logo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
// Copyright (c) 2016 The vulkano developers
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>,
// at your option. All files in the project carrying such
// notice may not be copied, modified, or distributed except
// according to those terms.

//! All the formats supported by Vulkan.
//!
//! A format is mostly used to describe the texel data of an image. However, formats also show up in
//! a few other places, most notably to describe the format of vertex buffers.
//!
//! # Format support
//!
//! Not all formats are supported by every device. Those that devices do support may only be
//! supported for certain use cases. It is an error to use a format where it is not supported, but
//! you can query a device beforehand for its support by calling `format_properties` on the physical
//! device. You can use this to select a usable format from one or more suitable alternatives.
//! Some formats are required to be always supported for a particular usage. These are listed in the
//! [tables in the Vulkan specification](https://registry.khronos.org/vulkan/specs/1.3-extensions/html/chap43.html#features-required-format-support).
//!
//! # Special format types
//!
//! ## Depth/stencil formats
//!
//! Depth/stencil formats can be identified by the `D` and `S` components in their names. They are
//! used primarily as the format for framebuffer attachments, for the purposes of depth and stencil
//! testing.
//!
//! Some formats have only a depth or stencil component, while others combine both. The two
//! components are represented as separate *aspects*, which means that they can be accessed
//! individually as separate images. These pseudo-images have the same resolution, but different
//! bit depth and numeric representation.
//!
//! Depth/stencil formats deviate from the others in a few more ways. Their data representation is
//! considered opaque, meaning that they do not have a fixed layout in memory nor a fixed size per
//! texel. They also have special limitations in several operations such as copying; a depth/stencil
//! format is not compatible with any other format, only with itself.
//!
//! ## Block-compressed formats
//!
//! A block-compressed format uses compression to encode a larger block of texels into a smaller
//! number of bytes. Individual texels are no longer represented in memory, only the block as a
//! whole. An image must consist of a whole number of blocks, so the dimensions of an image must be
//! a whole multiple of the block dimensions. Vulkan supports several different compression schemes,
//! represented in Vulkano by the `CompressionType` enum.
//!
//! Overall, block-compressed formats do not behave significantly differently from regular formats.
//! They are mostly restricted in terms of compatibility. Because of the compression, the notion of
//! bits per component does not apply, so the `components` method will only return whether a
//! component is present or not.
//!
//! ## YCbCr formats
//!
//! YCbCr, also known as YUV, is an alternative image representation with three components:
//! Y for luminance or *luma* (overall brightness) and two color or *chroma* components Cb and Cr
//! encoding the blueness and redness respectively. YCbCr formats are primarily used in video
//! applications. In Vulkan, the formats used to encode YCbCr data use the green channel to
//! represent the luma component, while the blue and red components hold the chroma.
//!
//! To use most YCbCr formats in an [image view](crate::image::view), a
//! [sampler YCbCr conversion](crate::sampler::ycbcr) object must be created, and attached to both
//! the image view and the sampler. To query whether a format requires the conversion, you can call
//! `ycbcr_chroma_sampling` on a format. As a rule, any format with `444`, `422`, `420`,
//! `3PACK` or `4PACK` in the name requires it.
//!
//! Many YCbCr formats make use of **chroma subsampling**. This is a technique whereby the two
//! chroma components are encoded using a lower resolution than the luma component. The human eye is
//! less sensitive to color detail than to detail in brightness, so this allows more detail to be
//! encoded in less data. Chroma subsampling is indicated with one of three numbered suffixes in a
//! format name:
//! - `444` indicates a YCbCr format without chroma subsampling. All components have the same
//!   resolution.
//! - `422` indicates horizontal chroma subsampling. The horizontal resolution of the chroma
//!   components is halved, so a single value is shared within a 2x1 block of texels.
//! - `420` indicates horizontal and vertical chroma subsampling. Both dimensions of the chroma
//!   components are halved, so a single value is shared within a 2x2 block of texels.
//!
//! Most YCbCr formats, including all of the `444` and `420` formats, are **multi-planar**. Instead
//! of storing the components of a single texel together in memory, the components are separated
//! into *planes*, which act like independent images. In 3-plane formats, the planes hold the Y,
//! Cb and Cr components respectively, while in 2-plane formats, Cb and Cr are combined into a
//! two-component plane. Where chroma subsampling is applied, plane 0 has the full resolution, while
//! planes 1 and 2 have reduced resolution. Effectively, they are standalone images with half the
//! resolution of the original.
//!
//! The texels of multi-planar images cannot be accessed individually, for example to copy or blit,
//! since the components of each texel are split across the planes. Instead, you must access each
//! plane as an individual *aspect* of the image. A single-plane aspect of a multi-planar image
//! behaves as a regular image, and even has its own format, which can be queried with the `plane`
//! method on a format.

use crate::{
    device::physical::PhysicalDevice, image::ImageAspects, macros::vulkan_bitflags,
    shader::spirv::ImageFormat, DeviceSize,
};

// Generated by build.rs
include!(concat!(env!("OUT_DIR"), "/formats.rs"));

impl Format {
    /// Retrieves the properties of a format when used by a certain device.
    #[deprecated(
        since = "0.28.0",
        note = "Use PhysicalDevice::format_properties instead"
    )]
    #[inline]
    pub fn properties(&self, physical_device: PhysicalDevice) -> FormatProperties {
        physical_device.format_properties(*self).unwrap()
    }

    /// Returns whether the format can be used with a storage image, without specifying
    /// the format in the shader, if the
    /// [`shader_storage_image_read_without_format`](crate::device::Features::shader_storage_image_read_without_format)
    /// and/or
    /// [`shader_storage_image_write_without_format`](crate::device::Features::shader_storage_image_write_without_format)
    /// features are enabled on the device.
    #[inline]
    pub fn shader_storage_image_without_format(&self) -> bool {
        matches!(
            *self,
            Format::R8G8B8A8_UNORM
                | Format::R8G8B8A8_SNORM
                | Format::R8G8B8A8_UINT
                | Format::R8G8B8A8_SINT
                | Format::R32_UINT
                | Format::R32_SINT
                | Format::R32_SFLOAT
                | Format::R32G32_UINT
                | Format::R32G32_SINT
                | Format::R32G32_SFLOAT
                | Format::R32G32B32A32_UINT
                | Format::R32G32B32A32_SINT
                | Format::R32G32B32A32_SFLOAT
                | Format::R16G16B16A16_UINT
                | Format::R16G16B16A16_SINT
                | Format::R16G16B16A16_SFLOAT
                | Format::R16G16_SFLOAT
                | Format::B10G11R11_UFLOAT_PACK32
                | Format::R16_SFLOAT
                | Format::R16G16B16A16_UNORM
                | Format::A2B10G10R10_UNORM_PACK32
                | Format::R16G16_UNORM
                | Format::R8G8_UNORM
                | Format::R16_UNORM
                | Format::R8_UNORM
                | Format::R16G16B16A16_SNORM
                | Format::R16G16_SNORM
                | Format::R8G8_SNORM
                | Format::R16_SNORM
                | Format::R8_SNORM
                | Format::R16G16_SINT
                | Format::R8G8_SINT
                | Format::R16_SINT
                | Format::R8_SINT
                | Format::A2B10G10R10_UINT_PACK32
                | Format::R16G16_UINT
                | Format::R8G8_UINT
                | Format::R16_UINT
                | Format::R8_UINT
        )
    }
}

impl From<Format> for ash::vk::Format {
    #[inline]
    fn from(val: Format) -> Self {
        ash::vk::Format::from_raw(val as i32)
    }
}

// https://registry.khronos.org/vulkan/specs/1.3-extensions/html/chap46.html#spirvenv-image-formats
impl From<ImageFormat> for Option<Format> {
    fn from(val: ImageFormat) -> Self {
        match val {
            ImageFormat::Unknown => None,
            ImageFormat::Rgba32f => Some(Format::R32G32B32A32_SFLOAT),
            ImageFormat::Rgba16f => Some(Format::R16G16B16A16_SFLOAT),
            ImageFormat::R32f => Some(Format::R32_SFLOAT),
            ImageFormat::Rgba8 => Some(Format::R8G8B8A8_UNORM),
            ImageFormat::Rgba8Snorm => Some(Format::R8G8B8A8_SNORM),
            ImageFormat::Rg32f => Some(Format::R32G32_SFLOAT),
            ImageFormat::Rg16f => Some(Format::R16G16_SFLOAT),
            ImageFormat::R11fG11fB10f => Some(Format::B10G11R11_UFLOAT_PACK32),
            ImageFormat::R16f => Some(Format::R16_SFLOAT),
            ImageFormat::Rgba16 => Some(Format::R16G16B16A16_UNORM),
            ImageFormat::Rgb10A2 => Some(Format::A2B10G10R10_UNORM_PACK32),
            ImageFormat::Rg16 => Some(Format::R16G16_UNORM),
            ImageFormat::Rg8 => Some(Format::R8G8_UNORM),
            ImageFormat::R16 => Some(Format::R16_UNORM),
            ImageFormat::R8 => Some(Format::R8_UNORM),
            ImageFormat::Rgba16Snorm => Some(Format::R16G16B16A16_SNORM),
            ImageFormat::Rg16Snorm => Some(Format::R16G16_SNORM),
            ImageFormat::Rg8Snorm => Some(Format::R8G8_SNORM),
            ImageFormat::R16Snorm => Some(Format::R16_SNORM),
            ImageFormat::R8Snorm => Some(Format::R8_SNORM),
            ImageFormat::Rgba32i => Some(Format::R32G32B32A32_SINT),
            ImageFormat::Rgba16i => Some(Format::R16G16B16A16_SINT),
            ImageFormat::Rgba8i => Some(Format::R8G8B8A8_SINT),
            ImageFormat::R32i => Some(Format::R32_SINT),
            ImageFormat::Rg32i => Some(Format::R32G32_SINT),
            ImageFormat::Rg16i => Some(Format::R16G16_SINT),
            ImageFormat::Rg8i => Some(Format::R8G8_SINT),
            ImageFormat::R16i => Some(Format::R16_SINT),
            ImageFormat::R8i => Some(Format::R8_SINT),
            ImageFormat::Rgba32ui => Some(Format::R32G32B32A32_UINT),
            ImageFormat::Rgba16ui => Some(Format::R16G16B16A16_UINT),
            ImageFormat::Rgba8ui => Some(Format::R8G8B8A8_UINT),
            ImageFormat::R32ui => Some(Format::R32_UINT),
            ImageFormat::Rgb10a2ui => Some(Format::A2B10G10R10_UINT_PACK32),
            ImageFormat::Rg32ui => Some(Format::R32G32_UINT),
            ImageFormat::Rg16ui => Some(Format::R16G16_UINT),
            ImageFormat::Rg8ui => Some(Format::R8G8_UINT),
            ImageFormat::R16ui => Some(Format::R16_UINT),
            ImageFormat::R8ui => Some(Format::R8_UINT),
            ImageFormat::R64ui => Some(Format::R64_UINT),
            ImageFormat::R64i => Some(Format::R64_SINT),
        }
    }
}

/// The block compression scheme used in a format.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
#[allow(non_camel_case_types)]
pub enum CompressionType {
    /// Adaptive Scalable Texture Compression, low dynamic range.
    ASTC_LDR,
    /// Adaptive Scalable Texture Compression, high dynamic range.
    ASTC_HDR,
    /// S3TC Block Compression.
    BC,
    /// Ericsson Texture Compression 2.
    ETC2,
    /// ETC2 Alpha Compression.
    EAC,
    /// PowerVR Texture Compression.
    PVRTC,
}

/// For YCbCr formats, the type of chroma sampling used.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum ChromaSampling {
    /// The chroma components are represented at the same resolution as the luma component.
    Mode444,
    /// The chroma components have half the horizontal resolution as the luma component.
    Mode422,
    /// The chroma components have half the horizontal and vertical resolution as the luma
    /// component.
    Mode420,
}

impl ChromaSampling {
    pub fn subsampled_extent(&self, mut extent: [u32; 3]) -> [u32; 3] {
        match self {
            ChromaSampling::Mode444 => (),
            ChromaSampling::Mode422 => {
                debug_assert!(extent[0] % 2 == 0);
                extent[0] /= 2;
            }
            ChromaSampling::Mode420 => {
                debug_assert!(extent[0] % 2 == 0 && extent[1] % 2 == 0);
                extent[0] /= 2;
                extent[1] /= 2;
            }
        }

        extent
    }
}

/// The numeric type that represents data of a format in memory.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum NumericType {
    /// Signed floating-point number.
    SFLOAT,
    /// Unsigned floating-point number.
    UFLOAT,
    /// Signed integer.
    SINT,
    /// Unsigned integer.
    UINT,
    /// Signed integer that represents a normalized floating-point value in the range \[-1,1].
    SNORM,
    /// Unsigned integer that represents a normalized floating-point value in the range \[0,1].
    UNORM,
    /// Signed integer that is converted to a floating-point value directly.
    SSCALED,
    /// Unsigned integer that is converted to a floating-point value directly.
    USCALED,
    /// Unsigned integer where R, G, B components represent a normalized floating-point value in the
    /// sRGB color space, while the A component is a simple normalized value as in `UNORM`.
    SRGB,
}

/// An opaque type that represents a format compatibility class.
///
/// Two formats are compatible if their compatibility classes compare equal.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
#[repr(transparent)]
pub struct FormatCompatibility(pub(crate) &'static FormatCompatibilityInner);

#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
#[allow(non_camel_case_types)]
pub(crate) enum FormatCompatibilityInner {
    Class_8bit,
    Class_16bit,
    Class_24bit,
    Class_32bit,
    Class_48bit,
    Class_64bit,
    Class_96bit,
    Class_128bit,
    Class_192bit,
    Class_256bit,
    Class_D16,
    Class_D24,
    Class_D32,
    Class_S8,
    Class_D16S8,
    Class_D24S8,
    Class_D32S8,
    Class_64bit_R10G10B10A10,
    Class_64bit_R12G12B12A12,
    Class_BC1_RGB,
    Class_BC1_RGBA,
    Class_BC2,
    Class_BC3,
    Class_BC4,
    Class_BC5,
    Class_BC6H,
    Class_BC7,
    Class_ETC2_RGB,
    Class_ETC2_RGBA,
    Class_ETC2_EAC_RGBA,
    Class_EAC_R,
    Class_EAC_RG,
    Class_ASTC_4x4,
    Class_ASTC_5x4,
    Class_ASTC_5x5,
    Class_ASTC_6x5,
    Class_ASTC_6x6,
    Class_ASTC_8x5,
    Class_ASTC_8x6,
    Class_ASTC_8x8,
    Class_ASTC_10x5,
    Class_ASTC_10x6,
    Class_ASTC_10x8,
    Class_ASTC_10x10,
    Class_ASTC_12x10,
    Class_ASTC_12x12,
    Class_PVRTC1_2BPP,
    Class_PVRTC1_4BPP,
    Class_PVRTC2_2BPP,
    Class_PVRTC2_4BPP,
    Class_32bit_G8B8G8R8,
    Class_32bit_B8G8R8G8,
    Class_64bit_G10B10G10R10,
    Class_64bit_B10G10R10G10,
    Class_64bit_G12B12G12R12,
    Class_64bit_B12G12R12G12,
    Class_64bit_G16B16G16R16,
    Class_64bit_B16G16R16G16,
    Class_8bit_3plane_420,
    Class_8bit_2plane_420,
    Class_10bit_3plane_420,
    Class_10bit_2plane_420,
    Class_12bit_3plane_420,
    Class_12bit_2plane_420,
    Class_16bit_3plane_420,
    Class_16bit_2plane_420,
    Class_8bit_3plane_422,
    Class_8bit_2plane_422,
    Class_10bit_3plane_422,
    Class_10bit_2plane_422,
    Class_12bit_3plane_422,
    Class_12bit_2plane_422,
    Class_16bit_3plane_422,
    Class_16bit_2plane_422,
    Class_8bit_3plane_444,
    Class_10bit_3plane_444,
    Class_12bit_3plane_444,
    Class_16bit_3plane_444,
    Class_8bit_2plane_444,
    Class_10bit_2plane_444,
    Class_12bit_2plane_444,
    Class_16bit_2plane_444,
}

/// Describes a uniform value that will be used to fill an image.
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum ClearValue {
    /// Value for floating-point attachments, including `UNORM`, `SNORM`, `SFLOAT`.
    Float([f32; 4]),

    /// Value for integer attachments, including `SINT`.
    Int([i32; 4]),

    /// Value for unsigned integer attachments, including `UINT`.
    Uint([u32; 4]),

    /// Value for depth attachments.
    Depth(f32),

    /// Value for stencil attachments.
    Stencil(u32),

    /// Value for depth and stencil attachments.
    DepthStencil((f32, u32)),
}

impl From<ClearValue> for ash::vk::ClearValue {
    #[inline]
    fn from(val: ClearValue) -> Self {
        match val {
            ClearValue::Float(val) => Self {
                color: ash::vk::ClearColorValue { float32: val },
            },
            ClearValue::Int(val) => Self {
                color: ash::vk::ClearColorValue { int32: val },
            },
            ClearValue::Uint(val) => Self {
                color: ash::vk::ClearColorValue { uint32: val },
            },
            ClearValue::Depth(depth) => Self {
                depth_stencil: ash::vk::ClearDepthStencilValue { depth, stencil: 0 },
            },
            ClearValue::Stencil(stencil) => Self {
                depth_stencil: ash::vk::ClearDepthStencilValue {
                    depth: 0.0,
                    stencil,
                },
            },
            ClearValue::DepthStencil((depth, stencil)) => Self {
                depth_stencil: ash::vk::ClearDepthStencilValue { depth, stencil },
            },
        }
    }
}

impl From<ClearColorValue> for ClearValue {
    #[inline]
    fn from(val: ClearColorValue) -> Self {
        match val {
            ClearColorValue::Float(val) => Self::Float(val),
            ClearColorValue::Int(val) => Self::Int(val),
            ClearColorValue::Uint(val) => Self::Uint(val),
        }
    }
}

impl From<[f32; 1]> for ClearValue {
    #[inline]
    fn from(val: [f32; 1]) -> Self {
        Self::Float([val[0], 0.0, 0.0, 1.0])
    }
}

impl From<[f32; 2]> for ClearValue {
    #[inline]
    fn from(val: [f32; 2]) -> Self {
        Self::Float([val[0], val[1], 0.0, 1.0])
    }
}

impl From<[f32; 3]> for ClearValue {
    #[inline]
    fn from(val: [f32; 3]) -> Self {
        Self::Float([val[0], val[1], val[2], 1.0])
    }
}

impl From<[f32; 4]> for ClearValue {
    #[inline]
    fn from(val: [f32; 4]) -> Self {
        Self::Float(val)
    }
}

impl From<[u32; 1]> for ClearValue {
    #[inline]
    fn from(val: [u32; 1]) -> Self {
        Self::Uint([val[0], 0, 0, 0]) // TODO: is alpha value 0 correct?
    }
}

impl From<[u32; 2]> for ClearValue {
    #[inline]
    fn from(val: [u32; 2]) -> Self {
        Self::Uint([val[0], val[1], 0, 0]) // TODO: is alpha value 0 correct?
    }
}

impl From<[u32; 3]> for ClearValue {
    #[inline]
    fn from(val: [u32; 3]) -> Self {
        Self::Uint([val[0], val[1], val[2], 0]) // TODO: is alpha value 0 correct?
    }
}

impl From<[u32; 4]> for ClearValue {
    #[inline]
    fn from(val: [u32; 4]) -> Self {
        Self::Uint(val)
    }
}

impl From<[i32; 1]> for ClearValue {
    #[inline]
    fn from(val: [i32; 1]) -> Self {
        Self::Int([val[0], 0, 0, 0]) // TODO: is alpha value 0 correct?
    }
}

impl From<[i32; 2]> for ClearValue {
    #[inline]
    fn from(val: [i32; 2]) -> Self {
        Self::Int([val[0], val[1], 0, 0]) // TODO: is alpha value 0 correct?
    }
}

impl From<[i32; 3]> for ClearValue {
    #[inline]
    fn from(val: [i32; 3]) -> Self {
        Self::Int([val[0], val[1], val[2], 0]) // TODO: is alpha value 0 correct?
    }
}

impl From<[i32; 4]> for ClearValue {
    #[inline]
    fn from(val: [i32; 4]) -> Self {
        Self::Int(val)
    }
}

impl From<f32> for ClearValue {
    #[inline]
    fn from(val: f32) -> Self {
        Self::Depth(val)
    }
}

impl From<u32> for ClearValue {
    #[inline]
    fn from(val: u32) -> Self {
        Self::Stencil(val)
    }
}

impl From<(f32, u32)> for ClearValue {
    #[inline]
    fn from(val: (f32, u32)) -> Self {
        Self::DepthStencil(val)
    }
}

/// A value that will be used to clear a color image.
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum ClearColorValue {
    /// Value for formats with a numeric type that is not `SINT` or `UINT`.
    Float([f32; 4]),
    /// Value for formats with a numeric type of `SINT`.
    Int([i32; 4]),
    /// Value for formats with a numeric type of `UINT`.
    Uint([u32; 4]),
}

impl From<ClearColorValue> for ash::vk::ClearColorValue {
    #[inline]
    fn from(val: ClearColorValue) -> Self {
        match val {
            ClearColorValue::Float(float32) => Self { float32 },
            ClearColorValue::Int(int32) => Self { int32 },
            ClearColorValue::Uint(uint32) => Self { uint32 },
        }
    }
}

impl From<[f32; 1]> for ClearColorValue {
    #[inline]
    fn from(val: [f32; 1]) -> Self {
        Self::Float([val[0], 0.0, 0.0, 1.0])
    }
}

impl From<[f32; 2]> for ClearColorValue {
    #[inline]
    fn from(val: [f32; 2]) -> Self {
        Self::Float([val[0], val[1], 0.0, 1.0])
    }
}

impl From<[f32; 3]> for ClearColorValue {
    #[inline]
    fn from(val: [f32; 3]) -> Self {
        Self::Float([val[0], val[1], val[2], 1.0])
    }
}

impl From<[f32; 4]> for ClearColorValue {
    #[inline]
    fn from(val: [f32; 4]) -> Self {
        Self::Float(val)
    }
}

impl From<[i32; 1]> for ClearColorValue {
    #[inline]
    fn from(val: [i32; 1]) -> Self {
        Self::Int([val[0], 0, 0, 1])
    }
}

impl From<[i32; 2]> for ClearColorValue {
    #[inline]
    fn from(val: [i32; 2]) -> Self {
        Self::Int([val[0], val[1], 0, 1])
    }
}

impl From<[i32; 3]> for ClearColorValue {
    #[inline]
    fn from(val: [i32; 3]) -> Self {
        Self::Int([val[0], val[1], val[2], 1])
    }
}

impl From<[i32; 4]> for ClearColorValue {
    #[inline]
    fn from(val: [i32; 4]) -> Self {
        Self::Int(val)
    }
}

impl From<[u32; 1]> for ClearColorValue {
    #[inline]
    fn from(val: [u32; 1]) -> Self {
        Self::Uint([val[0], 0, 0, 1])
    }
}

impl From<[u32; 2]> for ClearColorValue {
    #[inline]
    fn from(val: [u32; 2]) -> Self {
        Self::Uint([val[0], val[1], 0, 1])
    }
}

impl From<[u32; 3]> for ClearColorValue {
    #[inline]
    fn from(val: [u32; 3]) -> Self {
        Self::Uint([val[0], val[1], val[2], 1])
    }
}

impl From<[u32; 4]> for ClearColorValue {
    #[inline]
    fn from(val: [u32; 4]) -> Self {
        Self::Uint(val)
    }
}

/// A value that will be used to clear a depth/stencil image.
#[derive(Clone, Copy, Debug, Default, PartialEq)]
pub struct ClearDepthStencilValue {
    /// Value for the depth component.
    pub depth: f32,
    /// Value for the stencil component.
    pub stencil: u32,
}

impl From<ClearDepthStencilValue> for ash::vk::ClearDepthStencilValue {
    #[inline]
    fn from(val: ClearDepthStencilValue) -> Self {
        Self {
            depth: val.depth,
            stencil: val.stencil,
        }
    }
}

impl From<f32> for ClearDepthStencilValue {
    #[inline]
    fn from(depth: f32) -> Self {
        Self { depth, stencil: 0 }
    }
}

impl From<u32> for ClearDepthStencilValue {
    #[inline]
    fn from(stencil: u32) -> Self {
        Self {
            depth: 0.0,
            stencil,
        }
    }
}

impl From<(f32, u32)> for ClearDepthStencilValue {
    #[inline]
    fn from((depth, stencil): (f32, u32)) -> Self {
        Self { depth, stencil }
    }
}

/// The properties of a format that are supported by a physical device.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct FormatProperties {
    /// Features available for images with linear tiling.
    pub linear_tiling_features: FormatFeatures,

    /// Features available for images with optimal tiling.
    pub optimal_tiling_features: FormatFeatures,

    /// Features available for buffers.
    pub buffer_features: FormatFeatures,

    pub _ne: crate::NonExhaustive,
}

impl Default for FormatProperties {
    #[inline]
    fn default() -> Self {
        Self {
            linear_tiling_features: Default::default(),
            optimal_tiling_features: Default::default(),
            buffer_features: Default::default(),
            _ne: crate::NonExhaustive(()),
        }
    }
}

impl FormatProperties {
    /// Returns the potential format features, following the definition of
    /// <https://registry.khronos.org/vulkan/specs/1.3-extensions/html/chap43.html#potential-format-features>.
    #[inline]
    pub fn potential_format_features(&self) -> FormatFeatures {
        self.linear_tiling_features | self.optimal_tiling_features
    }
}

vulkan_bitflags! {
    /// The features supported by a device for an image or buffer with a particular format.
    #[non_exhaustive]
    FormatFeatures = FormatFeatureFlags2(u64);

    /* Image usage  */

    /// Can be used with a sampled image descriptor.
    sampled_image = SAMPLED_IMAGE,

    /// Can be used with a storage image descriptor.
    storage_image = STORAGE_IMAGE,

    /// Can be used with a storage image descriptor with atomic operations in a shader.
    storage_image_atomic = STORAGE_IMAGE_ATOMIC,

    /// Can be used with a storage image descriptor for reading, without specifying a format on the
    /// image view.
    storage_read_without_format = STORAGE_READ_WITHOUT_FORMAT {
        api_version: V1_3,
        device_extensions: [khr_format_feature_flags2],
    },

    /// Can be used with a storage image descriptor for writing, without specifying a format on the
    /// image view.
    storage_write_without_format = STORAGE_WRITE_WITHOUT_FORMAT {
        api_version: V1_3,
        device_extensions: [khr_format_feature_flags2],
    },

    /// Can be used with a color attachment in a framebuffer, or with an input attachment
    /// descriptor.
    color_attachment = COLOR_ATTACHMENT,

    /// Can be used with a color attachment in a framebuffer with blending, or with an input
    /// attachment descriptor.
    color_attachment_blend = COLOR_ATTACHMENT_BLEND,

    /// Can be used with a depth/stencil attachment in a framebuffer, or with an input attachment
    /// descriptor.
    depth_stencil_attachment = DEPTH_STENCIL_ATTACHMENT,

    /// Can be used with a fragment density map attachment in a framebuffer.
    fragment_density_map = FRAGMENT_DENSITY_MAP_EXT {
        device_extensions: [ext_fragment_density_map],
    },

    /// Can be used with a fragment shading rate attachment in a framebuffer.
    fragment_shading_rate_attachment = FRAGMENT_SHADING_RATE_ATTACHMENT_KHR {
        device_extensions: [khr_fragment_shading_rate],
    },

    /// Can be used with the source image in a transfer (copy) operation.
    transfer_src = TRANSFER_SRC {
        api_version: V1_1,
        device_extensions: [khr_maintenance1],
    },

    /// Can be used with the destination image in a transfer (copy) operation.
    transfer_dst = TRANSFER_DST  {
        api_version: V1_1,
        device_extensions: [khr_maintenance1],
    },

    /// Can be used with the source image in a blit operation.
    blit_src = BLIT_SRC,

    /// Can be used with the destination image in a blit operation.
    blit_dst = BLIT_DST,

    /* Sampling  */

    /// Can be used with samplers or as a blit source, using the
    /// [`Linear`](crate::sampler::Filter::Linear) filter.
    sampled_image_filter_linear = SAMPLED_IMAGE_FILTER_LINEAR,

    /// Can be used with samplers or as a blit source, using the
    /// [`Cubic`](crate::sampler::Filter::Cubic) filter.
    sampled_image_filter_cubic = SAMPLED_IMAGE_FILTER_CUBIC_EXT  {
        device_extensions: [ext_filter_cubic, img_filter_cubic],
    },

    /// Can be used with samplers using a reduction mode of
    /// [`Min`](crate::sampler::SamplerReductionMode::Min) or
    /// [`Max`](crate::sampler::SamplerReductionMode::Max).
    sampled_image_filter_minmax = SAMPLED_IMAGE_FILTER_MINMAX  {
        api_version: V1_2,
        device_extensions: [ext_sampler_filter_minmax],
    },

    /// Can be used with sampler YCbCr conversions using a chroma offset of
    /// [`Midpoint`](crate::sampler::ycbcr::ChromaLocation::Midpoint).
    midpoint_chroma_samples = MIDPOINT_CHROMA_SAMPLES {
        api_version: V1_1,
        device_extensions: [khr_sampler_ycbcr_conversion],
    },

    /// Can be used with sampler YCbCr conversions using a chroma offset of
    /// [`CositedEven`](crate::sampler::ycbcr::ChromaLocation::CositedEven).
    cosited_chroma_samples = COSITED_CHROMA_SAMPLES {
        api_version: V1_1,
        device_extensions: [khr_sampler_ycbcr_conversion],
    },

    /// Can be used with sampler YCbCr conversions using the
    /// [`Linear`](crate::sampler::Filter::Linear) chroma filter.
    sampled_image_ycbcr_conversion_linear_filter = SAMPLED_IMAGE_YCBCR_CONVERSION_LINEAR_FILTER {
        api_version: V1_1,
        device_extensions: [khr_sampler_ycbcr_conversion],
    },

    /// Can be used with sampler YCbCr conversions whose chroma filter differs from the filters of
    /// the base sampler.
    sampled_image_ycbcr_conversion_separate_reconstruction_filter = SAMPLED_IMAGE_YCBCR_CONVERSION_SEPARATE_RECONSTRUCTION_FILTER {
        api_version: V1_1,
        device_extensions: [khr_sampler_ycbcr_conversion],
    },

    /// When used with a sampler YCbCr conversion, the implementation will always perform
    /// explicit chroma reconstruction.
    sampled_image_ycbcr_conversion_chroma_reconstruction_explicit = SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT {
        api_version: V1_1,
        device_extensions: [khr_sampler_ycbcr_conversion],
    },

    /// Can be used with sampler YCbCr conversions with forced explicit reconstruction.
    sampled_image_ycbcr_conversion_chroma_reconstruction_explicit_forceable = SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORCEABLE {
        api_version: V1_1,
        device_extensions: [khr_sampler_ycbcr_conversion],
    },

    /// Can be used with samplers using depth comparison.
    sampled_image_depth_comparison = SAMPLED_IMAGE_DEPTH_COMPARISON {
        api_version: V1_3,
        device_extensions: [khr_format_feature_flags2],
    },

    /* Video */

    /// Can be used with the output image of a video decode operation.
    video_decode_output = VIDEO_DECODE_OUTPUT_KHR {
        device_extensions: [khr_video_decode_queue],
    },

    /// Can be used with the DPB image of a video decode operation.
    video_decode_dpb = VIDEO_DECODE_DPB_KHR {
        device_extensions: [khr_video_decode_queue],
    },

    /// Can be used with the input image of a video encode operation.
    video_encode_input = VIDEO_ENCODE_INPUT_KHR {
        device_extensions: [khr_video_encode_queue],
    },

    /// Can be used with the DPB image of a video encode operation.
    video_encode_dpb = VIDEO_ENCODE_DPB_KHR {
        device_extensions: [khr_video_encode_queue],
    },

    /* Misc image features */

    /// For multi-planar formats, can be used with images created with the `disjoint` flag.
    disjoint = DISJOINT {
        api_version: V1_1,
        device_extensions: [khr_sampler_ycbcr_conversion],
    },

    /* Buffer usage  */

    /// Can be used with a uniform texel buffer descriptor.
    uniform_texel_buffer = UNIFORM_TEXEL_BUFFER,

    /// Can be used with a storage texel buffer descriptor.
    storage_texel_buffer = STORAGE_TEXEL_BUFFER,

    /// Can be used with a storage texel buffer descriptor with atomic operations in a shader.
    storage_texel_buffer_atomic = STORAGE_TEXEL_BUFFER_ATOMIC,

    /// Can be used as the format of a vertex attribute in the vertex input state of a graphics
    /// pipeline.
    vertex_buffer = VERTEX_BUFFER,

    /// Can be used with the vertex buffer of an acceleration structure.
    acceleration_structure_vertex_buffer = ACCELERATION_STRUCTURE_VERTEX_BUFFER_KHR {
        device_extensions: [khr_acceleration_structure],
    },
}

impl From<ash::vk::FormatFeatureFlags> for FormatFeatures {
    #[inline]
    fn from(val: ash::vk::FormatFeatureFlags) -> Self {
        Self::from(ash::vk::FormatFeatureFlags2::from_raw(val.as_raw() as u64))
    }
}