logo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
// Copyright (c) 2016 The vulkano developers
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>,
// at your option. All files in the project carrying such
// notice may not be copied, modified, or distributed except
// according to those terms.

//! Commands that the GPU will execute (includes draw commands).
//!
//! With Vulkan, before the GPU can do anything you must create a `CommandBuffer`. A command buffer
//! is a list of commands that will executed by the GPU. Once a command buffer is created, you can
//! execute it. A command buffer must always be created even for the most simple tasks.
//!
//! # Primary and secondary command buffers.
//!
//! There are three types of command buffers:
//!
//! - **Primary command buffers**. They can contain any command. They are the only type of command
//!   buffer that can be submitted to a queue.
//! - **Secondary "graphics" command buffers**. They can only contain draw and clear commands.
//!   They can only be called from a primary command buffer when inside a render pass.
//! - **Secondary "compute" command buffers**. They can only contain non-render-pass-related
//!   commands (ie. everything but drawing, clearing, etc.) and cannot enter a render pass. They
//!   can only be called from a primary command buffer outside of a render pass.
//!
//! Using secondary command buffers leads to slightly lower performance on the GPU, but they have
//! two advantages on the CPU side:
//!
//! - Building a command buffer is a single-threaded operation, but by using secondary command
//!   buffers you can build multiple secondary command buffers in multiple threads simultaneously.
//! - Secondary command buffers can be kept alive between frames. When you always repeat the same
//!   operations, it might be a good idea to build a secondary command buffer once at
//!   initialization and then reuse it afterwards.
//!
//! # The `AutoCommandBufferBuilder`
//!
//! The most basic (and recommended) way to create a command buffer is to create a
//! [`AutoCommandBufferBuilder`], then record commands to it.
//! When you are done adding commands, build it to obtain either a `PrimaryAutoCommandBuffer` or
//! `SecondAutoCommandBuffer`.
//!
//! Once built, use [the `PrimaryCommandBuffer` trait](crate::command_buffer::PrimaryCommandBuffer) to submit the
//! command buffer. Submitting a command buffer returns an object that implements the `GpuFuture` trait
//! and that represents the moment when the execution will end on the GPU.
//!
//! ```
//! use vulkano::command_buffer::AutoCommandBufferBuilder;
//! use vulkano::command_buffer::CommandBufferUsage;
//! use vulkano::command_buffer::PrimaryCommandBuffer;
//! use vulkano::command_buffer::SubpassContents;
//!
//! # #[repr(C)]
//! # #[derive(Clone, Copy, Debug, Default, bytemuck::Zeroable, bytemuck::Pod)]
//! # struct Vertex { position: [f32; 3] };
//! # vulkano::impl_vertex!(Vertex, position);
//! # use vulkano::buffer::TypedBufferAccess;
//! # let device: std::sync::Arc<vulkano::device::Device> = return;
//! # let queue: std::sync::Arc<vulkano::device::Queue> = return;
//! # let vertex_buffer: std::sync::Arc<vulkano::buffer::CpuAccessibleBuffer<[Vertex]>> = return;
//! # let render_pass_begin_info: vulkano::command_buffer::RenderPassBeginInfo = return;
//! # let graphics_pipeline: std::sync::Arc<vulkano::pipeline::graphics::GraphicsPipeline> = return;
//! let cb = AutoCommandBufferBuilder::primary(
//!     device.clone(),
//!     queue.queue_family_index(),
//!     CommandBufferUsage::MultipleSubmit
//! ).unwrap()
//! .begin_render_pass(render_pass_begin_info, SubpassContents::Inline).unwrap()
//! .bind_pipeline_graphics(graphics_pipeline.clone())
//! .bind_vertex_buffers(0, vertex_buffer.clone())
//! .draw(vertex_buffer.len() as u32, 1, 0, 0).unwrap()
//! .end_render_pass().unwrap()
//! .build().unwrap();
//!
//! let _future = cb.execute(queue.clone());
//! ```
//!
//! # Internal architecture of vulkano
//!
//! The `commands_raw` and `commands_extra` modules contain structs that correspond to various
//! commands that can be added to command buffer builders. A command can be added to a command
//! buffer builder by using the `AddCommand<C>` trait, where `C` is the command struct.
//!
//! The `AutoCommandBufferBuilder` internally uses a `UnsafeCommandBufferBuilder` wrapped around
//! multiple layers. See the `cb` module for more information.
//!
//! Command pools are automatically handled by default, but vulkano also allows you to use
//! alternative command pool implementations and use them. See the `pool` module for more
//! information.

pub use self::{
    auto::{
        AutoCommandBufferBuilder, BuildError, CommandBufferBeginError, PrimaryAutoCommandBuffer,
        SecondaryAutoCommandBuffer,
    },
    commands::{
        debug::DebugUtilsError,
        image::{
            BlitImageInfo, ClearColorImageInfo, ClearDepthStencilImageInfo, ImageBlit,
            ImageResolve, ResolveImageInfo,
        },
        pipeline::PipelineExecutionError,
        query::QueryError,
        render_pass::{
            ClearAttachment, ClearRect, RenderPassBeginInfo, RenderPassError,
            RenderingAttachmentInfo, RenderingAttachmentResolveInfo, RenderingInfo,
        },
        secondary::{ExecuteCommandsError, UnsafeCommandBufferBuilderExecuteCommands},
        transfer::{
            BufferCopy, BufferImageCopy, CopyBufferInfo, CopyBufferInfoTyped,
            CopyBufferToImageInfo, CopyImageInfo, CopyImageToBufferInfo, FillBufferInfo, ImageCopy,
        },
        CopyError, CopyErrorResource,
    },
    traits::{
        CommandBufferExecError, CommandBufferExecFuture, PrimaryCommandBuffer,
        SecondaryCommandBuffer,
    },
};
use crate::{
    format::Format,
    image::SampleCount,
    macros::vulkan_enum,
    query::{QueryControlFlags, QueryPipelineStatisticFlags},
    render_pass::{Framebuffer, Subpass},
};
use bytemuck::{Pod, Zeroable};
use std::sync::Arc;

mod auto;
mod commands;
pub mod pool;
pub mod submit;
pub mod synced;
pub mod sys;
mod traits;

#[repr(C)]
#[derive(Clone, Copy, Debug, Default, Zeroable, Pod, PartialEq, Eq)]
pub struct DrawIndirectCommand {
    pub vertex_count: u32,
    pub instance_count: u32,
    pub first_vertex: u32,
    pub first_instance: u32,
}

#[repr(C)]
#[derive(Clone, Copy, Debug, Default, Zeroable, Pod, PartialEq, Eq)]
pub struct DrawIndexedIndirectCommand {
    pub index_count: u32,
    pub instance_count: u32,
    pub first_index: u32,
    pub vertex_offset: u32,
    pub first_instance: u32,
}

#[repr(C)]
#[derive(Clone, Copy, Debug, Default, Zeroable, Pod, PartialEq, Eq)]
pub struct DispatchIndirectCommand {
    pub x: u32,
    pub y: u32,
    pub z: u32,
}

vulkan_enum! {
    /// Describes what a subpass in a command buffer will contain.
    #[non_exhaustive]
    SubpassContents = SubpassContents(i32);

    /// The subpass will only directly contain commands.
    Inline = INLINE,

    /// The subpass will only contain secondary command buffers invocations.
    SecondaryCommandBuffers = SECONDARY_COMMAND_BUFFERS,
}

impl From<SubpassContents> for ash::vk::RenderingFlags {
    #[inline]
    fn from(val: SubpassContents) -> Self {
        match val {
            SubpassContents::Inline => Self::empty(),
            SubpassContents::SecondaryCommandBuffers => Self::CONTENTS_SECONDARY_COMMAND_BUFFERS,
        }
    }
}

vulkan_enum! {
    /// Determines the kind of command buffer to create.
    CommandBufferLevel = CommandBufferLevel(i32);

    /// Primary command buffers can be executed on a queue, and can call secondary command buffers.
    /// Render passes must begin and end within the same primary command buffer.
    Primary = PRIMARY,

    /// Secondary command buffers cannot be executed on a queue, but can be executed by a primary
    /// command buffer. If created for a render pass, they must fit within a single render subpass.
    Secondary = SECONDARY,
}

/// The context that a secondary command buffer can inherit from the primary command
/// buffer it's executed in.
#[derive(Clone, Debug)]
pub struct CommandBufferInheritanceInfo {
    /// If `Some`, the secondary command buffer is required to be executed within a render pass
    /// instance, and can only call draw operations.
    /// If `None`, it must be executed outside a render pass instance, and can execute dispatch and
    /// transfer operations, but not drawing operations.
    ///
    /// The default value is `None`.
    pub render_pass: Option<CommandBufferInheritanceRenderPassType>,

    /// If `Some`, the secondary command buffer is allowed to be executed within a primary that has
    /// an occlusion query active. The inner `QueryControlFlags` specifies which flags the
    /// active occlusion is allowed to have enabled.
    /// If `None`, the primary command buffer cannot have an occlusion query active when this
    /// secondary command buffer is executed.
    ///
    /// The `inherited_queries` feature must be enabled if this is `Some`.
    ///
    /// The default value is `None`.
    pub occlusion_query: Option<QueryControlFlags>,

    /// Which pipeline statistics queries are allowed to be active on the primary command buffer
    /// when this secondary command buffer is executed.
    ///
    /// The `pipeline_statistics_query` feature must be enabled if any of the flags of this value
    /// are set.
    ///
    /// The default value is [`QueryPipelineStatisticFlags::empty()`].
    pub query_statistics_flags: QueryPipelineStatisticFlags,

    pub _ne: crate::NonExhaustive,
}

impl Default for CommandBufferInheritanceInfo {
    #[inline]
    fn default() -> Self {
        Self {
            render_pass: None,
            occlusion_query: None,
            query_statistics_flags: QueryPipelineStatisticFlags::empty(),
            _ne: crate::NonExhaustive(()),
        }
    }
}

/// Selects the type of render pass for command buffer inheritance.
#[derive(Clone, Debug)]
pub enum CommandBufferInheritanceRenderPassType {
    /// The secondary command buffer will be executed within a render pass begun with
    /// `begin_render_pass`, using a `RenderPass` object and `Framebuffer`.
    BeginRenderPass(CommandBufferInheritanceRenderPassInfo),

    /// The secondary command buffer will be executed within a render pass begun with
    /// `begin_rendering`, using dynamic rendering.
    BeginRendering(CommandBufferInheritanceRenderingInfo),
}

impl From<Subpass> for CommandBufferInheritanceRenderPassType {
    #[inline]
    fn from(val: Subpass) -> Self {
        Self::BeginRenderPass(val.into())
    }
}

impl From<CommandBufferInheritanceRenderPassInfo> for CommandBufferInheritanceRenderPassType {
    #[inline]
    fn from(val: CommandBufferInheritanceRenderPassInfo) -> Self {
        Self::BeginRenderPass(val)
    }
}

impl From<CommandBufferInheritanceRenderingInfo> for CommandBufferInheritanceRenderPassType {
    #[inline]
    fn from(val: CommandBufferInheritanceRenderingInfo) -> Self {
        Self::BeginRendering(val)
    }
}

/// The render pass context that a secondary command buffer is created for.
#[derive(Clone, Debug)]
pub struct CommandBufferInheritanceRenderPassInfo {
    /// The render subpass that this secondary command buffer must be executed within.
    ///
    /// There is no default value.
    pub subpass: Subpass,

    /// The framebuffer object that will be used when calling the command buffer.
    /// This parameter is optional and is an optimization hint for the implementation.
    ///
    /// The default value is `None`.
    pub framebuffer: Option<Arc<Framebuffer>>,
}

impl CommandBufferInheritanceRenderPassInfo {
    /// Returns a `CommandBufferInheritanceRenderPassInfo` with the specified `subpass`.
    #[inline]
    pub fn subpass(subpass: Subpass) -> Self {
        Self {
            subpass,
            framebuffer: None,
        }
    }
}

impl From<Subpass> for CommandBufferInheritanceRenderPassInfo {
    #[inline]
    fn from(subpass: Subpass) -> Self {
        Self {
            subpass,
            framebuffer: None,
        }
    }
}

/// The dynamic rendering context that a secondary command buffer is created for.
#[derive(Clone, Debug)]
pub struct CommandBufferInheritanceRenderingInfo {
    /// If not `0`, indicates that multiview rendering will be enabled, and specifies the view
    /// indices that are rendered to. The value is a bitmask, so that that for example `0b11` will
    /// draw to the first two views and `0b101` will draw to the first and third view.
    ///
    /// If set to a nonzero value, the [`multiview`](crate::device::Features::multiview) feature
    /// must be enabled on the device.
    ///
    /// The default value is `0`.
    pub view_mask: u32,

    /// The formats of the color attachments that will be used during rendering.
    ///
    /// If an element is `None`, it indicates that the attachment will not be used.
    ///
    /// The default value is empty.
    pub color_attachment_formats: Vec<Option<Format>>,

    /// The format of the depth attachment that will be used during rendering.
    ///
    /// If set to `None`, it indicates that no depth attachment will be used.
    ///
    /// The default value is `None`.
    pub depth_attachment_format: Option<Format>,

    /// The format of the stencil attachment that will be used during rendering.
    ///
    /// If set to `None`, it indicates that no stencil attachment will be used.
    ///
    /// The default value is `None`.
    pub stencil_attachment_format: Option<Format>,

    /// The number of samples that the color, depth and stencil attachments will have.
    ///
    /// The default value is [`SampleCount::Sample1`]
    pub rasterization_samples: SampleCount,
}

impl Default for CommandBufferInheritanceRenderingInfo {
    #[inline]
    fn default() -> Self {
        Self {
            view_mask: 0,
            color_attachment_formats: Vec::new(),
            depth_attachment_format: None,
            stencil_attachment_format: None,
            rasterization_samples: SampleCount::Sample1,
        }
    }
}

/// Usage flags to pass when creating a command buffer.
///
/// The safest option is `SimultaneousUse`, but it may be slower than the other two.
// NOTE: The ordering is important: the variants are listed from least to most permissive!
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
#[repr(u32)]
pub enum CommandBufferUsage {
    /// The command buffer can only be submitted once before being destroyed. Any further submit is
    /// forbidden. This makes it possible for the implementation to perform additional
    /// optimizations.
    OneTimeSubmit = ash::vk::CommandBufferUsageFlags::ONE_TIME_SUBMIT.as_raw(),

    /// The command buffer can be used multiple times, but must not execute or record more than once
    /// simultaneously. In other words, it is as if executing the command buffer borrows it mutably.
    MultipleSubmit = 0,

    /// The command buffer can be executed multiple times in parallel on different queues.
    /// If it's a secondary command buffer, it can be recorded to multiple primary command buffers
    /// at once.
    SimultaneousUse = ash::vk::CommandBufferUsageFlags::SIMULTANEOUS_USE.as_raw(),
}

impl From<CommandBufferUsage> for ash::vk::CommandBufferUsageFlags {
    #[inline]
    fn from(val: CommandBufferUsage) -> Self {
        Self::from_raw(val as u32)
    }
}