1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
// Copyright (c) 2016 The vulkano developers
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>,
// at your option. All files in the project carrying such
// notice may not be copied, modified, or distributed except
// according to those terms.

use std::cmp;
use std::ops::Range;
use std::sync::Arc;
use std::sync::Mutex;

use crate::device::Device;
use crate::instance::Instance;
use crate::instance::MemoryType;
use crate::memory::DeviceMemory;
use crate::memory::DeviceMemoryAllocError;
use crate::memory::MappedDeviceMemory;

/// Memory pool that operates on a given memory type.
#[derive(Debug)]
pub struct StdHostVisibleMemoryTypePool {
    device: Arc<Device>,
    memory_type: u32,
    // TODO: obviously very inefficient
    occupied: Mutex<Vec<(Arc<MappedDeviceMemory>, Vec<Range<usize>>)>>,
}

impl StdHostVisibleMemoryTypePool {
    /// Creates a new pool that will operate on the given memory type.
    ///
    /// # Panic
    ///
    /// - Panics if the `device` and `memory_type` don't belong to the same physical device.
    /// - Panics if the memory type is not host-visible.
    ///
    #[inline]
    pub fn new(device: Arc<Device>, memory_type: MemoryType) -> Arc<StdHostVisibleMemoryTypePool> {
        assert_eq!(
            &**device.physical_device().instance() as *const Instance,
            &**memory_type.physical_device().instance() as *const Instance
        );
        assert_eq!(
            device.physical_device().index(),
            memory_type.physical_device().index()
        );
        assert!(memory_type.is_host_visible());

        Arc::new(StdHostVisibleMemoryTypePool {
            device: device.clone(),
            memory_type: memory_type.id(),
            occupied: Mutex::new(Vec::new()),
        })
    }

    /// Allocates memory from the pool.
    ///
    /// # Panic
    ///
    /// - Panics if `size` is 0.
    /// - Panics if `alignment` is 0.
    ///
    pub fn alloc(
        me: &Arc<Self>,
        size: usize,
        alignment: usize,
    ) -> Result<StdHostVisibleMemoryTypePoolAlloc, DeviceMemoryAllocError> {
        assert!(size != 0);
        assert!(alignment != 0);

        #[inline]
        fn align(val: usize, al: usize) -> usize {
            al * (1 + (val - 1) / al)
        }

        // Find a location.
        let mut occupied = me.occupied.lock().unwrap();

        // Try finding an entry in already-allocated chunks.
        for &mut (ref dev_mem, ref mut entries) in occupied.iter_mut() {
            // Try find some free space in-between two entries.
            for i in 0..entries.len().saturating_sub(1) {
                let entry1 = entries[i].clone();
                let entry1_end = align(entry1.end, alignment);
                let entry2 = entries[i + 1].clone();
                if entry1_end + size <= entry2.start {
                    entries.insert(i + 1, entry1_end..entry1_end + size);
                    return Ok(StdHostVisibleMemoryTypePoolAlloc {
                        pool: me.clone(),
                        memory: dev_mem.clone(),
                        offset: entry1_end,
                        size: size,
                    });
                }
            }

            // Try append at the end.
            let last_end = entries.last().map(|e| align(e.end, alignment)).unwrap_or(0);
            if last_end + size <= (**dev_mem).as_ref().size() {
                entries.push(last_end..last_end + size);
                return Ok(StdHostVisibleMemoryTypePoolAlloc {
                    pool: me.clone(),
                    memory: dev_mem.clone(),
                    offset: last_end,
                    size: size,
                });
            }
        }

        // We need to allocate a new block.
        let new_block = {
            const MIN_BLOCK_SIZE: usize = 8 * 1024 * 1024; // 8 MB
            let to_alloc = cmp::max(MIN_BLOCK_SIZE, size.next_power_of_two());
            let new_block =
                DeviceMemory::alloc_and_map(me.device.clone(), me.memory_type(), to_alloc)?;
            Arc::new(new_block)
        };

        occupied.push((new_block.clone(), vec![0..size]));
        Ok(StdHostVisibleMemoryTypePoolAlloc {
            pool: me.clone(),
            memory: new_block,
            offset: 0,
            size: size,
        })
    }

    /// Same as `alloc` but with exportable memory fd on Linux.
    #[cfg(target_os = "linux")]
    pub fn alloc_with_exportable_fd(
        me: &Arc<Self>,
        size: usize,
        alignment: usize,
    ) -> Result<StdHostVisibleMemoryTypePoolAlloc, DeviceMemoryAllocError> {
        assert!(size != 0);
        assert!(alignment != 0);

        #[inline]
        fn align(val: usize, al: usize) -> usize {
            al * (1 + (val - 1) / al)
        }

        // Find a location.
        let mut occupied = me.occupied.lock().unwrap();

        // Try finding an entry in already-allocated chunks.
        for &mut (ref dev_mem, ref mut entries) in occupied.iter_mut() {
            // Try find some free space in-between two entries.
            for i in 0..entries.len().saturating_sub(1) {
                let entry1 = entries[i].clone();
                let entry1_end = align(entry1.end, alignment);
                let entry2 = entries[i + 1].clone();
                if entry1_end + size <= entry2.start {
                    entries.insert(i + 1, entry1_end..entry1_end + size);
                    return Ok(StdHostVisibleMemoryTypePoolAlloc {
                        pool: me.clone(),
                        memory: dev_mem.clone(),
                        offset: entry1_end,
                        size,
                    });
                }
            }

            // Try append at the end.
            let last_end = entries.last().map(|e| align(e.end, alignment)).unwrap_or(0);
            if last_end + size <= (**dev_mem).as_ref().size() {
                entries.push(last_end..last_end + size);
                return Ok(StdHostVisibleMemoryTypePoolAlloc {
                    pool: me.clone(),
                    memory: dev_mem.clone(),
                    offset: last_end,
                    size,
                });
            }
        }

        // We need to allocate a new block.
        let new_block = {
            const MIN_BLOCK_SIZE: usize = 8 * 1024 * 1024; // 8 MB
            let to_alloc = cmp::max(MIN_BLOCK_SIZE, size.next_power_of_two());
            let new_block = DeviceMemory::alloc_and_map_with_exportable_fd(
                me.device.clone(),
                me.memory_type(),
                to_alloc,
            )?;
            Arc::new(new_block)
        };

        occupied.push((new_block.clone(), vec![0..size]));
        Ok(StdHostVisibleMemoryTypePoolAlloc {
            pool: me.clone(),
            memory: new_block,
            offset: 0,
            size,
        })
    }

    /// Returns the device this pool operates on.
    #[inline]
    pub fn device(&self) -> &Arc<Device> {
        &self.device
    }

    /// Returns the memory type this pool operates on.
    #[inline]
    pub fn memory_type(&self) -> MemoryType {
        self.device
            .physical_device()
            .memory_type_by_id(self.memory_type)
            .unwrap()
    }
}

#[derive(Debug)]
pub struct StdHostVisibleMemoryTypePoolAlloc {
    pool: Arc<StdHostVisibleMemoryTypePool>,
    memory: Arc<MappedDeviceMemory>,
    offset: usize,
    size: usize,
}

impl StdHostVisibleMemoryTypePoolAlloc {
    #[inline]
    pub fn memory(&self) -> &MappedDeviceMemory {
        &self.memory
    }

    #[inline]
    pub fn offset(&self) -> usize {
        self.offset
    }

    #[inline]
    pub fn size(&self) -> usize {
        self.size
    }
}

impl Drop for StdHostVisibleMemoryTypePoolAlloc {
    fn drop(&mut self) {
        let mut occupied = self.pool.occupied.lock().unwrap();

        let entries = occupied
            .iter_mut()
            .find(|e| &*e.0 as *const MappedDeviceMemory == &*self.memory)
            .unwrap();

        entries.1.retain(|e| e.start != self.offset);
    }
}