)
    }
}

impl From<LoadingError> for InstanceCreationError {
    #[inline]
    fn from(err: LoadingError) -> InstanceCreationError {
        InstanceCreationError::LoadingError(err)
    }
}

impl From<Error> for InstanceCreationError {
    #[inline]
    fn from(err: Error) -> InstanceCreationError {
        match err {
            err @ Error::OutOfHostMemory => InstanceCreationError::OomError(OomError::from(err)),
            err @ Error::OutOfDeviceMemory => InstanceCreationError::OomError(OomError::from(err)),
            Error::InitializationFailed => InstanceCreationError::InitializationFailed,
            Error::LayerNotPresent => InstanceCreationError::LayerNotPresent,
            Error::ExtensionNotPresent => InstanceCreationError::ExtensionNotPresent,
            Error::IncompatibleDriver => InstanceCreationError::IncompatibleDriver,
            _ => panic!("unexpected error: {:?}", err),
        }
    }
}

struct PhysicalDeviceInfos {
    device: vk::PhysicalDevice,
    properties: vk::PhysicalDeviceProperties,
    queue_families: Vec<vk::QueueFamilyProperties>,
    memory: vk::PhysicalDeviceMemoryProperties,
    available_features: Features,
}

/// Represents one of the available devices on this machine.
///
/// This struct simply contains a pointer to an instance and a number representing the physical
/// device. You are therefore encouraged to pass this around by value instead of by reference.
///
/// # Example
///
/// ```no_run
/// # use vulkano::instance::Instance;
/// # use vulkano::instance::InstanceExtensions;
/// use vulkano::instance::PhysicalDevice;
///
/// # let instance = Instance::new(None, &InstanceExtensions::none(), None).unwrap();
/// for physical_device in PhysicalDevice::enumerate(&instance) {
///     print_infos(physical_device);
/// }
///
/// fn print_infos(dev: PhysicalDevice) {
///     println!("Name: {}", dev.name());
/// }
/// ```
#[derive(Debug, Copy, Clone)]
pub struct PhysicalDevice<'a> {
    instance: &'a Arc<Instance>,
    device: usize,
}

impl<'a> PhysicalDevice<'a> {
    /// Returns an iterator that enumerates the physical devices available.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use vulkano::instance::Instance;
    /// # use vulkano::instance::InstanceExtensions;
    /// use vulkano::instance::PhysicalDevice;
    ///
    /// # let instance = Instance::new(None, &InstanceExtensions::none(), None).unwrap();
    /// for physical_device in PhysicalDevice::enumerate(&instance) {
    ///     println!("Available device: {}", physical_device.name());
    /// }
    /// ```
    #[inline]
    pub fn enumerate(instance: &'a Arc<Instance>) -> PhysicalDevicesIter<'a> {
        PhysicalDevicesIter {
            instance: instance,
            current_id: 0,
        }
    }

    /// Returns a physical device from its index. Returns `None` if out of range.
    ///
    /// Indices range from 0 to the number of devices.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use vulkano::instance::Instance;
    /// use vulkano::instance::InstanceExtensions;
    /// use vulkano::instance::PhysicalDevice;
    ///
    /// let instance = Instance::new(None, &InstanceExtensions::none(), None).unwrap();
    /// let first_physical_device = PhysicalDevice::from_index(&instance, 0).unwrap();
    /// ```
    #[inline]
    pub fn from_index(instance: &'a Arc<Instance>, index: usize) -> Option<PhysicalDevice<'a>> {
        if instance.physical_devices.len() > index {
            Some(PhysicalDevice {
                     instance: instance,
                     device: index,
                 })
        } else {
            None
        }
    }

    /// Returns the instance corresponding to this physical device.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use vulkano::instance::PhysicalDevice;
    ///
    /// fn do_something(physical_device: PhysicalDevice) {
    ///     let _loaded_extensions = physical_device.instance().loaded_extensions();
    ///     // ...
    /// }
    /// ```
    #[inline]
    pub fn instance(&self) -> &'a Arc<Instance> {
        &self.instance
    }

    /// Returns the index of the physical device in the physical devices list.
    ///
    /// This index never changes and can be used later to retrieve a `PhysicalDevice` from an
    /// instance and an index.
    #[inline]
    pub fn index(&self) -> usize {
        self.device
    }

    /// Returns the human-readable name of the device.
    #[inline]
    pub fn name(&self) -> String {
        // FIXME: for some reason this panics if you use a `&str`
        unsafe {
            let val = self.infos().properties.deviceName;
            let val = CStr::from_ptr(val.as_ptr());
            val.to_str()
                .expect("physical device name contained non-UTF8 characters")
                .to_owned()
        }
    }

    /// Returns the type of the device.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use vulkano::instance::Instance;
    /// # use vulkano::instance::InstanceExtensions;
    /// use vulkano::instance::PhysicalDevice;
    ///
    /// # let instance = Instance::new(None, &InstanceExtensions::none(), None).unwrap();
    /// for physical_device in PhysicalDevice::enumerate(&instance) {
    ///     println!("Available device: {} (type: {:?})",
    ///               physical_device.name(), physical_device.ty());
    /// }
    /// ```
    #[inline]
    pub fn ty(&self) -> PhysicalDeviceType {
        match self.instance.physical_devices[self.device]
            .properties
            .deviceType {
            vk::PHYSICAL_DEVICE_TYPE_OTHER => PhysicalDeviceType::Other,
            vk::PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU => PhysicalDeviceType::IntegratedGpu,
            vk::PHYSICAL_DEVICE_TYPE_DISCRETE_GPU => PhysicalDeviceType::DiscreteGpu,
            vk::PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU => PhysicalDeviceType::VirtualGpu,
            vk::PHYSICAL_DEVICE_TYPE_CPU => PhysicalDeviceType::Cpu,
            _ => panic!("Unrecognized Vulkan device type"),
        }
    }

    /// Returns the version of Vulkan supported by this device.
    #[inline]
    pub fn api_version(&self) -> Version {
        let val = self.infos().properties.apiVersion;
        Version::from_vulkan_version(val)
    }

    /// Returns the Vulkan features that are supported by this physical device.
    #[inline]
    pub fn supported_features(&self) -> &'a Features {
        &self.infos().available_features
    }

    /// Builds an iterator that enumerates all the queue families on this physical device.
    #[inline]
    pub fn queue_families(&self) -> QueueFamiliesIter<'a> {
        QueueFamiliesIter {
            physical_device: *self,
            current_id: 0,
        }
    }

    /// Returns the queue family with the given index, or `None` if out of range.
    #[inline]
    pub fn queue_family_by_id(&self, id: u32) -> Option<QueueFamily<'a>> {
        if (id as usize) < self.infos().queue_families.len() {
            Some(QueueFamily {
                     physical_device: *self,
                     id: id,
                 })

        } else {
            None
        }
    }

    /// Builds an iterator that enumerates all the memory types on this physical device.
    #[inline]
    pub fn memory_types(&self) -> MemoryTypesIter<'a> {
        MemoryTypesIter {
            physical_device: *self,
            current_id: 0,
        }
    }

    /// Returns the memory type with the given index, or `None` if out of range.
    #[inline]
    pub fn memory_type_by_id(&self, id: u32) -> Option<MemoryType<'a>> {
        if id < self.infos().memory.memoryTypeCount {
            Some(MemoryType {
                     physical_device: *self,
                     id: id,
                 })

        } else {
            None
        }
    }

    /// Builds an iterator that enumerates all the memory heaps on this physical device.
    #[inline]
    pub fn memory_heaps(&self) -> MemoryHeapsIter<'a> {
        MemoryHeapsIter {
            physical_device: *self,
            current_id: 0,
        }
    }

    /// Returns the memory heap with the given index, or `None` if out of range.
    #[inline]
    pub fn memory_heap_by_id(&self, id: u32) -> Option<MemoryHeap<'a>> {
        if id < self.infos().memory.memoryHeapCount {
            Some(MemoryHeap {
                     physical_device: *self,
                     id: id,
                 })

        } else {
            None
        }
    }

    /// Gives access to the limits of the physical device.
    ///
    /// This function should be zero-cost in release mode. It only exists to not pollute the
    /// namespace of `PhysicalDevice` with all the limits-related getters.
    #[inline]
    pub fn limits(&self) -> Limits<'a> {
        Limits { device: *self }
    }

    /// Returns an opaque number representing the version of the driver of this device.
    ///
    /// The meaning of this number is implementation-specific. It can be used in bug reports, for
    /// example.
    #[inline]
    pub fn driver_version(&self) -> u32 {
        self.infos().properties.driverVersion
    }

    /// Returns the PCI ID of the device.
    #[inline]
    pub fn pci_device_id(&self) -> u32 {
        self.infos().properties.deviceID
    }

    /// Returns the PCI ID of the vendor.
    #[inline]
    pub fn pci_vendor_id(&self) -> u32 {
        self.infos().properties.vendorID
    }

    /// Returns a unique identifier for the device.
    ///
    /// Can be stored in a configuration file, so that you can retrieve the device again the next
    /// time the program is run.
    #[inline]
    pub fn uuid(&self) -> &[u8; 16] {
        // must be equal to vk::UUID_SIZE
        &self.infos().properties.pipelineCacheUUID
    }

    // Internal function to make it easier to get the infos of this device.
    #[inline]
    fn infos(&self) -> &'a PhysicalDeviceInfos {
        &self.instance.physical_devices[self.device]
    }
}

unsafe impl<'a> VulkanObject for PhysicalDevice<'a> {
    type Object = vk::PhysicalDevice;

    #[inline]
    fn internal_object(&self) -> vk::PhysicalDevice {
        self.infos().device
    }
}

/// Iterator for all the physical devices available on hardware.
#[derive(Debug, Clone)]
pub struct PhysicalDevicesIter<'a> {
    instance: &'a Arc<Instance>,
    current_id: usize,
}

impl<'a> Iterator for PhysicalDevicesIter<'a> {
    type Item = PhysicalDevice<'a>;

    #[inline]
    fn next(&mut self) -> Option<PhysicalDevice<'a>> {
        if self.current_id >= self.instance.physical_devices.len() {
            return None;
        }

        let dev = PhysicalDevice {
            instance: self.instance,
            device: self.current_id,
        };

        self.current_id += 1;
        Some(dev)
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = self.instance.physical_devices.len() - self.current_id;
        (len, Some(len))
    }
}

impl<'a> ExactSizeIterator for PhysicalDevicesIter<'a> {
}

/// Type of a physical device.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
#[repr(u32)]
pub enum PhysicalDeviceType {
    /// The device is an integrated GPU.
    IntegratedGpu = 1,
    /// The device is a discrete GPU.
    DiscreteGpu = 2,
    /// The device is a virtual GPU.
    VirtualGpu = 3,
    /// The device is a CPU.
    Cpu = 4,
    /// The device is something else.
    Other = 0,
}

/// Represents a queue family in a physical device.
///
/// A queue family is group of one or multiple queues. All queues of one family have the same
/// characteristics.
#[derive(Debug, Copy, Clone)]
pub struct QueueFamily<'a> {
    physical_device: PhysicalDevice<'a>,
    id: u32,
}

impl<'a> QueueFamily<'a> {
    /// Returns the physical device associated to this queue family.
    #[inline]
    pub fn physical_device(&self) -> PhysicalDevice<'a> {
        self.physical_device
    }

    /// Returns the identifier of this queue family within the physical device.
    #[inline]
    pub fn id(&self) -> u32 {
        self.id
    }

    /// Returns the number of queues that belong to this family.
    ///
    /// Guaranteed to be at least 1 (or else that family wouldn't exist).
    #[inline]
    pub fn queues_count(&self) -> usize {
        self.physical_device.infos().queue_families[self.id as usize].queueCount as usize
    }

    /// Returns true if queues of this family can execute graphics operations.
    #[inline]
    pub fn supports_graphics(&self) -> bool {
        (self.flags() & vk::QUEUE_GRAPHICS_BIT) != 0
    }

    /// Returns true if queues of this family can execute compute operations.
    #[inline]
    pub fn supports_compute(&self) -> bool {
        (self.flags() & vk::QUEUE_COMPUTE_BIT) != 0
    }

    /// Returns true if queues of this family can execute transfer operations.
    ///
    /// > **Note**: Queues that support graphics or compute operations also always support transfer
    /// > operations. As of writing this, this function will always return true. The purpose of
    /// > this function is to be future-proofed in case queues that don't support transfer
    /// > operations are ever added to Vulkan.
    #[inline]
    pub fn supports_transfers(&self) -> bool {
        (self.flags() & vk::QUEUE_TRANSFER_BIT) != 0 || self.supports_graphics() ||
            self.supports_compute()
    }

    /// Returns true if queues of this family can execute sparse resources binding operations.
    #[inline]
    pub fn supports_sparse_binding(&self) -> bool {
        (self.flags() & vk::QUEUE_SPARSE_BINDING_BIT) != 0
    }

    /// Internal utility function that returns the flags of this queue family.
    #[inline]
    fn flags(&self) -> u32 {
        self.physical_device.infos().queue_families[self.id as usize].queueFlags
    }
}

/// Iterator for all the queue families available on a physical device.
#[derive(Debug, Clone)]
pub struct QueueFamiliesIter<'a> {
    physical_device: PhysicalDevice<'a>,
    current_id: u32,
}

impl<'a> Iterator for QueueFamiliesIter<'a> {
    type Item = QueueFamily<'a>;

    #[inline]
    fn next(&mut self) -> Option<QueueFamily<'a>> {
        if self.current_id as usize >= self.physical_device.infos().queue_families.len() {
            return None;
        }

        let dev = QueueFamily {
            physical_device: self.physical_device,
            id: self.current_id,
        };

        self.current_id += 1;
        Some(dev)
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = self.physical_device.infos().queue_families.len();
        let remain = len - self.current_id as usize;
        (remain, Some(remain))
    }
}

impl<'a> ExactSizeIterator for QueueFamiliesIter<'a> {
}

/// Represents a memory type in a physical device.
#[derive(Debug, Copy, Clone)]
pub struct MemoryType<'a> {
    physical_device: PhysicalDevice<'a>,
    id: u32,
}

impl<'a> MemoryType<'a> {
    /// Returns the physical device associated to this memory type.
    #[inline]
    pub fn physical_device(&self) -> PhysicalDevice<'a> {
        self.physical_device
    }

    /// Returns the identifier of this memory type within the physical device.
    #[inline]
    pub fn id(&self) -> u32 {
        self.id
    }

    /// Returns the heap that corresponds to this memory type.
    #[inline]
    pub fn heap(&self) -> MemoryHeap<'a> {
        let heap_id = self.physical_device.infos().memory.memoryTypes[self.id as usize].heapIndex;
        MemoryHeap {
            physical_device: self.physical_device,
            id: heap_id,
        }
    }

    /// Returns true if the memory type is located on the device, which means that it's the most
    /// efficient for GPU accesses.
    #[inline]
    pub fn is_device_local(&self) -> bool {
        (self.flags() & vk::MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0
    }

    /// Returns true if the memory type can be accessed by the host.
    #[inline]
    pub fn is_host_visible(&self) -> bool {
        (self.flags() & vk::MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0
    }

    /// Returns true if modifications made by the host or the GPU on this memory type are
    /// instantaneously visible to the other party. False means that changes have to be flushed.
    ///
    /// You don't need to worry about this, as this library handles that for you.
    #[inline]
    pub fn is_host_coherent(&self) -> bool {
        (self.flags() & vk::MEMORY_PROPERTY_HOST_COHERENT_BIT) != 0
    }

    /// Returns true if memory of this memory type is cached by the host. Host memory accesses to
    /// cached memory is faster than for uncached memory. However you are not guaranteed that it
    /// is coherent.
    #[inline]
    pub fn is_host_cached(&self) -> bool {
        (self.flags() & vk::MEMORY_PROPERTY_HOST_CACHED_BIT) != 0
    }

    /// Returns true if allocations made to this memory type is lazy.
    ///
    /// This means that no actual allocation is performed. Instead memory is automatically
    /// allocated by the Vulkan implementation.
    ///
    /// Memory of this type can only be used on images created with a certain flag. Memory of this
    /// type is never host-visible.
    #[inline]
    pub fn is_lazily_allocated(&self) -> bool {
        (self.flags() & vk::MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT) != 0
    }

    /// Internal utility function that returns the flags of this queue family.
    #[inline]
    fn flags(&self) -> u32 {
        self.physical_device.infos().memory.memoryTypes[self.id as usize].propertyFlags
    }
}

/// Iterator for all the memory types available on a physical device.
#[derive(Debug, Clone)]
pub struct MemoryTypesIter<'a> {
    physical_device: PhysicalDevice<'a>,
    current_id: u32,
}

impl<'a> Iterator for MemoryTypesIter<'a> {
    type Item = MemoryType<'a>;

    #[inline]
    fn next(&mut self) -> Option<MemoryType<'a>> {
        if self.current_id >= self.physical_device.infos().memory.memoryTypeCount {
            return None;
        }

        let dev = MemoryType {
            physical_device: self.physical_device,
            id: self.current_id,
        };

        self.current_id += 1;
        Some(dev)
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = self.physical_device.infos().memory.memoryTypeCount;
        let remain = (len - self.current_id) as usize;
        (remain, Some(remain))
    }
}

impl<'a> ExactSizeIterator for MemoryTypesIter<'a> {
}

/// Represents a memory heap in a physical device.
#[derive(Debug, Copy, Clone)]
pub struct MemoryHeap<'a> {
    physical_device: PhysicalDevice<'a>,
    id: u32,
}

impl<'a> MemoryHeap<'a> {
    /// Returns the physical device associated to this memory heap.
    #[inline]
    pub fn physical_device(&self) -> PhysicalDevice<'a> {
        self.physical_device
    }

    /// Returns the identifier of this memory heap within the physical device.
    #[inline]
    pub fn id(&self) -> u32 {
        self.id
    }

    /// Returns the size in bytes on this heap.
    #[inline]
    pub fn size(&self) -> usize {
        self.physical_device.infos().memory.memoryHeaps[self.id as usize].size as usize
    }

    /// Returns true if the heap is local to the GPU.
    #[inline]
    pub fn is_device_local(&self) -> bool {
        let flags = self.physical_device.infos().memory.memoryHeaps[self.id as usize].flags;
        (flags & vk::MEMORY_HEAP_DEVICE_LOCAL_BIT) != 0
    }
}

/// Iterator for all the memory heaps available on a physical device.
#[derive(Debug, Clone)]
pub struct MemoryHeapsIter<'a> {
    physical_device: PhysicalDevice<'a>,
    current_id: u32,
}

impl<'a> Iterator for MemoryHeapsIter<'a> {
    type Item = MemoryHeap<'a>;

    #[inline]
    fn next(&mut self) -> Option<MemoryHeap<'a>> {
        if self.current_id >= self.physical_device.infos().memory.memoryHeapCount {
            return None;
        }

        let dev = MemoryHeap {
            physical_device: self.physical_device,
            id: self.current_id,
        };

        self.current_id += 1;
        Some(dev)
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = self.physical_device.infos().memory.memoryHeapCount;
        let remain = (len - self.current_id) as usize;
        (remain, Some(remain))
    }
}

impl<'a> ExactSizeIterator for MemoryHeapsIter<'a> {
}

/// Limits of a physical device.
pub struct Limits<'a> {
    device: PhysicalDevice<'a>,
}

macro_rules! limits_impl {
    ($($name:ident: $t:ty => $target:ident,)*) => (
        impl<'a> Limits<'a> {
            $(
                #[inline]
                pub fn $name(&self) -> $t {
                    self.device.infos().properties.limits.$target
                }
            )*
        }
    )
}

limits_impl!{
    max_image_dimension_1d: u32 => maxImageDimension1D,
    max_image_dimension_2d: u32 => maxImageDimension2D,
    max_image_dimension_3d: u32 => maxImageDimension3D,
    max_image_dimension_cube: u32 => maxImageDimensionCube,
    max_image_array_layers: u32 => maxImageArrayLayers,
    max_texel_buffer_elements: u32 => maxTexelBufferElements,
    max_uniform_buffer_range: u32 => maxUniformBufferRange,
    max_storage_buffer_range: u32 => maxStorageBufferRange,
    max_push_constants_size: u32 => maxPushConstantsSize,
    max_memory_allocation_count: u32 => maxMemoryAllocationCount,
    max_sampler_allocation_count: u32 => maxSamplerAllocationCount,
    buffer_image_granularity: u64 => bufferImageGranularity,
    sparse_address_space_size: u64 => sparseAddressSpaceSize,
    max_bound_descriptor_sets: u32 => maxBoundDescriptorSets,
    max_per_stage_descriptor_samplers: u32 => maxPerStageDescriptorSamplers,
    max_per_stage_descriptor_uniform_buffers: u32 => maxPerStageDescriptorUniformBuffers,
    max_per_stage_descriptor_storage_buffers: u32 => maxPerStageDescriptorStorageBuffers,
    max_per_stage_descriptor_sampled_images: u32 => maxPerStageDescriptorSampledImages,
    max_per_stage_descriptor_storage_images: u32 => maxPerStageDescriptorStorageImages,
    max_per_stage_descriptor_input_attachments: u32 => maxPerStageDescriptorInputAttachments,
    max_per_stage_resources: u32 => maxPerStageResources,
    max_descriptor_set_samplers: u32 => maxDescriptorSetSamplers,
    max_descriptor_set_uniform_buffers: u32 => maxDescriptorSetUniformBuffers,
    max_descriptor_set_uniform_buffers_dynamic: u32 => maxDescriptorSetUniformBuffersDynamic,
    max_descriptor_set_storage_buffers: u32 => maxDescriptorSetStorageBuffers,
    max_descriptor_set_storage_buffers_dynamic: u32 => maxDescriptorSetStorageBuffersDynamic,
    max_descriptor_set_sampled_images: u32 => maxDescriptorSetSampledImages,
    max_descriptor_set_storage_images: u32 => maxDescriptorSetStorageImages,
    max_descriptor_set_input_attachments: u32 => maxDescriptorSetInputAttachments,
    max_vertex_input_attributes: u32 => maxVertexInputAttributes,
    max_vertex_input_bindings: u32 => maxVertexInputBindings,
    max_vertex_input_attribute_offset: u32 => maxVertexInputAttributeOffset,
    max_vertex_input_binding_stride: u32 => maxVertexInputBindingStride,
    max_vertex_output_components: u32 => maxVertexOutputComponents,
    max_tessellation_generation_level: u32 => maxTessellationGenerationLevel,
    max_tessellation_patch_size: u32 => maxTessellationPatchSize,
    max_tessellation_control_per_vertex_input_components: u32 => maxTessellationControlPerVertexInputComponents,
    max_tessellation_control_per_vertex_output_components: u32 => maxTessellationControlPerVertexOutputComponents,
    max_tessellation_control_per_patch_output_components: u32 => maxTessellationControlPerPatchOutputComponents,
    max_tessellation_control_total_output_components: u32 => maxTessellationControlTotalOutputComponents,
    max_tessellation_evaluation_input_components: u32 => maxTessellationEvaluationInputComponents,
    max_tessellation_evaluation_output_components: u32 => maxTessellationEvaluationOutputComponents,
    max_geometry_shader_invocations: u32 => maxGeometryShaderInvocations,
    max_geometry_input_components: u32 => maxGeometryInputComponents,
    max_geometry_output_components: u32 => maxGeometryOutputComponents,
    max_geometry_output_vertices: u32 => maxGeometryOutputVertices,
    max_geometry_total_output_components: u32 => maxGeometryTotalOutputComponents,
    max_fragment_input_components: u32 => maxFragmentInputComponents,
    max_fragment_output_attachments: u32 => maxFragmentOutputAttachments,
    max_fragment_dual_src_attachments: u32 => maxFragmentDualSrcAttachments,
    max_fragment_combined_output_resources: u32 => maxFragmentCombinedOutputResources,
    max_compute_shared_memory_size: u32 => maxComputeSharedMemorySize,
    max_compute_work_group_count: [u32; 3] => maxComputeWorkGroupCount,
    max_compute_work_group_invocations: u32 => maxComputeWorkGroupInvocations,
    max_compute_work_group_size: [u32; 3] => maxComputeWorkGroupSize,
    sub_pixel_precision_bits: u32 => subPixelPrecisionBits,
    sub_texel_precision_bits: u32 => subTexelPrecisionBits,
    mipmap_precision_bits: u32 => mipmapPrecisionBits,
    max_draw_indexed_index_value: u32 => maxDrawIndexedIndexValue,
    max_draw_indirect_count: u32 => maxDrawIndirectCount,
    max_sampler_lod_bias: f32 => maxSamplerLodBias,
    max_sampler_anisotropy: f32 => maxSamplerAnisotropy,
    max_viewports: u32 => maxViewports,
    max_viewport_dimensions: [u32; 2] => maxViewportDimensions,
    viewport_bounds_range: [f32; 2] => viewportBoundsRange,
    viewport_sub_pixel_bits: u32 => viewportSubPixelBits,
    min_memory_map_alignment: usize => minMemoryMapAlignment,
    min_texel_buffer_offset_alignment: u64 => minTexelBufferOffsetAlignment,
    min_uniform_buffer_offset_alignment: u64 => minUniformBufferOffsetAlignment,
    min_storage_buffer_offset_alignment: u64 => minStorageBufferOffsetAlignment,
    min_texel_offset: i32 => minTexelOffset,
    max_texel_offset: u32 => maxTexelOffset,
    min_texel_gather_offset: i32 => minTexelGatherOffset,
    max_texel_gather_offset: u32 => maxTexelGatherOffset,
    min_interpolation_offset: f32 => minInterpolationOffset,
    max_interpolation_offset: f32 => maxInterpolationOffset,
    sub_pixel_interpolation_offset_bits: u32 => subPixelInterpolationOffsetBits,
    max_framebuffer_width: u32 => maxFramebufferWidth,
    max_framebuffer_height: u32 => maxFramebufferHeight,
    max_framebuffer_layers: u32 => maxFramebufferLayers,
    framebuffer_color_sample_counts: u32 => framebufferColorSampleCounts,      // FIXME: SampleCountFlag
    framebuffer_depth_sample_counts: u32 => framebufferDepthSampleCounts,      // FIXME: SampleCountFlag
    framebuffer_stencil_sample_counts: u32 => framebufferStencilSampleCounts,      // FIXME: SampleCountFlag
    framebuffer_no_attachments_sample_counts: u32 => framebufferNoAttachmentsSampleCounts,      // FIXME: SampleCountFlag
    max_color_attachments: u32 => maxColorAttachments,
    sampled_image_color_sample_counts: u32 => sampledImageColorSampleCounts,        // FIXME: SampleCountFlag
    sampled_image_integer_sample_counts: u32 => sampledImageIntegerSampleCounts,        // FIXME: SampleCountFlag
    sampled_image_depth_sample_counts: u32 => sampledImageDepthSampleCounts,        // FIXME: SampleCountFlag
    sampled_image_stencil_sample_counts: u32 => sampledImageStencilSampleCounts,        // FIXME: SampleCountFlag
    storage_image_sample_counts: u32 => storageImageSampleCounts,      // FIXME: SampleCountFlag
    max_sample_mask_words: u32 => maxSampleMaskWords,
    timestamp_compute_and_graphics: u32 => timestampComputeAndGraphics,        // TODO: these are booleans
    timestamp_period: f32 => timestampPeriod,
    max_clip_distances: u32 => maxClipDistances,
    max_cull_distances: u32 => maxCullDistances,
    max_combined_clip_and_cull_distances: u32 => maxCombinedClipAndCullDistances,
    discrete_queue_priorities: u32 => discreteQueuePriorities,
    point_size_range: [f32; 2] => pointSizeRange,
    line_width_range: [f32; 2] => lineWidthRange,
    point_size_granularity: f32 => pointSizeGranularity,
    line_width_granularity: f32 => lineWidthGranularity,
    strict_lines: u32 => strictLines,        // TODO: these are booleans
    standard_sample_locations: u32 => standardSampleLocations,        // TODO: these are booleans
    optimal_buffer_copy_offset_alignment: u64 => optimalBufferCopyOffsetAlignment,
    optimal_buffer_copy_row_pitch_alignment: u64 => optimalBufferCopyRowPitchAlignment,
    non_coherent_atom_size: u64 => nonCoherentAtomSize,
}

#[cfg(test)]
mod tests {
    use instance;

    #[test]
    fn create_instance() {
        let _ = instance!();
    }

    #[test]
    fn queue_family_by_id() {
        let instance = instance!();

        let phys = match instance::PhysicalDevice::enumerate(&instance).next() {
            Some(p) => p,
            None => return,
        };

        let queue_family = match phys.queue_families().next() {
            Some(q) => q,
            None => return,
        };

        let by_id = phys.queue_family_by_id(queue_family.id()).unwrap();
        assert_eq!(by_id.id(), queue_family.id());
    }
}