1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
//! This is a platform agnostic Rust driver for the VEML6030 and VEML7700 high-accuracy
//! ambient light sensors using the [`embedded-hal`] traits.
//!
//! [`embedded-hal`]: https://github.com/rust-embedded/embedded-hal
//!
//! This driver allows you to:
//! - Enable/disable the device. See: [`enable()`].
//! - Read the measured lux value. See: [`read_lux()`].
//! - Read the white channel measurement. See: [`read_white()`].
//! - Read the measured ALS value in raw format. See: [`read_raw()`].
//! - Calculate the compensated lux for a raw ALS value. See: [`convert_raw_als_to_lux()`].
//! - Set the gain. See: [`set_gain()`].
//! - Set the integration time. See: [`set_integration_time()`].
//! - Set the fault count. See: [`set_fault_count()`].
//! - Enable/disable and configure power saving mode. See: [`enable_power_saving()`].
//! - Enable/disable interrupts. See: [`enable_interrupts()`].
//! - Read the interrupt status. See: [`read_interrupt_status()`].
//! - Set the high/low thresholds in lux or raw. See: [`set_high_threshold_lux()`].
//! - Calculate the compensated raw threshold value ahead of time. See: [`calculate_raw_threshold_value()`].
//!
//! [`enable()`]: struct.Veml6030.html#method.enable
//! [`read_lux()`]: struct.Veml6030.html#method.read_lux
//! [`read_white()`]: struct.Veml6030.html#method.read_white
//! [`read_raw()`]: struct.Veml6030.html#method.read_raw
//! [`convert_raw_als_to_lux()`]: fn.convert_raw_als_to_lux.html
//! [`set_gain()`]: struct.Veml6030.html#method.set_gain
//! [`set_integration_time()`]: struct.Veml6030.html#method.set_integration_time
//! [`set_fault_count()`]: struct.Veml6030.html#method.set_fault_count
//! [`enable_power_saving()`]: struct.Veml6030.html#method.enable_power_saving
//! [`enable_interrupts()`]: struct.Veml6030.html#method.enable_interrupts
//! [`read_interrupt_status()`]: struct.Veml6030.html#method.read_interrupt_status
//! [`set_high_threshold_lux()`]: struct.Veml6030.html#method.set_high_threshold_lux
//! [`calculate_raw_threshold_value()`]: fn.calculate_raw_threshold_value.html
//!
//! [Introductory blog post](https://blog.eldruin.com/veml6030-ambient-light-sensor-driver-in-rust/)
//!
//! ## The devices
//!
//! Vishay's VEML6030 / VEML7700 are high accuracy ambient light digital 16-bit
//! resolution sensors in a miniature transparent package. They include
//! a high sensitive photodiode, a low noise amplifier, a 16-bit A/D converter
//! and support an easy to use I2C bus communication interface and additional
//! interrupt feature.
//! The ambient light result is as digital value available.
//!
//! Datasheets: [VEML6030](https://www.vishay.com/docs/84366/veml6030.pdf) - [VEML7700](https://www.vishay.com/docs/84286/veml7700.pdf)
//!
//! Application Note:
//! - [Designing the VEML6030 into an application](https://www.vishay.com/docs/84367/designingveml6030.pdf)
//! - [Designing the VEML7700 into an application](https://www.vishay.com/docs/84323/designingveml7700.pdf)
//!
//! ## Usage examples (see also examples folder)
//!
//! To use this driver, import this crate and an `embedded_hal` implementation,
//! then instantiate the appropriate device.
//! 
//! VEML6030 and VEML7700 expose the same interface over I2C. To communicate with a VEML7700
//! simply use this driver as if communicating with a VEML6030.
//!
//! Please find additional examples using hardware in this repository: [driver-examples]
//!
//! [driver-examples]: https://github.com/eldruin/driver-examples
//!
//! ### Read the lux
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! extern crate veml6030;
//! use veml6030::{SlaveAddr, Veml6030};
//!
//! # fn main() {
//! let dev = hal::I2cdev::new("/dev/i2c-1").unwrap();
//! let mut sensor = Veml6030::new(dev, SlaveAddr::default());
//! sensor.enable().unwrap();
//! loop {
//!     let lux = sensor.read_lux().unwrap();
//!     println!("lux: {:2}", lux);
//! }
//! # }
//! ```
//!
//! ### Provide an alternative address
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! extern crate veml6030;
//! use veml6030::{SlaveAddr, Veml6030};
//!
//! # fn main() {
//! let dev = hal::I2cdev::new("/dev/i2c-1").unwrap();
//! let address = SlaveAddr::Alternative(true);
//! let mut sensor = Veml6030::new(dev, address);
//! # }
//! ```
//!
//! ### Set the gain and integration time
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! extern crate veml6030;
//! use veml6030::{Gain, IntegrationTime, SlaveAddr, Veml6030};
//!
//! # fn main() {
//! let dev = hal::I2cdev::new("/dev/i2c-1").unwrap();
//! let mut sensor = Veml6030::new(dev, SlaveAddr::default());
//! sensor.set_gain(Gain::OneQuarter).unwrap();
//! sensor.set_integration_time(IntegrationTime::Ms200).unwrap();
//! sensor.enable().unwrap();
//! # }
//! ```
//!
//! ### Enable power-saving mode
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! extern crate veml6030;
//! use veml6030::{PowerSavingMode, SlaveAddr, Veml6030};
//!
//! # fn main() {
//! let dev = hal::I2cdev::new("/dev/i2c-1").unwrap();
//! let mut sensor = Veml6030::new(dev, SlaveAddr::default());
//! sensor.enable_power_saving(PowerSavingMode::One).unwrap();
//! sensor.enable().unwrap();
//! # }
//! ```
//!
//! ### Set thresholds, fault count and enable interrupts
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! extern crate veml6030;
//! use veml6030::{
//!     FaultCount, Gain, IntegrationTime, SlaveAddr, Veml6030
//! };
//!
//! # fn main() {
//! let dev = hal::I2cdev::new("/dev/i2c-1").unwrap();
//! let mut sensor = Veml6030::new(dev, SlaveAddr::default());
//! sensor.set_gain(Gain::OneQuarter).unwrap();
//! // this will compensate the value automatically before setting it
//! sensor.set_high_threshold_lux(10000.0).unwrap();
//! sensor.set_low_threshold_lux(100.0).unwrap();
//! sensor.set_fault_count(FaultCount::Four).unwrap();
//! sensor.enable_interrupts().unwrap();
//! sensor.enable().unwrap();
//! # }
//! ```
//!
//! ### Precalculate and set compensated threshold values
//!
//! Using current device configuration
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! extern crate veml6030;
//! use veml6030::{Gain, IntegrationTime, SlaveAddr, Veml6030};
//!
//! # fn main() {
//! let dev = hal::I2cdev::new("/dev/i2c-1").unwrap();
//! let mut sensor = Veml6030::new(dev, SlaveAddr::default());
//! sensor.set_gain(Gain::OneEighth).unwrap();
//! sensor.set_integration_time(IntegrationTime::Ms200).unwrap();
//! let high_th_raw = sensor.calculate_raw_threshold_value(10000.0);
//! // ...
//! sensor.set_high_threshold_raw(high_th_raw).unwrap();
//! // this requires no compensation because the value is < 1000
//! sensor.set_low_threshold_lux(100.0).unwrap();
//! # }
//! ```
//!
//! ### Precalculate and set compensated threshold values
//!
//! Using free function
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! extern crate veml6030;
//! use veml6030::{
//!     calculate_raw_threshold_value,
//!     Gain, IntegrationTime, SlaveAddr, Veml6030
//! };
//!
//! # fn main() {
//! let gain = Gain::OneEighth;
//! let it = IntegrationTime::Ms200;
//! let high_th_raw = calculate_raw_threshold_value(it, gain, 10000.0);
//! let dev = hal::I2cdev::new("/dev/i2c-1").unwrap();
//! let mut sensor = Veml6030::new(dev, SlaveAddr::default());
//! sensor.set_gain(gain).unwrap();
//! sensor.set_integration_time(it).unwrap();
//! // ...
//! sensor.set_high_threshold_raw(high_th_raw).unwrap();
//! // this requires no compensation because the value is < 1000
//! sensor.set_low_threshold_lux(100.0).unwrap();
//! sensor.enable_interrupts().unwrap();
//! sensor.enable().unwrap();
//! # }
//! ```
//!
//! ### Read interrupt status
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! extern crate veml6030;
//! use veml6030::{SlaveAddr, Veml6030};
//!
//! # fn main() {
//! let dev = hal::I2cdev::new("/dev/i2c-1").unwrap();
//! let mut sensor = Veml6030::new(dev, SlaveAddr::default());
//! // ...
//! loop {
//!     let status = sensor.read_interrupt_status().unwrap();
//!     if status.was_too_high {
//!         // ...
//!     }
//!     if status.was_too_low {
//!         // ...
//!     }
//! }
//! # }
//! ```
//!
//! ### Read the raw ALS measurement and convert to lux separately
//!
//! Using current device configuration
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! extern crate veml6030;
//! use veml6030::{SlaveAddr, Veml6030};
//!
//! # fn main() {
//! let dev = hal::I2cdev::new("/dev/i2c-1").unwrap();
//! let mut sensor = Veml6030::new(dev, SlaveAddr::default());
//! sensor.enable().unwrap();
//! loop {
//!     let raw = sensor.read_raw().unwrap();
//!     // ...
//!     let lux = sensor.convert_raw_als_to_lux(raw);
//!     println!("lux: {:2}", lux);
//! }
//! # }
//! ```
//!
//! ### Read the raw ALS measurement and convert to lux separately
//!
//! Using free function
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! extern crate veml6030;
//! use veml6030::{
//!     convert_raw_als_to_lux,
//!     Gain, IntegrationTime, SlaveAddr, Veml6030
//! };
//!
//! # fn main() {
//! let gain = Gain::OneEighth;
//! let it = IntegrationTime::Ms200;
//! let dev = hal::I2cdev::new("/dev/i2c-1").unwrap();
//! let mut sensor = Veml6030::new(dev, SlaveAddr::default());
//! sensor.set_gain(gain).unwrap();
//! sensor.set_integration_time(it).unwrap();
//! sensor.enable().unwrap();
//! loop {
//!     let raw = sensor.read_raw().unwrap();
//!     // ...
//!     let lux = convert_raw_als_to_lux(it, gain, raw);
//!     println!("lux: {:2}", lux);
//! }
//! # }
//! ```

#![deny(unsafe_code, missing_docs)]
#![no_std]

extern crate embedded_hal as hal;
extern crate libm;

mod correction;
mod device_impl;
pub use correction::calculate_raw_threshold_value;
pub use device_impl::convert_raw_als_to_lux;
mod types;
pub use types::{
    Error, FaultCount, Gain, IntegrationTime, InterruptStatus, PowerSavingMode, SlaveAddr,
};

/// VEML6030 device driver
#[derive(Debug)]
pub struct Veml6030<I2C> {
    /// The concrete I²C device implementation.
    i2c: I2C,
    address: u8,
    config: Config,
    gain: Gain,
    it: IntegrationTime,
}

#[derive(Debug, Default, Clone, Copy, PartialEq)]
struct Config {
    bits: u16,
}