1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
// Copyright (c) 2018 King's College London
// created by the Software Development Team <http://soft-dev.org/>
//
// The Universal Permissive License (UPL), Version 1.0
//
// Subject to the condition set forth below, permission is hereby granted to any person obtaining a
// copy of this software, associated documentation and/or data (collectively the "Software"), free
// of charge and under any and all copyright rights in the Software, and any and all patent rights
// owned or freely licensable by each licensor hereunder covering either (i) the unmodified
// Software as contributed to or provided by such licensor, or (ii) the Larger Works (as defined
// below), to deal in both
//
// (a) the Software, and
// (b) any piece of software and/or hardware listed in the lrgrwrks.txt file
// if one is included with the Software (each a "Larger Work" to which the Software is contributed
// by such licensors),
//
// without restriction, including without limitation the rights to copy, create derivative works
// of, display, perform, and distribute the Software and make, use, sell, offer for sale, import,
// export, have made, and have sold the Software and the Larger Work(s), and to sublicense the
// foregoing rights on either these or other terms.
//
// This license is subject to the following condition: The above copyright notice and either this
// complete permission notice or at a minimum a reference to the UPL must be included in all copies
// or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
// BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

//! A vector of bits ("Vob") is a sequence of bits which exposes a `Vec`-like interface. Whereas
//! `Vec<bool>` requires 1 byte of storage per bit, `Vob` requires only 1 bit of storage per bit.
//!
//! The main documentation for this crate can be found in the [`Vob`](struct.Vob.html) struct.

extern crate num_traits;

use std::cmp::PartialEq;
use std::fmt;
use std::fmt::Debug;
use std::hash::{Hash, Hasher};
use std::iter::FromIterator;
use std::mem::size_of;
use std::ops::{Index, Range};
use std::slice;

use num_traits::{PrimInt, One, Zero};


/// A Vob is a "vector of bits": a sequence of bits which exposes a `Vec`-like interface. Whereas
/// `Vec<bool>` requires 1 byte of storage per bit, `Vob` requires only 1 bit of storage per bit.
/// For larger numbers of bits, Vobs can lead to a significant memory decrease and performance
/// increase.
///
/// # Examples
/// The `vob!` macro makes creating small `Vob`s easy:
///
/// ```rust
/// # #[macro_use] extern crate vob;
/// # fn main() {
/// let mut v = vob![true, false, true];
/// assert_eq!(v[1], false);
/// # }
/// ```
///
/// Operations such as `and`ing two `Vob`s together are quick; one can also quickly identify which
/// bits are set:
///
/// ```rust
/// use vob::Vob;
/// let mut v1 = Vob::from_elem(256, false);
/// let mut v2 = Vob::from_elem(256, false);
/// v1.set(67, true);
/// v2.set(67, true);
/// v1.set(188, true);
/// v1.and(&v2);
/// let num_bits_set = v1.iter_set_bits().count();
/// assert_eq!(num_bits_set, 1);
/// ```
///
///
/// ## Storage backing type
///
/// `Vob`s default to using `usize` as a storage backing type. This is generally a substantial win
/// over using smaller storage types if you use functions such as
/// [`or()`](struct.Vob.html#method.or). In such cases, `usize` on a 64-bit machine is almost
/// exactly twice as fast as using `u32`. If you only ever set and get individual bits, a smaller
/// data type might be marginally more effective: for such use cases `u32` is around 1% faster than
/// `usize` on a 64-bit machine. You can choose your own storage type with the
/// [`new_with_storage_type()`](struct.Vob.html#method.new_with_storage_type) constructor. In
/// general we recommend using the default `usize` backing storage unless you have rigorously
/// benchmarked your particular use case and are sure that a different storage type is superior.
///
///
/// ## Migrating from `Vec<bool>`
///
/// As far as possible, `Vob` is intended to have a superset of `Vec<bool>`'s interface, which
/// should make porting most code fairly simple. However, `Vec<bool>` contains several functions
/// which are not yet implemented in `Vob`: these are missing simply due to a lack of a current
/// use-case rather than because of any fundamental incompatibilities.
///
/// There is one missing feature which, currently, is impossible to implement: assignment to an
/// index. In other words one cannot currently express `v[0] = true` for a `Vob` `v`. Until
/// [`IndexGet` / `IndexMove` and equivalents](https://github.com/rust-lang/rfcs/issues/997) are
/// implemented in `rustc`, this restriction appears to be inevitable. Note that referencing by
/// index works (though via a hack identical to that used in `BitVec`): one can write
/// `println!("{}", v[0])` for a `Vob` `v`, for example.
///
///
/// ## Migrating from `BitVec`
///
/// `Vob` is directly inspired by `BitVec`, but aims to provide an interface more closely aligned
/// to `Vec<bool>` Several functions in `BitVec` have different names in `Vob`, but porting is in
/// general fairly simple. The main semantic difference is that `Vob`s
/// [`clear()`](struct.Vob.html#method.clear) function empties the `Vob` of contents (i.e. sets its
/// length to 0), whereas `BitVec`'s function of the same name unsets all bits (keeping the length
/// unchanged). The same effect as `BitVec`'s `clear` can be achieved by using `Vob`'s
/// [`set_all(false)`](struct.Vob.html#method.set_all) function.
#[derive(Clone)]
pub struct Vob<T=usize> {
    /// How many bits are stored in this Vob?
    len: usize,
    /// The underlying storage. We refer to a single instance of `T` as a block. Since the storage
    /// consists of (potentially multiple-byte) blocks, there may be "unused" bits in the final
    /// block. We guarantee that, at all points visible to the user, the "unused" bits are set to
    /// 0.
    vec: Vec<T>
}

// In an ideal world, Rust's type defaults would allow us to fold the two impl blocks into one and
// say "impl Vob<T: usize>", but currently that doesn't work.
impl Vob<usize> {
    /// Constructs a new, empty Vob (with `usize` backing storage, which is likely to be the best
    /// choice in nearly all situations).
    ///
    /// The Vob will not allocate until elements are pushed onto it.
    pub fn new() -> Vob<usize> {
        Default::default()
    }

    /// Constructs a new, empty Vob (with `usize` backing storage, which is likely to be the best
    /// choice in nearly all situations) with the specified capacity.
    ///
    /// The Vob will be able to hold at least `capacity` elements without reallocating. If
    /// `capacity` is 0, the vector will not allocate.
    pub fn with_capacity(capacity: usize) -> Vob<usize> {
        Vob {
            len: 0,
            vec: Vec::with_capacity(blocks_required::<usize>(capacity))
        }
    }

    /// Creates a BitVec that holds `len` elements, setting each element to `value`.
    ///
    /// # Examples
    /// ```
    /// use vob::Vob;
    /// let v = Vob::from_elem(2, true);
    /// assert_eq!(v.len(), 2);
    /// assert_eq!(v.get(0), Some(true));
    /// ```
    pub fn from_elem(len: usize, value: bool) -> Vob<usize> {
        let mut v = Vob::with_capacity(len);
        for _ in 0..blocks_required::<usize>(len) {
            v.vec.push(if value { !0 } else { 0 });
        }
        v.len = len;
        v.mask_last_block();
        v
    }
}

impl<T: Debug + PrimInt + One + Zero> Vob<T> {
    /// Constructs a new, empty Vob (with a user-defined backing storage type) with the given
    /// capacity.
    ///
    /// # Examples
    /// ```
    /// use vob::Vob;
    /// let mut v = Vob::<u32>::new_with_storage_type(0);
    /// v.push(true);
    /// assert_eq!(v[0], true);
    /// ```
    pub fn new_with_storage_type(capacity: usize) -> Vob<T> {
        Vob {
            len: 0,
            vec: Vec::with_capacity(capacity)
        }
    }

    /// Returns the number of bits the Vob can hold without reallocating.
    ///
    /// # Examples
    /// ```
    /// use vob::Vob;
    /// assert_eq!(Vob::new().capacity(), 0);
    /// assert!(Vob::with_capacity(1).capacity() >= 1);
    /// ```
    pub fn capacity(&self) -> usize {
        // This multiplication can't overflow because of the checks in reserve()
        self.vec.capacity() * bits_per_block::<T>()
    }

    /// Reserves capacity for at least `additional` more bits to be inserted in the Vob. The Vob
    /// may reserve more space to avoid frequent reallocations. After calling `reserve`, capacity
    /// will be greater than or equal to `self.len() + additional`. Does nothing if capacity is
    /// already sufficient.
    ///
    /// # Examples
    /// ```
    /// use vob::Vob;
    /// let mut v = Vob::new();
    /// v.reserve(1);
    /// assert!(v.capacity() >= 1);
    /// ```
    pub fn reserve(&mut self, additional: usize) {
        // Repeatedly calling this will over-reserve, since we only record how many bits we've
        // used, not how many bits of capacity the user thinks we have. For example, repeatedly
        // asking for storage for one extra bit will repeatedly add a whole extra machine word.
        // Fixing this would require an extra machine word in the Vob struct, which hardly seems
        // worth it for an unlikely, and probably silly, use case.
        let cap = self.vec.capacity()
                          .checked_mul(bits_per_block::<T>())
                          .and_then(|x| x.checked_add(additional))
                          .expect("Overflow detected");
        self.vec.reserve(blocks_required::<T>(cap));
    }

    /// Shrinks the capacity of the vector as much as possible.
    ///
    /// It will drop down as close as possible to the length but the allocator may still inform the
    /// vector that there is space for a few more elements.
    pub fn shrink_to_fit(&mut self) {
        self.vec.shrink_to_fit();
    }

    /// Shortens the Vob, keeping the first `len` elements and dropping the rest.
    ///
    /// If len is greater than the vector's current length, this has no effect.
    ///
    /// The drain method can emulate truncate, but causes the excess elements to be returned
    /// instead of dropped.
    ///
    /// Note that this method has no effect on the allocated capacity of the vector.
    ///
    /// # Examples
    /// ```
    /// #[macro_use] extern crate vob;
    /// fn main() {
    ///     let mut v = vob![true, false, true];
    ///     v.truncate(2);
    ///     assert_eq!(v, vob![true, false]);
    /// }
    /// ```
    pub fn truncate(&mut self, len: usize) {
        if len > self.len {
            return;
        }
        self.len = len;
        self.vec.truncate(blocks_required::<T>(len));
        self.mask_last_block();
    }

    /// Appends a bool to the back of the Vob.
    ///
    /// # Examples
    /// ```
    /// use vob::Vob;
    /// let mut v = Vob::new();
    /// v.push(true);
    /// v.push(false);
    /// assert_eq!(v.get(0), Some(true));
    /// assert_eq!(v.get(1), Some(false));
    /// ```
    pub fn push(&mut self, value: bool) {
        if self.len % bits_per_block::<T>() == 0 {
            self.vec.push(T::zero());
        }
        let i = self.len;
        self.len = i.checked_add(1).expect("Overflow detected");
        self.set(i, value);
    }

    /// Removes the last element from the Vob and returns it, or `None` if it is empty.
    ///
    /// # Examples
    /// ```
    /// use vob::Vob;
    /// let mut v = Vob::new();
    /// v.push(true);
    /// assert_eq!(v.pop(), Some(true));
    /// assert_eq!(v.pop(), None);
    /// ```
    pub fn pop(&mut self) -> Option<bool> {
        if self.len == 0 {
            return None;
        }
        // The subtraction can't underflow because self.len > 0.
        let v = self.get(self.len - 1);
        debug_assert!(v.is_some());
        self.len -= 1;
        self.mask_last_block();
        v
    }

    /// Returns the number of elements in the Vob.
    pub fn len(&self) -> usize {
        self.len
    }

    /// Returns true if the Vob has a length of 0.
    ///
    /// # Examples
    /// ```
    /// use vob::Vob;
    /// assert_eq!(Vob::from_elem(2, true).is_empty(), false);
    /// assert_eq!(Vob::new().is_empty(), true);
    /// ```
    pub fn is_empty(&self) -> bool {
        self.len == 0
    }

    /// Splits the collection into two at the given index.
    ///
    /// Returns a newly allocated Self. self contains elements [0, at), and the returned Self
    /// contains elements [at, len).
    ///
    /// Note that the capacity of self does not change.
    ///
    /// # Examples
    /// ```
    /// use vob::Vob;
    /// let mut v1 = Vob::new();
    /// v1.push(true);
    /// v1.push(false);
    /// let v2 = v1.split_off(1);
    /// assert_eq!(v1, Vob::from_elem(1, true));
    /// assert_eq!(v2, Vob::from_elem(1, false));
    /// ```
    pub fn split_off(&mut self, at: usize) -> Vob<T> {
        if at >= self.len {
            return Vob::<T>::new_with_storage_type(0);
        }
        let mut nv = Vob::<T>::new_with_storage_type(self.len - at);
        // This could easily be made more efficient.
        for blk in self.iter().skip(at) {
            nv.push(blk);
        }
        self.len = at;
        self.mask_last_block();
        nv
    }

    /// Returns the value of the element at position `index` or `None` if out of bounds.
    ///
    /// # Examples
    /// ```
    /// use vob::Vob;
    /// let mut v = Vob::new();
    /// v.push(false);
    /// assert_eq!(v.get(0), Some(false));
    /// assert_eq!(v.get(1), None);
    /// ```
    pub fn get(&self, index: usize) -> Option<bool> {
        if index >= self.len {
            return None;
        }
        let blk = self.vec[block_offset::<T>(index)];
        Some(blk & (T::one() << (index % bits_per_block::<T>())) != T::zero())
    }

    /// Sets the value of the element at position `index` or `None` if out of bounds. Returns
    /// `true` if this led to a change in the underlying storage or `None` if out of bounds.
    ///
    /// # Examples
    /// ```
    /// use vob::Vob;
    /// let mut v = Vob::new();
    /// v.push(false);
    /// v.set(0, true);
    /// assert_eq!(v.get(0), Some(true));
    /// assert_eq!(v.set(0, false), Some(true));
    /// assert_eq!(v.set(0, false), Some(false));
    /// ```
    pub fn set(&mut self, index: usize, value: bool) -> Option<bool> {
        if index >= self.len {
            return None;
        }
        let msk = T::one() << (index % bits_per_block::<T>());
        let off = block_offset::<T>(index);
        let old_v = self.vec[off];
        let new_v = if value {
                        old_v | msk
                    } else {
                        old_v & !msk
                    };
        if new_v != old_v {
            self.vec[off] = new_v;
            Some(true)
        } else {
            Some(false)
        }
    }

    /// Returns an iterator over the slice.
    ///
    /// # Examples
    /// ```
    /// use vob::Vob;
    /// let mut v = Vob::new();
    /// v.push(false);
    /// v.push(true);
    /// let mut iterator = v.iter();
    /// assert_eq!(iterator.next(), Some(false));
    /// assert_eq!(iterator.next(), Some(true));
    /// assert_eq!(iterator.next(), None);
    /// ```
    pub fn iter(&self) -> Iter<T> {
        Iter {
            vob: self,
            range: 0..self.len
        }
    }


    /// Returns an iterator which produces the index of each bit set in the Vob.
    ///
    /// # Examples
    /// ```
    /// use vob::Vob;
    /// let mut v = Vob::new();
    /// v.push(false);
    /// v.push(true);
    /// let mut iterator = v.iter_set_bits();
    /// assert_eq!(iterator.next(), Some(1));
    /// assert_eq!(iterator.next(), None);
    /// ```
    pub fn iter_set_bits(&self) -> IterSetBits<T> {
        IterSetBits {
            vob: self,
            range: 0..self.len
        }
    }

    /// Returns an iterator which produces the index of each bit set in the Vob.
    ///
    /// # Examples
    /// ```
    /// use vob::Vob;
    /// let mut v = Vob::new();
    /// v.push(false);
    /// v.push(true);
    /// let mut iterator = v.iter_unset_bits();
    /// assert_eq!(iterator.next(), Some(0));
    /// assert_eq!(iterator.next(), None);
    /// ```
    pub fn iter_unset_bits(&self) -> IterUnsetBits<T> {
        IterUnsetBits {
            vob: self,
            range: 0..self.len
        }
    }

    /// Return an iterator over the underlying storage blocks. The last block is guaranteed to have
    /// "unused" bits (i.e. those past `self.len()`) set to 0.
    ///
    /// # Examples
    /// ```
    /// use vob::Vob;
    /// let v1 = Vob::from_elem(10, true);
    /// assert_eq!(v1.iter_storage().next(), Some((1 << 10) - 1));
    /// let v2 = Vob::from_elem(129, true);
    /// assert_eq!(v2.iter_storage().last(), Some(1));
    /// ```
    pub fn iter_storage(&self) -> StorageIter<T> {
        StorageIter{iter: self.vec.iter()}
    }

    /// Resizes the Vob in-place so that `len` is equal to `new_len`.
    ///
    /// If `new_len` is greater than `len`, the Vob is extended by the difference, with each
    /// additional slot filled with `value`. If `new_len` is less than `len`, the vob is simply
    /// truncated.
    ///
    /// # Examples
    /// ```
    /// use vob::Vob;
    /// let mut v = Vob::new();
    /// v.push(false);
    /// v.resize(129, true);
    /// assert_eq!(v.len(), 129);
    /// assert_eq!(v.get(0), Some(false));
    /// assert_eq!(v.get(128), Some(true));
    /// ```
    pub fn resize(&mut self, new_len: usize, value: bool) {
        if new_len <= self.len {
            self.truncate(new_len);
            return
        }
        if value && self.len > 0 {
            // If we're resizing with trues, we need to extend the last block with true bits. We
            // can rely on mask_last_block to trim any unwanted bits we add in this process.
            let off = block_offset::<T>(self.len);
            let v = self.vec[off];
            self.vec[off] = v | (T::max_value() << (self.len % bits_per_block::<T>()));
        }
        self.vec.resize(blocks_required::<T>(new_len), if value {
                                                           T::max_value()
                                                       } else {
                                                           T::zero()
                                                       });
        self.len = new_len;
        self.mask_last_block();
    }

    /// Appends all elements in a slice to the Vob.
    ///
    /// Iterates over the slice `other` and appends elements in order.
    ///
    /// Note that this function is same as extend except that it is specialized to work with slices
    /// instead. If and when Rust gets specialization this function will likely be deprecated (but
    /// still available).
    ///
    /// # Examples
    /// ```
    /// #[macro_use] extern crate vob;
    /// fn main() {
    ///     let mut v = vob![true];
    ///     v.extend_from_slice(&vec![false, true]);
    ///     assert_eq!(v, vob![true, false, true]);
    /// }
    pub fn extend_from_slice(&mut self, other: &[bool]) {
        for &blk in other.iter() {
            self.push(blk);
        }
    }

    /// Clears the Vob, removing all values.
    ///
    /// Note that this method has no effect on the allocated capacity of the Vob.
    pub fn clear(&mut self) {
        self.len = 0;
        self.vec.clear();
    }

    /// Sets all bits in the Vob to `value`. Notice that this does not change the number of bits
    /// stored in the Vob.
    ///
    /// # Examples
    /// ```
    /// #[macro_use] extern crate vob;
    /// fn main() {
    ///     let mut v = vob![true, false, true];
    ///     v.set_all(false);
    ///     assert_eq!(v, vob![false, false, false]);
    /// }
    /// ```
    pub fn set_all(&mut self, value: bool) {
        for blk in self.vec.iter_mut() {
            *blk = if value {
                       T::max_value()
                   } else {
                       T::zero()
                   };
        }
        self.mask_last_block();
    }

    /// Negates all bits in the Vob.
    ///
    /// # Examples
    /// ```
    /// #[macro_use] extern crate vob;
    /// fn main() {
    ///     let mut v = vob![true, false];
    ///     v.negate();
    ///     assert_eq!(v, vob![false, true]);
    /// }
    /// ```
    pub fn negate(&mut self) {
        for blk in self.vec.iter_mut() {
            *blk = !*blk;
        }
        self.mask_last_block();
    }

    /// For each bit in this Vob, `and` it with the corresponding bit in `other`, returning `true`
    /// if this led to any changes or `false` otherwise. The two Vobs must have the same number of
    /// bits.
    ///
    /// # Panics
    ///
    /// If the two Vobs are of different length.
    ///
    /// # Examples
    /// ```
    /// #[macro_use] extern crate vob;
    /// fn main() {
    ///     let mut v1 = vob![true, false, false];
    ///     let v2 = vob![true, true, false];
    ///     v1.and(&v2);
    ///     assert_eq!(v1, vob![true, false, false]);
    /// }
    /// ```
    pub fn and(&mut self, other: &Vob<T>) -> bool {
        if self.len != other.len {
            panic!("Cannot 'and' two Vobs of different length ({}  {})", self.len, other.len);
        }
        let mut chngd = false;
        for (self_blk, other_blk) in self.vec.iter_mut().zip(other.vec.iter()) {
            let old_v = *self_blk;
            let new_v = old_v & *other_blk;
            if old_v != new_v {
                *self_blk = new_v;
                chngd = true;
            }
        }
        // We don't need to mask the last block as those bits can't be set by "&" by definition.
        chngd
    }

    /// For each bit in this Vob, `or` it with the corresponding bit in `other`, returning `true`
    /// if this led to any changes or `false` otherwise. The two Vobs must have the same number of
    /// bits.
    ///
    /// # Panics
    ///
    /// If the two Vobs are of different length.
    ///
    /// # Examples
    /// ```
    /// #[macro_use] extern crate vob;
    /// fn main() {
    ///     let mut v1 = vob![true, false, false];
    ///     let v2 = vob![false, true, false];
    ///     v1.or(&v2);
    ///     assert_eq!(v1, vob![true, true, false]);
    /// }
    /// ```
    pub fn or(&mut self, other: &Vob<T>) -> bool {
        if self.len != other.len {
            panic!("Cannot 'or' two Vobs of different length ({}  {})", self.len, other.len);
        }
        let mut chngd = false;
        for (self_blk, other_blk) in self.vec.iter_mut().zip(other.vec.iter()) {
            let old_v = *self_blk;
            let new_v = old_v | *other_blk;
            if old_v != new_v {
                *self_blk = new_v;
                chngd = true;
            }
        }
        // We don't need to mask the last block as those bits can't be set by "|" by definition.
        chngd
    }

    /// For each bit in this Vob, `xor` it with the corresponding bit in `other`, returning `true`
    /// if this led to any changes or `false` otherwise. The two Vobs must have the same number of
    /// bits.
    ///
    /// # Panics
    ///
    /// If the two Vobs are of different length.
    ///
    /// # Examples
    /// ```
    /// #[macro_use] extern crate vob;
    /// fn main() {
    ///     let mut v1 = vob![true, false, true];
    ///     let v2 = vob![false, true, true];
    ///     v1.xor(&v2);
    ///     assert_eq!(v1, vob![true, true, false]);
    /// }
    /// ```
    pub fn xor(&mut self, other: &Vob<T>) -> bool {
        if self.len != other.len {
            panic!("Cannot 'xor' two Vobs of different length ({}  {})", self.len, other.len);
        }
        let mut chngd = false;
        for (self_blk, other_blk) in self.vec.iter_mut().zip(other.vec.iter()) {
            let old_v = *self_blk;
            let new_v = old_v ^ *other_blk;
            if old_v != new_v {
                *self_blk = new_v;
                chngd = true;
            }
        }
        self.mask_last_block();
        chngd
    }

    /// We guarantee that the last storage block has no bits set past the "last" bit: this function
    /// clears any such bits.
    fn mask_last_block(&mut self) {
        let ub = self.len % bits_per_block::<T>();
        // If there are no unused bits, there's no need to perform masking.
        if ub > 0 {
            let msk = (T::one() << ub) - T::one();
            let off = block_offset::<T>(self.len);
            let old_v = self.vec[off];
            let new_v = old_v & msk;
            if new_v != old_v {
                self.vec[off] = new_v;
            }
        }
    }
}

impl Default for Vob<usize> {
    fn default() -> Self {
        Vob {
            len: 0,
            vec: Vec::new()
        }
    }
}

impl<T: Debug + One + PrimInt + Zero> Debug for Vob<T> {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write!(fmt, "Vob[")?;
        for blk in self {
            write!(fmt, "{}", if blk { 1 } else { 0 })?;
        }
        write!(fmt, "]")?;
        Ok(())
    }
}

impl<T: Debug + One + PrimInt + Zero> Extend<bool> for Vob<T> {
    fn extend<I: IntoIterator<Item=bool>>(&mut self, iterable: I) {
        let iterator = iterable.into_iter();
        let (min, _) = iterator.size_hint();
        self.reserve(min);
        for e in iterator {
            self.push(e)
        }
    }
}

impl FromIterator<bool> for Vob<usize> {
    /// Create a Vob from an iterator.
    ///
    /// # Examples
    /// ```
    /// use std::iter::FromIterator;
    /// use vob::Vob;
    /// let v = Vob::from_iter(vec![true, false]);
    /// assert_eq!(v, Vob::from_iter(vec![true, false]));
    /// ```
    fn from_iter<I: IntoIterator<Item=bool>>(iter: I) -> Self {
        let mut v = Vob::new();
        v.extend(iter);
        v
    }
}


// This is based on the `BitVec` approach to indices. It's clearly a horrible way of doing things,
// but until `IndexGet` is implemented, we're stuck.
static TRUE: bool = true;
static FALSE: bool = false;

impl<T: Debug + One + PrimInt + Zero> Index<usize> for Vob<T> {
    type Output = bool;

    fn index(&self, index: usize) -> &bool {
        match self.get(index) {
            Some(true) => &TRUE,
            Some(false) => &FALSE,
            None => panic!("index out of bounds: the len is {} but the index is {}",
                           self.len,
                           index)
        }
    }
}

#[derive(Clone)]
pub struct Iter<'a, T: 'a> {
    vob: &'a Vob<T>,
    range: Range<usize>,
}

impl<'a, T: Debug + One + PrimInt + Zero> Iterator for Iter<'a, T> {
    type Item = bool;

    fn next(&mut self) -> Option<bool> {
        self.range.next()
                  .map(|i| self.vob.get(i).unwrap())
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.range.size_hint()
    }
}

impl<'a, T: Debug + One + PrimInt + Zero> DoubleEndedIterator for Iter<'a, T> {
    fn next_back(&mut self) -> Option<bool> {
        self.range.next_back()
                  .map(|i| self.vob.get(i).unwrap())
    }
}

impl<'a, T: Debug + One + PrimInt + Zero> ExactSizeIterator for Iter<'a, T> { }

impl<'a, T: Debug + One + PrimInt + Zero> IntoIterator for &'a Vob<T> {
    type Item = bool;
    type IntoIter = Iter<'a, T>;

    fn into_iter(self) -> Iter<'a, T> {
        self.iter()
    }
}

#[derive(Clone)]
pub struct IterSetBits<'a, T: 'a> {
    vob: &'a Vob<T>,
    range: Range<usize>,
}

impl<'a, T: Debug + One + PrimInt + Zero> Iterator for IterSetBits<'a, T> {
    type Item = usize;

    fn next(&mut self) -> Option<usize> {
        if let Some(mut i) = self.range.next() {
            // Bear in mind that i might not be aligned.
            for b in block_offset::<T>(i) .. blocks_required::<T>(self.vob.len) {
                let v = self.vob.vec[b];
                if v != T::zero() {
                    // We have a block with a bit set. Find the next bit set after 'i %
                    // bits_per_block()', bearing in mind that it may have been the last bit set
                    // (and we thus need to move to the next block).
                    let i_off = i % bits_per_block::<T>();
                    let tz = (v >> i_off).trailing_zeros() as usize;
                    if tz < bits_per_block::<T>() {
                        // There is another bit set after i in the block.
                        let bs = b * bits_per_block::<T>() + i_off + tz;
                        self.range.start = bs + 1;
                        return Some(bs);
                    }
                }
                i = b * bits_per_block::<T>();
            }
        }
        self.range.start = self.range.end;
        None
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.range.size_hint()
    }
}

#[derive(Clone)]
pub struct IterUnsetBits<'a, T: 'a> {
    vob: &'a Vob<T>,
    range: Range<usize>,
}

impl<'a, T: Debug + One + PrimInt + Zero> Iterator for IterUnsetBits<'a, T> {
    type Item = usize;

    fn next(&mut self) -> Option<usize> {
        if let Some(mut i) = self.range.next() {
            // Bear in mind that i might not be aligned.
            for b in block_offset::<T>(i) .. blocks_required::<T>(self.vob.len) {
                let v = self.vob.vec[b];
                if v != T::max_value() {
                    // We have a block with a bit unset. Find the next bit unset after 'i %
                    // bits_per_block()', bearing in mind that it may have been the last bit unset
                    // (and we thus need to move to the next block).
                    let i_off = i % bits_per_block::<T>();
                    let tz = (!v >> i_off).trailing_zeros() as usize;
                    if tz < bits_per_block::<T>() {
                        // There is another bit unset after i in the block.
                        let bs = b * bits_per_block::<T>() + i_off + tz;
                        self.range.start = bs + 1;
                        if bs >= self.vob.len {
                            // This is the last block and the unset bit we thought we'd found is
                            // actually an unused bit; we've thus reached the end of the Vob.
                            break;
                        }
                        return Some(bs);
                    }
                }
                i = b * bits_per_block::<T>();
            }
        }
        self.range.start = self.range.end;
        None
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.range.size_hint()
    }
}

impl<T: Debug + One + PrimInt + Zero> PartialEq for Vob<T> {
    fn eq(&self, other: &Self) -> bool {
        if self.len != other.len {
            return false;
        }
        self.iter_storage()
            .zip(other.iter_storage())
            .all(|(w1, w2)| w1 == w2)
    }
}

impl<T: Debug + One + PrimInt + Zero> Eq for Vob<T> {}

impl<T :Debug + Hash + One + PrimInt + Zero> Hash for Vob<T> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        for blk in self.iter_storage() {
            blk.hash(state);
        }
    }
}

#[derive(Clone)]
pub struct StorageIter<'a, B: 'a> {
    iter: slice::Iter<'a, B>,
}

impl<'a, T: Debug + One + PrimInt + Zero> Iterator for StorageIter<'a, T> {
    type Item = T;

    fn next(&mut self) -> Option<T> {
        self.iter.next().cloned()
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }
}

/// How many bits are stored in each underlying storage block?
fn bits_per_block<T>() -> usize {
    size_of::<T>() * 8
}

/// Return the offset in the vector of the storage block storing the bit `off`.
fn block_offset<T>(off: usize) -> usize {
    off / bits_per_block::<T>()
}

/// Takes as input a number of bits requiring storage; returns an aligned number of blocks needed
/// to store those bits.
fn blocks_required<T>(num_bits: usize) -> usize {
    num_bits / bits_per_block::<T>() + if num_bits % bits_per_block::<T>() == 0 {
                                           0
                                       } else {
                                           1
                                       }
}

#[macro_export]
/// Create a `Vob` from a list of boolean values.
///
/// # Examples
///
/// ```
/// #[macro_use] extern crate vob;
/// use vob::Vob;
///
/// fn main() {
///     let v1 = vob![true, false];
///     let mut v2 = Vob::new();
///     v2.push(true);
///     v2.push(false);
///     assert_eq!(v1, v2);
///     println!("{:?}", vob![10; true]);
/// }
/// ```
macro_rules! vob {
    (@single $($x:tt)*) => (());
    (@count $($rest:expr),*) => (<[()]>::len(&[$(vob!(@single $rest)),*]));
    ($elem:expr; $n:expr) => (
        $crate::Vob::from_elem($elem, $n)
    );
    () => (Vob::new());
    ($($x:expr),*) => ({
        let c = vob!(@count $($x),*);
        let mut vob = $crate::Vob::with_capacity(c);
        $(
            vob.push($x);
        )*
        vob
    });
}

#[cfg(test)]
mod tests {
    use std::collections::hash_map::DefaultHasher;
    use std::hash::{Hash, Hasher};
    use std::iter::FromIterator;
    use std::mem::size_of;
    use super::{block_offset, blocks_required, Vob};

    #[test]
    fn test_block_offset() {
        assert_eq!(block_offset::<usize>(0), 0);
        assert_eq!(block_offset::<usize>(1), 0);
        assert_eq!(block_offset::<usize>(2), 0);
        assert_eq!(block_offset::<usize>(size_of::<usize>() * 8 - 1), 0);
        assert_eq!(block_offset::<usize>(size_of::<usize>() * 8), 1);
    }

    #[test]
    fn test_blocks_required() {
        assert_eq!(blocks_required::<usize>(0), 0);
        assert_eq!(blocks_required::<usize>(1), 1);
        assert_eq!(blocks_required::<usize>(2), 1);
        assert_eq!(blocks_required::<usize>(size_of::<usize>() * 8), 1);
        assert_eq!(blocks_required::<usize>(size_of::<usize>() * 8 + 1), 2);
    }

    #[test]
    fn test_non_usize_storage() {
        let mut v = Vob::<u8>::new_with_storage_type(0);
        for _ in 0..size_of::<u8>() * 8 {
            v.push(true);
        }
        assert_eq!(v.get(0), Some(true));
        assert_eq!(v.get(size_of::<u8>() * 8 - 1), Some(true));
        assert_eq!(v.get(size_of::<u8>() * 8), None);
        v.push(true);
        assert_eq!(v.get(size_of::<u8>() * 8), Some(true));
        v.set(size_of::<u8>() * 8, false);
        assert_eq!(v.get(size_of::<u8>() * 8), Some(false));
        assert_eq!(v.get(size_of::<u8>() * 8 + 1), None);
        assert_eq!(v.set(size_of::<u8>() * 8, true), Some(true));
        assert_eq!(v.set(size_of::<u8>() * 8, true), Some(false));
        assert_eq!(v.get(size_of::<u8>() * 8 - 1), Some(true));
        assert_eq!(v.get(size_of::<u8>() * 8 - 2), Some(true));
    }

    #[test]
    fn test_capacity() {
        assert_eq!(Vob::new().capacity(), 0);
        assert_eq!(Vob::with_capacity(size_of::<usize>() * 8 + 1).capacity(),
                                      size_of::<usize>() * 8 * 2);
    }

    #[test]
    fn test_reserve() {
        let mut v = Vob::new();
        v.reserve(10);
        assert_eq!(v.capacity(), size_of::<usize>() * 8);
        v.reserve(size_of::<usize>() * 8);
        assert_eq!(v.capacity(), size_of::<usize>() * 8 * 2);
    }

    #[test]
    #[should_panic(expected = "Overflow detected")]
    fn test_reserve_panic() {
        let mut v = Vob::new();
        v.reserve(5);
        v.reserve(usize::max_value());
    }

    #[test]
    fn test_beyond_a_word() {
        let mut v = Vob::new();
        for _ in 0..size_of::<usize>() * 8 {
            v.push(true);
        }
        assert_eq!(v.get(0), Some(true));
        assert_eq!(v.get(size_of::<usize>() * 8 - 1), Some(true));
        assert_eq!(v.get(size_of::<usize>() * 8), None);
        v.push(true);
        assert_eq!(v.get(size_of::<usize>() * 8), Some(true));
        v.set(size_of::<usize>() * 8, false);
        assert_eq!(v.get(size_of::<usize>() * 8), Some(false));
        assert_eq!(v.get(size_of::<usize>() * 8 + 1), None);
        assert_eq!(v.set(size_of::<usize>() * 8, true), Some(true));
        assert_eq!(v.set(size_of::<usize>() * 8, true), Some(false));
        assert_eq!(v.get(size_of::<usize>() * 8 - 1), Some(true));
        assert_eq!(v.get(size_of::<usize>() * 8 - 2), Some(true));
    }

    #[test]
    fn test_truncate() {
        let mut v = Vob::from_elem(2 * size_of::<usize>() * 8 + 1, true);
        assert_eq!(v, Vob::from_elem(2 * size_of::<usize>() * 8 + 1, true));
        v.truncate(2 * size_of::<usize>() * 8 + 1);
        assert_eq!(v, Vob::from_elem(2 * size_of::<usize>() * 8 + 1, true));
        v.truncate(3 * size_of::<usize>() * 8 + 1);
        assert_eq!(v, Vob::from_elem(2 * size_of::<usize>() * 8 + 1, true));
        v.truncate(0);
        assert_eq!(v, Vob::new());
    }

    #[test]
    fn test_is_empty() {
        assert_eq!(vob![].is_empty(), true);
        assert_eq!(vob![true].is_empty(), false);
    }

    #[test]
    fn test_resize() {
        let mut v = Vob::new();
        v.resize(1, true);
        assert_eq!(v[0], true);

        let mut v = Vob::new();
        v.push(false);
        v.resize(129, true);
        assert_eq!(v.len(), 129);
        assert_eq!(v.get(0), Some(false));
        assert_eq!(v.get(1), Some(true));
        assert_eq!(v.get(128), Some(true));
        v.resize(1, true);
        assert_eq!(v.len(), 1);
        assert_eq!(v.get(0), Some(false));

        let mut v = Vob::new();
        v.push(false);
        v.resize(2, true);
        assert_eq!(v.len(), 2);
        assert_eq!(v.get(0), Some(false));
        assert_eq!(v.get(1), Some(true));
    }

    #[test]
    fn test_mask_last_block1() {
        let mut v = Vob::<u64>::new_with_storage_type(0);
        v.extend(vob![true, true].iter());
        assert_eq!(v.vec, vec![3]);

        v.vec[0] = 0xaaaaaaaa;
        v.len = 7;
        v.mask_last_block();
        assert_eq!(v.vec, vec![42]);

        v.len = 30;
        v.vec[0] = 0xffffaaaa;
        v.mask_last_block();
        assert_eq!(v.vec, vec![1073719978]);
    }

    #[test]
    fn test_mask_last_block2() {
        let mut v = Vob::<u64>::new_with_storage_type(128);
        for _ in 0..128 {
            v.push(true);
        }
        let full_block = 0xffffffffffffffff;
        assert_eq!(v.vec, vec![full_block, full_block]);

        let one_zero = 0xaaaaaaaaaaaaaaaa;
        v.len = 68;
        v.vec[0] = one_zero;
        v.vec[1] = v.vec[0];
        v.mask_last_block();
        assert_eq!(v.vec, vec![one_zero, 0b1010]);
    }

    #[test]
    fn test_index() {
        let v1 = vob![false, true];
        assert_eq!(v1[0], false);
        assert_eq!(v1[1], true);
    }

    #[test]
    fn test_iter_set_bits() {
        let mut v1 = vob![false, true, false, true];
        assert_eq!(v1.iter_set_bits().collect::<Vec<usize>>(), vec![1, 3]);
        v1.resize(127, false);
        v1.push(true);
        v1.push(false);
        v1.push(true);
        v1.push(true);
        v1.resize(256, false);
        v1.push(true);
        assert_eq!(v1.iter_set_bits().collect::<Vec<usize>>(), vec![1, 3, 127, 129, 130, 256]);
    }

    #[test]
    fn test_iter_unset_bits() {
        let mut v1 = vob![false, true, false, false];
        assert_eq!(v1.iter_unset_bits().collect::<Vec<usize>>(), vec![0, 2, 3]);
        v1.resize(127, true);
        v1.push(false);
        v1.push(true);
        v1.push(false);
        v1.push(false);
        v1.resize(256, true);
        v1.push(false);
        assert_eq!(v1.iter_unset_bits().collect::<Vec<usize>>(), vec![0, 2, 3, 127, 129, 130, 256]);
    }

    #[test]
    fn test_eq() {
        let v1 = Vob::<usize>::from_iter(vec![true, false]);
        let v2 = Vob::from_iter(vec![true, false]);
        assert_eq!(v1, v2);
        let v3 = Vob::from_iter(vec![true, true]);
        assert_ne!(v1, v3);
        let v4 = Vob::from_iter(vec![true, false, true]);
        assert_ne!(v1, v4);
    }

    #[test]
    fn test_hash() {
        fn hash<T: Hash>(t: &T) -> u64 {
            let mut s = DefaultHasher::new();
            t.hash(&mut s);
            s.finish()
        }
        let v1 = vob![true, false];
        let v2 = vob![false, true];
        let v3 = vob![true, false];
        assert_eq!(hash(&v1), hash(&v3));
        assert_ne!(hash(&v1), hash(&v2));
        assert_ne!(hash(&v2), hash(&v3));
    }

    #[test]
    fn test_macros() {
        let v1 = vob![true, false];
        let mut v2 = Vob::new();
        v2.push(true);
        v2.push(false);
        assert_eq!(v1, v2);
        v2.set(1, true);
        assert_eq!(v2, vob![2; true]);
        assert_ne!(v2, vob![2; false]);
    }
}