logo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
// Copyright (c) 2016 The vulkano developers
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>,
// at your option. All files in the project carrying such
// notice may not be copied, modified, or distributed except
// according to those terms.

use super::BufferContents;
use crate::buffer::sys::UnsafeBuffer;
use crate::buffer::BufferSlice;
use crate::device::DeviceOwned;
use crate::device::Queue;
use crate::sync::AccessError;
use crate::DeviceSize;
use crate::SafeDeref;
use crate::VulkanObject;
use std::error;
use std::fmt;
use std::hash::Hash;
use std::hash::Hasher;
use std::num::NonZeroU64;
use std::ops::Range;
use std::sync::Arc;

/// Trait for objects that represent a way for the GPU to have access to a buffer or a slice of a
/// buffer.
///
/// See also `TypedBufferAccess`.
pub unsafe trait BufferAccess: DeviceOwned + Send + Sync {
    /// Returns the inner information about this buffer.
    fn inner(&self) -> BufferInner;

    /// Returns the size of the buffer in bytes.
    fn size(&self) -> DeviceSize;

    /// Returns a `BufferSlice` covering the whole buffer.
    #[inline]
    fn into_buffer_slice(self: &Arc<Self>) -> Arc<BufferSlice<Self::Content, Self>>
    where
        Self: Sized + TypedBufferAccess,
    {
        BufferSlice::from_typed_buffer_access(self.clone())
    }

    /// Returns a `BufferSlice` for a subrange of elements in the buffer. Returns `None` if
    /// out of range.
    ///
    /// This method can be used when you want to perform an operation on some part of the buffer
    /// and not on the whole buffer.
    #[inline]
    fn slice<T>(self: &Arc<Self>, range: Range<DeviceSize>) -> Option<Arc<BufferSlice<[T], Self>>>
    where
        Self: Sized + TypedBufferAccess<Content = [T]>,
    {
        BufferSlice::slice(&self.into_buffer_slice(), range)
    }

    /// Returns a `BufferSlice` for a single element in the buffer. Returns `None` if out of range.
    ///
    /// This method can be used when you want to perform an operation on a specific element of the
    /// buffer and not on the whole buffer.
    #[inline]
    fn index<T>(self: &Arc<Self>, index: DeviceSize) -> Option<Arc<BufferSlice<T, Self>>>
    where
        Self: Sized + TypedBufferAccess<Content = [T]>,
    {
        BufferSlice::index(&self.into_buffer_slice(), index)
    }

    /// Returns a key that uniquely identifies the buffer. Two buffers or images that potentially
    /// overlap in memory must return the same key.
    ///
    /// The key is shared amongst all buffers and images, which means that you can make several
    /// different buffer objects share the same memory, or make some buffer objects share memory
    /// with images, as long as they return the same key.
    ///
    /// Since it is possible to accidentally return the same key for memory ranges that don't
    /// overlap, the `conflicts_buffer` or `conflicts_image` function should always be called to
    /// verify whether they actually overlap.
    fn conflict_key(&self) -> (u64, u64);

    /// Locks the resource for usage on the GPU. Returns an error if the lock can't be acquired.
    ///
    /// This function exists to prevent the user from causing a data race by reading and writing
    /// to the same resource at the same time.
    ///
    /// If you call this function, you should call `unlock()` once the resource is no longer in use
    /// by the GPU. The implementation is not expected to automatically perform any unlocking and
    /// can rely on the fact that `unlock()` is going to be called.
    fn try_gpu_lock(&self, exclusive_access: bool, queue: &Queue) -> Result<(), AccessError>;

    /// Locks the resource for usage on the GPU. Supposes that the resource is already locked, and
    /// simply increases the lock by one.
    ///
    /// Must only be called after `try_gpu_lock()` succeeded.
    ///
    /// If you call this function, you should call `unlock()` once the resource is no longer in use
    /// by the GPU. The implementation is not expected to automatically perform any unlocking and
    /// can rely on the fact that `unlock()` is going to be called.
    unsafe fn increase_gpu_lock(&self);

    /// Unlocks the resource previously acquired with `try_gpu_lock` or `increase_gpu_lock`.
    ///
    /// # Safety
    ///
    /// Must only be called once per previous lock.
    unsafe fn unlock(&self);

    /// Gets the device address for this buffer.
    ///
    /// # Safety
    ///
    /// No lock checking or waiting is performed. This is nevertheless still safe because the
    /// returned value isn't directly dereferencable. Unsafe code is required to dereference the
    /// value in a shader.
    fn raw_device_address(&self) -> Result<NonZeroU64, BufferDeviceAddressError> {
        let inner = self.inner();
        let device = self.device();

        // VUID-vkGetBufferDeviceAddress-bufferDeviceAddress-03324
        if !device.enabled_features().buffer_device_address {
            return Err(BufferDeviceAddressError::FeatureNotEnabled);
        }

        // VUID-VkBufferDeviceAddressInfo-buffer-02601
        if !inner.buffer.usage().device_address {
            return Err(BufferDeviceAddressError::BufferMissingUsage);
        }

        unsafe {
            let info = ash::vk::BufferDeviceAddressInfo {
                buffer: inner.buffer.internal_object(),
                ..Default::default()
            };
            let ptr = device
                .fns()
                .ext_buffer_device_address
                .get_buffer_device_address_ext(device.internal_object(), &info);

            if ptr == 0 {
                panic!("got null ptr from a valid GetBufferDeviceAddressEXT call");
            }

            Ok(NonZeroU64::new_unchecked(ptr + inner.offset))
        }
    }
}

pub trait BufferAccessObject {
    fn as_buffer_access_object(&self) -> Arc<dyn BufferAccess>;
}

impl BufferAccessObject for Arc<dyn BufferAccess> {
    fn as_buffer_access_object(&self) -> Arc<dyn BufferAccess> {
        self.clone()
    }
}

/// Inner information about a buffer.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub struct BufferInner<'a> {
    /// The underlying buffer object.
    pub buffer: &'a UnsafeBuffer,
    /// The offset in bytes from the start of the underlying buffer object to the start of the
    /// buffer we're describing.
    pub offset: DeviceSize,
}

unsafe impl<T> BufferAccess for T
where
    T: SafeDeref + Send + Sync,
    T::Target: BufferAccess,
{
    #[inline]
    fn inner(&self) -> BufferInner {
        (**self).inner()
    }

    #[inline]
    fn size(&self) -> DeviceSize {
        (**self).size()
    }

    #[inline]
    fn conflict_key(&self) -> (u64, u64) {
        (**self).conflict_key()
    }

    #[inline]
    fn try_gpu_lock(&self, exclusive_access: bool, queue: &Queue) -> Result<(), AccessError> {
        (**self).try_gpu_lock(exclusive_access, queue)
    }

    #[inline]
    unsafe fn increase_gpu_lock(&self) {
        (**self).increase_gpu_lock()
    }

    #[inline]
    unsafe fn unlock(&self) {
        (**self).unlock()
    }
}

/// Extension trait for `BufferAccess`. Indicates the type of the content of the buffer.
pub unsafe trait TypedBufferAccess: BufferAccess {
    /// The type of the content.
    type Content: BufferContents + ?Sized;

    /// Returns the length of the buffer in number of elements.
    ///
    /// This method can only be called for buffers whose type is known to be an array.
    #[inline]
    fn len(&self) -> DeviceSize {
        self.size() / Self::Content::size_of_element()
    }
}

unsafe impl<T> TypedBufferAccess for T
where
    T: SafeDeref + Send + Sync,
    T::Target: TypedBufferAccess,
{
    type Content = <T::Target as TypedBufferAccess>::Content;
}

impl PartialEq for dyn BufferAccess {
    #[inline]
    fn eq(&self, other: &Self) -> bool {
        self.inner() == other.inner() && self.size() == other.size()
    }
}

impl Eq for dyn BufferAccess {}

impl Hash for dyn BufferAccess {
    #[inline]
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.inner().hash(state);
        self.size().hash(state);
    }
}

/// Error that can happen when querying the device address of a buffer.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum BufferDeviceAddressError {
    BufferMissingUsage,
    FeatureNotEnabled,
}

impl error::Error for BufferDeviceAddressError {}

impl fmt::Display for BufferDeviceAddressError {
    #[inline]
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        match self {
            Self::BufferMissingUsage => write!(
                fmt,
                "the device address usage flag was not set on this buffer",
            ),
            Self::FeatureNotEnabled => write!(
                fmt,
                "the buffer_device_address feature was not enabled on the device",
            ),
        }
    }
}