1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
use crate::extensions::SimplePopulation;
use std::ops::Deref;
use std::sync::Arc;
use vrp_core::construction::heuristics::InsertionContext;
use vrp_core::construction::Quota;
use vrp_core::models::{Problem, Solution};
use vrp_core::refinement::acceptance::{Acceptance, Greedy};
use vrp_core::refinement::mutation::{Mutation, RuinAndRecreateMutation};
use vrp_core::refinement::objectives::ObjectiveCost;
use vrp_core::refinement::selection::{SelectRandom, Selection};
use vrp_core::refinement::termination::*;
use vrp_core::refinement::{Individuum, RefinementContext};
use vrp_core::utils::{DefaultRandom, Timer};

/// A skeleton of metaheuristic with default ruin and recreate implementation.
pub struct Solver {
    pub selection: Box<dyn Selection>,
    pub mutation: Box<dyn Mutation>,
    pub acceptance: Box<dyn Acceptance>,
    pub termination: Box<dyn Termination>,
    pub quota: Option<Box<dyn Quota + Sync + Send>>,
    pub initial: Option<InsertionContext>,
    pub logger: Box<dyn Fn(String) -> ()>,
}

impl Default for Solver {
    fn default() -> Self {
        Solver::new(
            Box::new(SelectRandom::default()),
            Box::new(RuinAndRecreateMutation::default()),
            Box::new(Greedy::default()),
            Box::new(CompositeTermination::default()),
            None,
            None,
            Box::new(|msg| println!("{}", msg)),
        )
    }
}

impl Solver {
    /// Creates a new instance of [`Solver`].
    pub fn new(
        selection: Box<dyn Selection>,
        mutation: Box<dyn Mutation>,
        acceptance: Box<dyn Acceptance>,
        termination: Box<dyn Termination>,
        quota: Option<Box<dyn Quota + Sync + Send>>,
        initial: Option<InsertionContext>,
        logger: Box<dyn Fn(String) -> ()>,
    ) -> Self {
        Self { selection, mutation, acceptance, termination, quota, initial, logger }
    }

    /// Solves given problem and returns solution, its cost and generation when it is found.
    /// Return None if no solution found.
    pub fn solve(&mut self, problem: Arc<Problem>) -> Option<(Solution, Box<dyn ObjectiveCost + Send + Sync>, usize)> {
        let mut refinement_ctx =
            RefinementContext::new_with_population(problem.clone(), Box::new(SimplePopulation::new(5)));

        if let Some(quota) = std::mem::replace(&mut self.quota, None) {
            refinement_ctx.set_quota(quota);
        }

        let mut insertion_ctx = match std::mem::replace(&mut self.initial, None) {
            Some(ctx) => {
                let cost = problem.objective.estimate_cost(&mut RefinementContext::new(problem.clone()), &ctx);
                refinement_ctx.population.add((ctx.deep_copy(), cost, 1));
                ctx
            }
            None => InsertionContext::new(problem.clone(), Arc::new(DefaultRandom::default())),
        };

        let refinement_time = Timer::start();
        loop {
            let generation_time = Timer::start();

            insertion_ctx = self.mutation.mutate(&mut refinement_ctx, insertion_ctx);

            let cost = problem.objective.estimate_cost(&mut refinement_ctx, &insertion_ctx);
            let individuum = (insertion_ctx, cost, refinement_ctx.generation);
            let is_accepted = self.acceptance.is_accepted(&mut refinement_ctx, &individuum);
            let is_terminated = self.termination.is_termination(&mut refinement_ctx, (&individuum, is_accepted));
            let is_goal_satisfied =
                problem.objective.is_goal_satisfied(&mut refinement_ctx, &individuum.0).unwrap_or(false);

            if refinement_ctx.generation % 100 == 0 || is_terminated || is_goal_satisfied || is_accepted {
                self.log_generation(&refinement_ctx, &generation_time, &refinement_time, &individuum, is_accepted);
            }

            if refinement_ctx.generation > 0 && refinement_ctx.generation % 1000 == 0 {
                self.log_population(&refinement_ctx, &refinement_time);
            }

            if is_accepted {
                refinement_ctx.population.add(individuum)
            }

            insertion_ctx = self.selection.select(&mut refinement_ctx);

            if is_terminated || is_goal_satisfied {
                self.logger.deref()(format!(
                    "stopped due to termination ({}) or goal satisfaction ({})",
                    is_terminated, is_goal_satisfied
                ));
                break;
            }

            refinement_ctx.generation += 1;
        }

        self.log_speed(&refinement_ctx, &refinement_time);
        self.get_result(refinement_ctx)
    }

    fn log_generation(
        &self,
        refinement_ctx: &RefinementContext,
        generation_time: &Timer,
        refinement_time: &Timer,
        solution: &Individuum,
        is_accepted: bool,
    ) {
        let (insertion_ctx, cost, _) = solution;
        let cost_change = get_cost_change(refinement_ctx, &cost);
        self.logger.deref()(format!(
            "generation {} took {}ms (total {}s), cost: {:.2} ({:.3}%), routes: {}, unassigned: {}, accepted: {}",
            refinement_ctx.generation,
            generation_time.elapsed_millis(),
            refinement_time.elapsed_secs(),
            cost.value(),
            cost_change,
            insertion_ctx.solution.routes.len(),
            insertion_ctx.solution.unassigned.len(),
            is_accepted
        ));
    }

    fn log_population(&self, refinement_ctx: &RefinementContext, refinement_time: &Timer) {
        self.logger.deref()(format!(
            "\tpopulation state after {}s (speed: {:.2} gen/sec):",
            refinement_time.elapsed_secs(),
            refinement_ctx.generation as f64 / refinement_time.elapsed_secs_as_f64(),
        ));
        refinement_ctx.population.all().enumerate().for_each(|(idx, (insertion_ctx, cost, generation))| {
            let cost_change = get_cost_change(refinement_ctx, cost);
            self.logger.deref()(format!(
                "\t\t{} cost: {:.2} ({:.3}%), routes: {}, unassigned: {}, discovered at: {}",
                idx,
                cost.value(),
                cost_change,
                insertion_ctx.solution.routes.len(),
                insertion_ctx.solution.unassigned.len(),
                generation
            ))
        });
    }

    fn log_speed(&self, refinement_ctx: &RefinementContext, refinement_time: &Timer) {
        self.logger.deref()(format!(
            "solving took {}s, total generations: {}, speed: {:.2} gen/sec",
            refinement_time.elapsed_secs(),
            refinement_ctx.generation,
            refinement_ctx.generation as f64 / refinement_time.elapsed_secs_as_f64()
        ));
    }

    fn get_result(
        &self,
        refinement_ctx: RefinementContext,
    ) -> Option<(Solution, Box<dyn ObjectiveCost + Send + Sync>, usize)> {
        if let Some((ctx, cost, generation)) = refinement_ctx.population.best() {
            self.logger.deref()(format!(
                "best solution within cost {} discovered at {} generation",
                cost.value(),
                generation
            ));
            Some((ctx.solution.to_solution(refinement_ctx.problem.extras.clone()), cost.clone_box(), *generation))
        } else {
            None
        }
    }
}

fn get_cost_change(refinement_ctx: &RefinementContext, new_cost: &Box<dyn ObjectiveCost + Send + Sync>) -> f64 {
    refinement_ctx
        .population
        .best()
        .map(|(_, best_cost, _)| (new_cost.value() - best_cost.value()) / best_cost.value() * 100.)
        .unwrap_or(100.)
}