1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
// Licensed under either of Apache License, Version 2.0 or MIT license at your option.
// Copyright 2021 Hwakyeom Kim(=just-do-halee)

//! # **`vep`**
//!
//! Variable-length Expansion Pass function.
//! ( i.e. short password to long hashed password )<br>
//! (supported no-std)
//! <a href="https://i.ibb.co/WgTkyXF/vep2.png">check algorithm</a>
//! ## How to
//! ```rust
//!
//! use vep::Vep;
//! use sha2::{Sha256, Digest}; // can be any hasher(dyn Digest from `digest` crate)
//!
//! let src = b"hello vep!"; // <- 10 bytes
//! let expanded = Vep(Sha256::new()).expand(src); // -> 10 * 32 bytes == `320 bytes`
//!
//! assert_eq!(expanded.len(), Vep::<Sha256>::output_size_calc(src));
//! ```
//!
//! ## Fixed size available
//! ```rust
//! # use vep::Vep;
//! # use sha2::{Sha256, Digest};
//! let src = b"hello vep!"; // <- 10 bytes
//! let result = Vep(Sha256::new()).expand_and_then_reduce(src); // -> 320 bytes -> `32 bytes` (reduced)
//!
//! assert_eq!(result.len(), Vep::<Sha256>::reduced_size_calc());
//! ```

#![deny(unsafe_code)]
#![cfg_attr(all(not(feature = "std"), not(test)), no_std)]

#[cfg(not(feature = "std"))]
extern crate alloc;
#[cfg(not(feature = "std"))]
use alloc::vec::Vec;

#[cfg(feature = "std")]
extern crate std;
#[cfg(feature = "std")]
use std::vec::Vec;

use zeroize::Zeroize;

pub mod parts {
    pub use digest::generic_array::{ArrayLength, GenericArray};
    pub use digest::Digest;
    pub use typenum as BytesSize;
}

pub trait Digester {
    type OutputSize: parts::ArrayLength<u8>;
    fn output_size() -> usize;
    fn digest(&mut self, data: impl AsRef<[u8]>) -> parts::GenericArray<u8, Self::OutputSize>;
    fn update(&mut self, data: impl AsRef<[u8]>);
    fn finalize_reset(&mut self) -> parts::GenericArray<u8, Self::OutputSize>;
}

impl<D: parts::Digest> Digester for D {
    type OutputSize = D::OutputSize;
    #[inline]
    fn output_size() -> usize {
        D::output_size()
    }
    #[inline]
    fn update(&mut self, data: impl AsRef<[u8]>) {
        self.update(data);
    }
    #[inline]
    fn finalize_reset(&mut self) -> parts::GenericArray<u8, Self::OutputSize> {
        self.finalize_reset()
    }
    #[inline]
    fn digest(&mut self, data: impl AsRef<[u8]>) -> parts::GenericArray<u8, Self::OutputSize> {
        self.update(data);
        self.finalize_reset()
    }
}

pub struct Vep<D: Digester>(pub D);

impl<D: Digester> Vep<D> {
    /// very cheap
    #[inline]
    pub fn output_size_calc(bytes: impl AsRef<[u8]>) -> usize {
        let len = bytes.as_ref().len();
        D::output_size() * if len < 2 { 2 } else { len }
    }
    /// very cheap
    #[inline]
    pub fn reduced_size_calc() -> usize {
        D::output_size()
    }
    pub fn expand(mut self, bytes: impl AsRef<[u8]>) -> Vec<u8> {
        let (last_salt, middle_output) = self.middle_process(bytes);
        middle_output
            .into_iter()
            .zip(last_salt.iter())
            .flat_map(|(data, &salt)| {
                self.0.update(data);
                self.0.update(&[salt]);
                self.0.finalize_reset()
            })
            .collect() // final output
    }
    pub fn expand_and_then_reduce(mut self, bytes: impl AsRef<[u8]>) -> Vec<u8> {
        let (last_salt, middle_output) = self.middle_process(bytes);
        middle_output
            .into_iter()
            .zip(last_salt.iter())
            .map(|(data, &salt)| {
                self.0.update(data);
                self.0.update(&[salt]);
                self.0.finalize_reset()
            })
            .collect::<Vec<parts::GenericArray<u8, D::OutputSize>>>()
            .into_iter()
            .reduce(|a, b| {
                self.0.update(a);
                self.0.update(b);
                self.0.finalize_reset()
            })
            .unwrap()
            .to_vec()
    }
    #[inline]
    fn middle_process(
        &mut self,
        bytes: impl AsRef<[u8]>,
    ) -> (Vec<u8>, Vec<parts::GenericArray<u8, D::OutputSize>>) {
        let mut bytes = match bytes.as_ref().len() {
            // padding
            0 => [0, 0].to_vec(),
            1 => bytes.as_ref().to_vec().repeat(2),
            _ => bytes.as_ref().to_vec(),
        };
        let bytes_len = bytes.len();
        let rev_i = bytes_len - 1;
        let mut salt;
        let mut buf = Vec::from(bytes.as_slice());
        let mut temp;
        let mut last_salt = Vec::with_capacity(bytes_len);
        let mut middle_output = Vec::with_capacity(bytes_len);

        for (i, &byte) in bytes.iter().enumerate() {
            salt = bytes[rev_i - i];
            let times = byte;
            buf.push(salt);
            temp = self.0.digest(buf.as_slice());
            for _ in 0..times {
                temp = self.0.digest(temp.as_slice());
            }
            buf = temp.to_vec();
            last_salt.push(buf[0]);
            middle_output.push(temp);
        }

        bytes.zeroize();
        (last_salt, middle_output)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    // ---------------  blake3  ---------------
    use blake3::traits::digest::Digest;
    use blake3::Hasher;
    // ---------------  sha3_512  ---------------
    use sha3::Sha3_512;
    // ---------------  sha2_384  ---------------
    use sha2::Sha384 as Sha2_384;

    fn filter_len(len: usize) -> usize {
        if len < 2 {
            2
        } else {
            len
        }
    }

    #[test]
    fn pad() {
        let src = b"";
        let src_len = filter_len(src.len()); // 2 bytes
        eprintln!("\n'' = {} ({})\n", hex::encode(src), src_len);

        let blake3_expanded = Vep(Hasher::new()).expand(src); // output = 32 bytes == 256 bits
        let b_len = blake3_expanded.len();
        assert_eq!(src_len * 32, b_len); // == 64 bytes == 512 bits
        assert_eq!(b_len, 64);
        assert_eq!(64, Vep::<Hasher>::output_size_calc(src));

        let src = b"a";
        let src_len = filter_len(src.len()); // 2 bytes
        eprintln!("\n'a' = {} ({})\n", hex::encode(src), src_len);

        let sha2_expanded = Vep(Sha2_384::new()).expand(src); // output = 48 bytes == 384 bits
        let s2_len = sha2_expanded.len();
        assert_eq!(src_len * 48, s2_len); // == 96 bytes == 768 bits
        assert_eq!(s2_len, 96);
        assert_eq!(96, Vep::<Sha2_384>::output_size_calc(src));
    }
    #[test]
    fn expand() {
        let src = b"hello world!";
        let src_len = src.len(); // 12 bytes
        eprintln!("\n'hello world!' = {} ({})\n", hex::encode(src), src_len);

        let blake3_expanded = Vep(Hasher::new()).expand(src); // output = 32 bytes == 256 bits
        let b_len = blake3_expanded.len();
        assert_eq!(src_len * 32, b_len); // == 384 bytes == 3072 bits
        assert_eq!(b_len, Vep::<Hasher>::output_size_calc(src));

        let sha2_expanded = Vep(Sha2_384::new()).expand(src); // output = 48 bytes == 384 bits
        let s2_len = sha2_expanded.len();
        assert_eq!(src_len * 48, s2_len); // == 576 bytes == 4608 bits
        assert_eq!(s2_len, Vep::<Sha2_384>::output_size_calc(src));

        let sha3_expanded = Vep(Sha3_512::new()).expand(src); // output = 64 bytes == 512 bits
        let s3_len = sha3_expanded.len();
        assert_eq!(src_len * 64, s3_len); // == 768 bytes == 6144 bits
        assert_eq!(s3_len, Vep::<Sha3_512>::output_size_calc(src));

        eprintln!(
            "vep(blake3_256) = {} ({})\n",
            hex::encode(blake3_expanded),
            b_len
        );
        eprintln!(
            "vep(sha2_384) = {} ({})\n",
            hex::encode(sha2_expanded),
            s2_len
        );
        eprintln!(
            "vep(sha3_512) = {} ({})\n",
            hex::encode(sha3_expanded),
            s3_len
        );
    }
    #[test]
    fn expand_and_then_reduce() {
        let src = b"";
        let src_len = src.len(); // 12 bytes
        eprintln!("\n'' = {} ({})\n", hex::encode(src), src_len);

        let blake3_expanded = Vep(Hasher::new()).expand_and_then_reduce(src);
        let b_len = blake3_expanded.len();
        assert_eq!(32, b_len); // 32 bytes == 256 bits
        assert_eq!(b_len, Vep::<Hasher>::reduced_size_calc());

        let sha2_expanded = Vep(Sha2_384::new()).expand_and_then_reduce(src);
        let s2_len = sha2_expanded.len();
        assert_eq!(48, s2_len); // 48 bytes == 384 bits
        assert_eq!(s2_len, Vep::<Sha2_384>::reduced_size_calc());

        let sha3_expanded = Vep(Sha3_512::new()).expand_and_then_reduce(src);
        let s3_len = sha3_expanded.len();
        assert_eq!(64, s3_len); // 64 bytes == 512 bits
        assert_eq!(s3_len, Vep::<Sha3_512>::reduced_size_calc());

        let hex = hex::encode(blake3_expanded);
        eprintln!("vep(blake3_256) = {} ({})\n", hex, b_len);
        assert_eq!(
            hex,
            "78e74c2be51e45d39331b3b25359b1122f3a0f1e042379aafa85ca2651352438"
        );
        let hex = hex::encode(sha2_expanded);
        eprintln!("vep(sha2_384) = {} ({})\n", hex, s2_len);
        assert_eq!(hex, "21e977feb8e749c591c10adc3fe718302680f0b80750aed635de4c9a1d3529362092aed43529cc4fecca1baf119e00c1");
        let hex = hex::encode(sha3_expanded);
        eprintln!("vep(sha3_512) = {} ({})\n", hex, s3_len);
        assert_eq!(hex, "760974c924b7ca24b447a53e2bd82fc3112ab2334cf8e2a3ebe22fff073aee4d795ea0e5d5ce82facb1b228fc531c92bb71c4f6feebea1099863b564c89e8310");
    }
}