1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
use super::super::algo::k_way_merge::k_way_merge;
use super::super::algo::verge_sort_heuristic::verge_sort_preprocessing;
use super::super::{RadixKey, Radixable};
use super::comparative_sort::insertion_sort_try;
use super::lsd_sort::lsd_radixsort_body;
use super::msd_sort::copy_by_histogram;
use super::utils::{
    copy_nonoverlapping, get_partial_histograms, offset_from_bits,
    only_one_bucket_filled, prefix_sums, Params,
};
use super::voracious_sort::voracious_sort_rec;

const EFST: f64 = 0.1; // Estimated Final Size Threshold
const NRT: f64 = 0.35; // Next Radix Threshold

fn get_best_radix_size_and_runs(size: usize) -> (usize, usize) {
    let mut results = Vec::new();

    for r in 7..10 {
        let diversion_threshold = (2usize.pow(r as u32) as f64) as usize;
        let mut required_bytes =
            (((size as f64) / (diversion_threshold as f64)).log2() / r as f64)
                .ceil() as usize;
        let mut estimated_final_size = (size as f64)
            / 2usize.pow(r as u32).pow(required_bytes as u32) as f64;
        if estimated_final_size > 1.0 {
            required_bytes += 1;
            estimated_final_size = (size as f64)
                / 2usize.pow(r as u32).pow(required_bytes as u32) as f64;
        }
        results.push((required_bytes, estimated_final_size, r));
    }

    results.sort_by(|a, b| a.partial_cmp(b).unwrap());

    if results[0].0 == results[2].0 && results[2].1 <= EFST {
        (results[2].2, results[2].0)
    } else if (results[0].0 == results[1].0 && results[1].1 <= EFST)
        || results[0].1 > NRT
    {
        (results[1].2, results[1].0)
    } else {
        (results[0].2, results[0].0)
    }
}

pub fn dlsd_radixsort_body<T: Radixable<K>, K: RadixKey>(
    arr: &mut [T],
    p: Params,
    rbd: usize, // runs before diversion
    diversion: bool,
) {
    let size = arr.len();

    if size <= 128 {
        arr.sort_unstable_by(|a, b| a.partial_cmp(b).unwrap());
        return;
    }

    let dummy = arr[0];
    let mut index = 0;

    let mut buffer: Vec<T> = vec![arr[0]; size];

    let histograms = if diversion {
        get_partial_histograms(arr, &p, rbd)
    } else {
        dummy.get_full_histograms(arr, &p)
    };

    let mut t1 = arr;
    let t2 = &mut buffer;
    let mut t2 = t2.as_mut_slice();

    // Swap elements the right amount of time to reach diversion threshold
    for level in (p.level..p.max_level).rev() {
        if only_one_bucket_filled(&histograms[level]) {
            continue;
        }

        let (mut source, mut destination) =
            if index == 0 { (t1, t2) } else { (t2, t1) };
        let (mask, shift) = if diversion {
            dummy.get_mask_and_shift_from_left(&p.new_level(level))
        } else {
            dummy.get_mask_and_shift(&p.new_level(level))
        };
        let (_, mut heads, _) = prefix_sums(&histograms[level]);

        copy_by_histogram(
            size,
            &mut source,
            &mut destination,
            &mut heads,
            mask,
            shift,
        );

        index = 1 - index;

        if index == 1 {
            t1 = source;
            t2 = destination;
        } else {
            t2 = source;
            t1 = destination;
        }
    }

    // Ensure data is at the right place
    if index == 1 {
        copy_nonoverlapping(t2, t1, size);
    }

    if diversion && dummy.type_size() - p.offset >= p.radix * p.max_level {
        let unsorted_parts = insertion_sort_try(&mut t1, &p);

        let radix = 8;
        let raw_offset = p.max_level * p.radix + p.offset;
        let new_max_level = dummy.compute_max_level(raw_offset, radix);

        let new_params_msd = Params::new(0, radix, raw_offset, new_max_level);

        let offset_lsd = dummy.type_size() - new_max_level * radix;
        let new_params_lsd = Params::new(0, radix, offset_lsd, new_max_level);

        unsorted_parts.iter().for_each(|(i, j)| {
            if j - i <= 250 {
                t1[*i..*j].sort_unstable_by(|a, b| a.partial_cmp(b).unwrap());
            } else if j - i > 3000 && new_max_level <= 4 {
                lsd_radixsort_body(&mut t1[*i..*j], new_params_lsd);
            } else {
                voracious_sort_rec(&mut t1[*i..*j], new_params_msd, 0);
            }
        });
    }
}

fn dlsd_radixsort_aux<T, K>(arr: &mut [T], radix: usize)
where
    T: Radixable<K>,
    K: RadixKey,
{
    if arr.len() <= 128 {
        arr.sort_unstable_by(|a, b| a.partial_cmp(b).unwrap());
        return;
    }

    let dummy = arr[0];

    let (sugg_radix, required_bytes) = get_best_radix_size_and_runs(arr.len());

    let max_key = dummy.get_max_key(arr);
    let bits = dummy.type_size();
    let zero = dummy.default_key();
    let one = dummy.one();

    let (_, sugg_raw_offset) =
        offset_from_bits(arr, max_key, sugg_radix, bits, zero, one);
    let (offset, _) = offset_from_bits(arr, max_key, radix, bits, zero, one);
    let max_level = dummy.compute_max_level(offset, radix);

    if max_level == 0 {
        return;
    }

    let sugg_max_level = dummy.compute_max_level(sugg_raw_offset, sugg_radix);

    let (params, diversion, rbd) = if required_bytes < sugg_max_level {
        (
            Params::new(0, sugg_radix, sugg_raw_offset, required_bytes),
            true,
            required_bytes,
        )
    } else if sugg_radix > radix {
        (
            Params::new(0, sugg_radix, sugg_raw_offset, sugg_max_level),
            false,
            sugg_max_level,
        )
    } else {
        (Params::new(0, radix, offset, max_level), false, max_level)
    };

    dlsd_radixsort_body(arr, params, rbd, diversion);
}

/// # DLSD sort: Diverting LSD sort
///
/// A simpler version of the
/// [DFR sort](https://github.com/ramou/dfr)
/// algorithm.
///
/// Several changes have been made. Diversion is different, and only one out of
/// the three ideas from the DFR sort is implemented. So it is less dependent on
/// the uniformly distributed input hypothesis. Moreover a variable radix is
/// added.
///
/// The core idea of this algorithm is, actually, an heuristic. An estimation
/// of the number of required passes is computed, and then diversion occurs.
/// Which is unusual for a LSD sort algorithm.
///
/// The Verge sort pre-processing heuristic is also added.
///
/// The DLSD sort is an out of place unstable radix sort. The core algorithm
/// is stable but fallback and diversion are unstable.
pub fn dlsd_radixsort<T, K>(arr: &mut [T], radix: usize)
where
    T: Radixable<K>,
    K: RadixKey,
{
    if arr.len() <= 128 {
        arr.sort_unstable_by(|a, b| a.partial_cmp(b).unwrap());
        return;
    }

    let mut separators = verge_sort_preprocessing(arr, radix, &|arr, radix| {
        dlsd_radixsort_aux(arr, radix)
    });
    k_way_merge(arr, &mut separators);
}