1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
//! `vint64`: simple and efficient variable-length integer encoding.
//!
//! # About
//!
//! This crate implements a variable-length encoding for 64-bit little endian
//! integers (sometimes also referred to as a variable-length quantity, or "VLQ")
//! with a number of properties which make it superior in almost every way to other
//! variable-length integer encodings like [LEB128], SQLite "Varuints", or CBOR:
//!
//! - Capable of expressing the full 64-bit integer range with a maximum of 9-bytes
//! - Total length of a `vint64` can be determined via the first byte alone
//! - Provides the most compact encoding possible for every value in range
//! - No loops required to encode/decode
//!
//! Integers serialized as unsigned `vint64` are (up to) 64-bit unsigned little
//! endian integers, with the `[0, (2⁶⁴)−1]` range supported.
//!
//! They have serialized lengths from 1-byte to 9-bytes depending on what value
//! they're representing. The number of remaining bytes is stored in the leading
//! byte, indicated by the number of trailing zeroes in that byte.
//!
//! Below is an example of how prefix bits signal the length of the integer value
//! which follows:
//!
//! | Prefix     | Precision | Total Bytes |
//! |------------|-----------|-------------|
//! | `xxxxxxx1` | 7 bits    | 1 byte      |
//! | `xxxxxx10` | 14 bits   | 2 bytes     |
//! | `xxxxx100` | 21 bits   | 3 bytes     |
//! | `xxxx1000` | 28 bits   | 4 bytes     |
//! | `xxx10000` | 35 bits   | 5 bytes     |
//! | `xx100000` | 42 bits   | 6 bytes     |
//! | `x1000000` | 49 bits   | 7 bytes     |
//! | `10000000` | 56 bits   | 8 bytes     |
//! | `00000000` | 64 bits   | 9 bytes     |
//!
//! All arithmetic needed to serialize and deserialize `vint64` can be performed
//! using only 64-bit integers. The case of the prefix byte being all-zero is
//! a special case, and any remaining arithmetic is performed on the remaining
//! bytes.
//!
//! Some precedent for this sort of encoding can be found in the
//! [Extensible Binary Meta Language] (used by e.g. the [Matroska]
//! media container format), however note that the specific type of "vint"
//! used by that format still requires a loop to decode.
//!
//! # Usage
//!
//! ```
//! // Encode a 64-bit integer as a vint64
//! let encoded = vint64::encode(42);
//! assert_eq!(encoded.as_ref(), &[0x55]);
//!
//! // Get the length of a `vint64` from its first byte.
//! // NOTE: this is inclusive of the first byte itself.
//! let encoded_len = vint64::decoded_len(encoded.as_ref()[0]);
//!
//! // Decode an encoded vint64 with trailing data
//! let mut slice: &[u8] = &[0x55, 0xde, 0xad, 0xbe, 0xef];
//! let decoded = vint64::decode(&mut slice).unwrap();
//! assert_eq!(decoded, 42);
//! assert_eq!(slice, &[0xde, 0xad, 0xbe, 0xef]);
//!
//! // Zigzag encoding can be used to encode signed vint64s.
//! // Decode with `vint64::decode_signed`.
//! let signed = vint64::signed::encode(-42);
//! assert_eq!(signed.as_ref(), &[0xa7]);
//! ```
//!
//! [LEB128]: https://cr.yp.to/libtai/vint.html
//! [Extensible Binary Meta Language]: https://en.wikipedia.org/wiki/Extensible_Binary_Meta_Language
//! [Matroska]: https://www.matroska.org/

#![no_std]
#![doc(html_root_url = "https://docs.rs/vint64/0.3.0")]
#![forbid(unsafe_code)]
#![warn(missing_docs, rust_2018_idioms, unused_qualifications)]

use core::{
    convert::{TryFrom, TryInto},
    fmt::{self, Debug, Display},
};

/// Maximum length of a `vint64` in bytes
pub const MAX_BYTES: usize = 9;

/// Get the length of an encoded `vint64` for the given value in bytes
pub fn encoded_len(value: u64) -> usize {
    match value {
        0..=0x7f => 1,
        0x80..=0x3fff => 2,
        0x4000..=0xfffff => 3,
        0x10_0000..=0xfff_ffff => 4,
        0x1000_0000..=0x7_ffff_ffff => 5,
        0x8_0000_0000..=0x3ff_ffff_ffff => 6,
        0x400_0000_0000..=0x1_ffff_ffff_ffff => 7,
        0x2_0000_0000_0000..=0xff_ffff_ffff_ffff => 8,
        0x100_0000_0000_0000..=0xffff_ffff_ffff_ffff => 9,
    }
}

/// Get the length of a `vint64` from the first byte.
///
/// NOTE: The returned value is inclusive of the first byte itself.
pub fn decoded_len(byte: u8) -> usize {
    byte.trailing_zeros() as usize + 1
}

/// Encode an unsigned 64-bit integer as `vint64`
pub fn encode(value: u64) -> VInt64 {
    let mut bytes = [0u8; MAX_BYTES];
    let length = encoded_len(value);

    // 9-byte special case
    if length == 9 {
        // length byte is zero in this case
        bytes[1..].copy_from_slice(&value.to_le_bytes());
    } else {
        let encoded = (value << 1 | 1) << (length as u64 - 1);
        bytes[..8].copy_from_slice(&encoded.to_le_bytes());
    }

    VInt64 { bytes, length }
}

/// Decode a `vint64`-encoded unsigned 64-bit integer.
///
/// Accepts a mutable reference to a slice containing the `vint64`.
/// Upon success, the reference is updated to begin at the byte immediately
/// after the encoded `vint64`.
pub fn decode(input: &mut &[u8]) -> Result<u64, Error> {
    let bytes = *input;
    let length = decoded_len(*bytes.first().ok_or_else(|| Error::Truncated)?);

    if bytes.len() < length {
        return Err(Error::Truncated);
    }

    let result = if length == 9 {
        // 9-byte special case
        u64::from_le_bytes(bytes[1..9].try_into().unwrap())
    } else {
        let mut encoded = [0u8; 8];
        encoded[..length].copy_from_slice(&bytes[..length]);
        u64::from_le_bytes(encoded) >> length
    };

    // Ensure there are no superfluous leading (little-endian) zeros
    if length == 1 || result >= (1 << (7 * (length - 1))) {
        *input = &bytes[length..];
        Ok(result)
    } else {
        Err(Error::LeadingZeroes)
    }
}

/// Support for encoding signed integers as `vint64`
pub mod signed {
    use crate::{zigzag, Error, VInt64};

    /// Encode a signed integer as a zigzag-encoded `vint64`
    pub fn encode(value: i64) -> VInt64 {
        value.into()
    }

    /// Decode a zigzag-encoded `vint64` as a signed integer
    pub fn decode(input: &mut &[u8]) -> Result<i64, Error> {
        super::decode(input).map(zigzag::decode)
    }

    /// Get the length of a zigzag encoded `vint64` for the given value in bytes
    pub fn encoded_len(value: i64) -> usize {
        super::encoded_len(zigzag::encode(value))
    }
}

/// Zigzag encoding for signed integers
pub mod zigzag {
    /// Encode a signed 64-bit integer in zigzag encoding
    pub fn encode(value: i64) -> u64 {
        ((value << 1) ^ (value >> 63)) as u64
    }

    /// Decode a signed 64-bit integer from zigzag encoding
    pub fn decode(encoded: u64) -> i64 {
        (encoded >> 1) as i64 ^ -((encoded & 1) as i64)
    }
}

/// Error type
#[derive(Copy, Clone, Debug)]
pub enum Error {
    /// Value contains unnecessary leading zeroes
    LeadingZeroes,

    /// Value is truncated / malformed
    Truncated,
}

impl Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str(match self {
            Error::LeadingZeroes => "vint64 contains leading zeroes",
            Error::Truncated => "vint64 is truncated",
        })
    }
}

/// `vint64`: serialized variable-width 64-bit integers
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct VInt64 {
    /// Serialized variable-width integer
    bytes: [u8; MAX_BYTES],

    /// Encoded length in bytes
    length: usize,
}

impl AsRef<[u8]> for VInt64 {
    fn as_ref(&self) -> &[u8] {
        &self.bytes[..self.length]
    }
}

impl Debug for VInt64 {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let mut bytes_ref = self.as_ref();
        write!(f, "VInt64({})", decode(&mut bytes_ref).unwrap())
    }
}

impl From<u64> for VInt64 {
    fn from(value: u64) -> VInt64 {
        encode(value)
    }
}

impl From<i64> for VInt64 {
    fn from(value: i64) -> VInt64 {
        zigzag::encode(value).into()
    }
}

impl TryFrom<&[u8]> for VInt64 {
    type Error = Error;

    fn try_from(slice: &[u8]) -> Result<Self, Error> {
        let mut slice_ref = slice;
        decode(&mut slice_ref).map(VInt64::from)
    }
}

#[cfg(test)]
mod tests {
    use super::{decode, encode, signed};

    #[test]
    fn encode_zero() {
        assert_eq!(encode(0).as_ref(), &[1]);
    }

    #[test]
    fn encode_bit_pattern_examples() {
        assert_eq!(encode(0x0f0f).as_ref(), &[0x3e, 0x3c]);
        assert_eq!(encode(0x0f0f_f0f0).as_ref(), &[0x08, 0x0f, 0xff, 0xf0]);
        assert_eq!(
            encode(0x0f0f_f0f0_0f0f).as_ref(),
            &[0xc0, 0x87, 0x07, 0x78, 0xf8, 0x87, 0x07]
        );
        assert_eq!(
            encode(0x0f0f_f0f0_0f0f_f0f0).as_ref(),
            &[0x00, 0xf0, 0xf0, 0x0f, 0x0f, 0xf0, 0xf0, 0x0f, 0x0f]
        );
    }

    #[test]
    fn encode_maxint() {
        assert_eq!(
            encode(core::u64::MAX).as_ref(),
            &[0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff]
        );
    }

    #[test]
    fn encode_signed_values() {
        assert_eq!(
            signed::encode(0x0f0f_f0f0).as_ref(),
            &[0x10, 0x3c, 0xfc, 0xc3, 0x03]
        );

        assert_eq!(
            signed::encode(-0x0f0f_f0f0).as_ref(),
            &[0xf0, 0x3b, 0xfc, 0xc3, 0x03]
        );
    }

    #[test]
    fn decode_zero() {
        let mut slice = [1].as_ref();
        assert_eq!(decode(&mut slice).unwrap(), 0);
    }

    #[test]
    fn decode_bit_pattern_examples() {
        let mut slice = [0x3e, 0x3c].as_ref();
        assert_eq!(decode(&mut slice).unwrap(), 0x0f0f);
        assert!(slice.is_empty());

        let mut slice = [0x08, 0x0f, 0xff, 0xf0].as_ref();
        assert_eq!(decode(&mut slice).unwrap(), 0x0f0f_f0f0);
        assert!(slice.is_empty());

        let mut slice = [0xc0, 0x87, 0x07, 0x78, 0xf8, 0x87, 0x07].as_ref();
        assert_eq!(decode(&mut slice).unwrap(), 0x0f0f_f0f0_0f0f);
        assert!(slice.is_empty());

        let mut slice = [0x00, 0xf0, 0xf0, 0x0f, 0x0f, 0xf0, 0xf0, 0x0f, 0x0f].as_ref();
        assert_eq!(decode(&mut slice).unwrap(), 0x0f0f_f0f0_0f0f_f0f0);
        assert!(slice.is_empty());
    }

    #[test]
    fn decode_maxint() {
        let mut slice = [0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff].as_ref();
        assert_eq!(decode(&mut slice).unwrap(), core::u64::MAX);
        assert!(slice.is_empty());
    }

    #[test]
    fn decode_with_trailing_data() {
        let mut slice = [0x3e, 0x3c, 0xde, 0xad, 0xbe, 0xef].as_ref();
        assert_eq!(decode(&mut slice).unwrap(), 0x0f0f);
        assert_eq!(slice, &[0xde, 0xad, 0xbe, 0xef]);
    }

    #[test]
    fn decode_truncated() {
        let mut slice = [0].as_ref();
        assert!(decode(&mut slice).is_err());

        let mut slice = [0x08, 0x0f, 0xff].as_ref();
        assert!(decode(&mut slice).is_err());
    }

    #[test]
    fn decode_trailing_zeroes() {
        let mut slice = [0x08, 0x00, 0x00, 0x00].as_ref();
        assert!(decode(&mut slice).is_err());
    }

    #[test]
    fn decode_signed_values() {
        let mut slice = [0x10, 0x3c, 0xfc, 0xc3, 0x03].as_ref();
        assert_eq!(signed::decode(&mut slice).unwrap(), 0x0f0f_f0f0);

        let mut slice = [0xf0, 0x3b, 0xfc, 0xc3, 0x03].as_ref();
        assert_eq!(signed::decode(&mut slice).unwrap(), -0x0f0f_f0f0);
    }
}