1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
//! This crate provides a stack-allocated, constant-size [`Matrix<T, M, N>`]
//! type implemented using const generics.
//!
//! # 🚀 Getting started
//!
//! Add this crate to your Cargo manifest.
//!
//! ```sh
//! cargo add vectrix
//! ```
//!
//! `no_std` is also supported by disabling the default std feature.
//!
//! ```sh
//! cargo add vectrix --no-default-features --features=macro
//! ```
//!
//! # 🤸 Usage
//!
//! ## Types
//!
//! The base [`Matrix<T, M, N>`] type represents a matrix with `M` rows and `N`
//! columns. This type is a backed by an array of arrays. The data is stored in
//! column-major order. Some convenient aliases are provided for common
//! matrices, like vectors.
//!
//! - [`Matrix<T, M, N>`] → a generic matrix type with `M` rows and `N` columns.
//! - [`Vector<T, M>`] → a column vector with `M` rows.
//! - [`RowVector<T, N>`] → a row vector with `N` columns.
//!
//! ## Macros
//!
//! Macros are provided for easy construction of the provided types. These
//! macros will also work in `const` contexts.
//!
//! - The [`matrix!`] macro can be used to construct a new [`Matrix`] of any
//!   size.
//!   ```
//!   # use vectrix::*;
//!   #
//!   let m = matrix![
//!       1, 3, 5;
//!       2, 4, 6;
//!   ];
//!   ```
//!
//!   In the above example `matrix` is a `Matrix<_, 2, 3>` type, having 2 rows and
//!   3 columns.
//!
//! - The [`vector!`] and [`row_vector!`] macros can be used to to construct
//!   column and row vectors respectively.
//!   ```
//!   # use vectrix::*;
//!   #
//!   let v = vector![1, 3, 3, 7];
//!   //  ^ type `Vector<_, 4>`
//!   assert_eq!(v, matrix![1; 3; 3; 7]);
//!
//!   let v = row_vector![1, 3, 3, 7];
//!   //  ^^^^^^ type `RowVector<_, 4>`
//!   assert_eq!(v, matrix![1, 3, 3, 7]);
//!   ```
//!
//! ## Constructors
//!
//! Commonly used constructors are listed below.
//!
//! - [`::zero()`][`Matrix::zero()`] → constructs a new matrix filled with
//!   [`T::zero()`][`Zero::zero()`].
//! - [`::identity()`][`Matrix::identity()`] → constructs a new identity matrix.
//! - [`::repeat(..)`][`Matrix::repeat()`] → constructs a new matrix filled with
//!   the provided value.
//! - [`::repeat_with(..)`][`Matrix::repeat_with()`] → constructs a new matrix
//!   filled with values computed by the provided closure.
//! - [`::from_iter(..)`][`core::iter::FromIterator::from_iter`] → constructs a
//!   new matrix from an iterator.
//! - [`::new(..)`][`Matrix::new()`] → constructs a new vector using the
//!   provided components.
//!
//! ## Accessing elements
//!
//! Three types of element access are available.
//!
//! - `usize` indexing selects the nth element in the matrix as viewed in
//!    column-major order.
//!    ```
//!    # use vectrix::*;
//!    #
//!    let m = matrix![
//!        1, 2, 3;
//!        4, 5, 6;
//!    ];
//!    assert_eq!(m[1], 4);
//!    ```
//!
//! - `(usize, usize)` indexing selects the element at a particular row and
//!   column position.
//!   ```
//!   # use vectrix::*;
//!   #
//!   let m = matrix![
//!       1, 2, 3;
//!       4, 5, 6;
//!   ];
//!   assert_eq!(m[(1, 0)], 4);
//!   ```
//!
//! - Component accessors are available for small vectors using traditional
//!   names.
//!   ```
//!   # use vectrix::*;
//!   #
//!   let mut v = vector![1, 2, 3, 4, 0, 0];
//!   v.y = 3;
//!   v.w = 7;
//!   assert_eq!(v.x, 1);
//!   assert_eq!(v.y, 3);
//!   assert_eq!(v.z, 3);
//!   assert_eq!(v.w, 7);
//!   assert_eq!(v.a, 0);
//!   assert_eq!(v.b, 0);
//!   ```
//!
//! ## Accessing a row or column
//!
//! You can get a reference to particular row or column using the
//! [`.row()`][`Matrix::row`] or [`.column()`][`Matrix::column`] methods. You
//! can get a mutable reference using the `_mut` variants.
//!
//! ```
//! # use vectrix::*;
//! #
//! let mut m = matrix![
//!     1, 2, 3;
//!     4, 7, 6;
//! ];
//! let row = m.row_mut(1);
//! row[1] = 5;
//! assert_eq!(m.column(1), &[2, 5]);
//! ```
//!
//! ## Iteration
//!
//! Element-wise, column-major order iteration is provided using the following
//! methods.
//!
//! - [`.into_iter()`][`Matrix::into_iter()`] → consumes the matrix and returns
//!   an owned iterator over each element.
//! - [`.iter()`][`Matrix::iter()`] → returns an iterator over a reference to
//!   each element.
//! - [`.iter_mut()`][`Matrix::iter_mut()`] → returns an iterator over a mutable
//!   reference to each element.
//!
//! Iteration over rows and columns is provide using the following methods.
//!
//! - [`.iter_rows()`][`Matrix::iter_rows()`] → returns an iterator over a
//!   reference to each row.
//! - [`.iter_rows_mut()`][`Matrix::iter_rows_mut()`] → returns an iterator over
//!   mutable reference to each row.
//! - [`.iter_columns()`][`Matrix::iter_columns()`] → returns an iterator over a
//!   reference to each column.
//! - [`.iter_columns_mut()`][`Matrix::iter_columns_mut()`] → returns an
//!   iterator over a mutable reference to each column.
//!
//! ### Slice representation
//!
//! A slice view of the underlying data is provided using
//! [`.as_slice()`][`Matrix::as_slice`] and
//! [`.as_mut_slice()`][`Matrix::as_mut_slice`].
//! ```
//! # use vectrix::*;
//! #
//! let mut m = matrix![
//!     1, 3, 5;
//!     2, 3, 6;
//! ];
//! m.as_mut_slice()[3] = 4;
//! assert_eq!(m.as_slice(), &[1, 2, 3, 4, 5, 6]);
//! ```
//!
//! ## Debug
//!
//! The [`Debug`][`core::fmt::Debug`] implementation will print out vectors as
//! lists and matrices as a list of lists in column-major order.
//!
//! ```
//! # use vectrix::*;
//! #
//! let v = vector![1.1, 2.0];
//! let m = matrix![1, 2; 3, 4];
//! println!("vector: {:.2?}", v);
//! println!("matrix: {:?}", m);
//! ```
//!
//! This will output:
//!
//! ```text
//! vector: [1.10, 2.00]
//! matrix: [[1, 3], [2, 4]]
//! ```
//!
//! ## Display
//!
//! The [`Display`][`core::fmt::Display`] implementation will print out the
//! matrix in the traditional box bracket format. Precision is supported as well
//! as most of the other formatting traits like
//! [`LowerHex`][`core::fmt::LowerHex`].
//!
//! ```
//! # use vectrix::*;
//! #
//! let cv = vector![1.1, 2.0];
//! let rv = row_vector![1.1, 2.0];
//! let m = matrix![1, 2; 3, 4];
//! println!("column vector: {:.2}", cv);
//! println!("row vector: {:.1}", rv);
//! println!("matrix: {:b}", m);
//! ```
//!
//! This will output:
//!
//! ```text
//! column vector:
//!  ┌      ┐
//!  │ 1.10 │
//!  │ 2.00 │
//!  └      ┘
//!
//! row vector:
//!  ┌          ┐
//!  │ 1.1  2.0 │
//!  └          ┘
//!
//! matrix:
//!  ┌         ┐
//!  │  1   10 │
//!  │ 11  100 │
//!  └         ┘
//! ```
//!
//! ## Operations
//!
//! [`Matrix`] implements many built-in operators. With scalar operands almost
//! all operators are implemented and they simply apply the operation to each
//! element in the matrix. Unary operators will do the equivalent. In the
//! following example each element in the matrix is multiplied by 2.
//!
//! ```
//! # use vectrix::*;
//! #
//! let m = matrix![
//!     1, -3;
//!     3, -7;
//! ];
//! let exp = matrix![
//!     2, -6;
//!     6, -14;
//! ];
//! assert_eq!(m * 2, exp);
//! ```
//!
//! [`Matrix`] supports addition and subtraction with same size matrices for
//! element-wise addition and subtraction. In the following example a matrix
//! is added to itself.
//!
//! ```
//! # use vectrix::*;
//! #
//! let m = matrix![
//!     1, -3;
//!     3, -7;
//! ];
//! let exp = matrix![
//!     2, -6;
//!     6, -14;
//! ];
//! assert_eq!(m + m, exp);
//! ```

#![no_std]
#![warn(unsafe_op_in_unsafe_fn)]

#[cfg(feature = "std")]
extern crate std;

mod fmt;
mod index;
mod iter;
mod new;
mod ops;
mod traits;
mod vector;
mod view;

use core::iter::Sum;
use core::ops::*;
use core::slice;

#[doc(hidden)]
#[cfg(feature = "macro")]
pub use vectrix_macro as proc_macro;

pub use crate::index::MatrixIndex;
pub use crate::iter::{IntoIter, IterColumns, IterColumnsMut, IterRows, IterRowsMut};
pub use crate::traits::{Abs, One, Zero};
pub use crate::view::{Column, Row};

/// Represents a matrix with constant `M` rows and constant `N` columns.
///
/// The underlying data is represented as an array and is always stored in
/// column-major order.
///
/// See the [crate root][crate] for usage examples.
#[derive(Clone, Copy, PartialEq, Eq, Hash, PartialOrd, Ord)]
#[repr(transparent)]
pub struct Matrix<T, const M: usize, const N: usize> {
    data: [[T; M]; N],
}

/// A matrix with one row and `N` columns.
pub type RowVector<T, const N: usize> = Matrix<T, 1, N>;

/// A matrix with one column and `M` rows.
pub type Vector<T, const M: usize> = Matrix<T, M, 1>;

////////////////////////////////////////////////////////////////////////////////
// Matrix<T, M, N> methods
////////////////////////////////////////////////////////////////////////////////

impl<T, const M: usize, const N: usize> Matrix<T, M, N> {
    /// Create a new matrix from an array of arrays in column-major order.
    #[doc(hidden)]
    #[inline]
    pub const fn from_column_major_order(data: [[T; M]; N]) -> Self {
        Self { data }
    }

    /// Returns a zero matrix.
    #[must_use]
    #[inline]
    pub fn zero() -> Self
    where
        T: Copy + Zero,
    {
        Self::repeat(T::zero())
    }

    /// Create a new matrix filled with the given element.
    #[must_use]
    #[inline]
    pub fn repeat(element: T) -> Self
    where
        T: Copy,
    {
        Self {
            data: [[element; M]; N],
        }
    }

    /// Create a new matrix filled with computed elements.
    ///
    /// Elements will be filled in column-major order.
    #[must_use]
    #[inline]
    pub fn repeat_with<F>(f: F) -> Self
    where
        F: FnMut() -> T,
    {
        // SAFETY: the iterator will yield forever.
        unsafe { new::collect_unchecked(core::iter::repeat_with(f)) }
    }

    /// Returns a raw pointer to the underlying data.
    #[inline]
    fn as_ptr(&self) -> *const T {
        self.data.as_ptr() as *const T
    }

    /// Returns an unsafe mutable pointer to the underlying data.
    #[inline]
    fn as_mut_ptr(&mut self) -> *mut T {
        self.data.as_mut_ptr() as *mut T
    }

    /// Views the underlying data as a contiguous slice.
    #[inline]
    pub fn as_slice(&self) -> &[T] {
        unsafe { slice::from_raw_parts(self.as_ptr(), M * N) }
    }

    /// Views the underlying data as a contiguous mutable slice.
    #[inline]
    pub fn as_mut_slice(&mut self) -> &mut [T] {
        unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), M * N) }
    }

    /// Returns a reference to an element in the matrix or `None` if out of
    /// bounds.
    #[inline]
    pub fn get<I>(&self, i: I) -> Option<&I::Output>
    where
        I: MatrixIndex<Self>,
    {
        i.get(self)
    }

    /// Returns a mutable reference to an element in the matrix or `None` if out
    /// of bounds.
    #[inline]
    pub fn get_mut<I>(&mut self, i: I) -> Option<&mut I::Output>
    where
        I: MatrixIndex<Self>,
    {
        i.get_mut(self)
    }

    /// Returns a reference to an element in the matrix without doing any bounds
    /// checking.
    ///
    /// # Safety
    ///
    /// Calling this method with an out-of-bounds index is
    /// *[undefined behavior]* even if the resulting reference is not used.
    ///
    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
    #[inline]
    pub unsafe fn get_unchecked<I>(&self, i: I) -> &I::Output
    where
        I: MatrixIndex<Self>,
    {
        unsafe { &*i.get_unchecked(self) }
    }

    /// Returns a mutable reference to an element in the matrix without doing
    /// any bounds checking.
    ///
    /// # Safety
    ///
    /// Calling this method with an out-of-bounds index is
    /// *[undefined behavior]* even if the resulting reference is not used.
    ///
    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
    #[inline]
    pub unsafe fn get_unchecked_mut<I>(&mut self, i: I) -> &mut I::Output
    where
        I: MatrixIndex<Self>,
    {
        unsafe { &mut *i.get_unchecked_mut(self) }
    }

    /// Returns a reference to the `i`-th row of this matrix.
    #[inline]
    pub fn row(&self, i: usize) -> &Row<T, M, N> {
        Row::new(&self.as_slice()[i..])
    }

    /// Returns a mutable reference to the `i`-th row of this matrix.
    #[inline]
    pub fn row_mut(&mut self, i: usize) -> &mut Row<T, M, N> {
        Row::new_mut(&mut self.as_mut_slice()[i..])
    }

    /// Returns a reference to the `i`-th column of this matrix.
    #[inline]
    pub fn column(&self, i: usize) -> &Column<T, M, N> {
        Column::new(&self.data[i])
    }

    /// Returns a mutable reference to the `i`-th column of this matrix.
    #[inline]
    pub fn column_mut(&mut self, i: usize) -> &mut Column<T, M, N> {
        Column::new_mut(&mut self.data[i])
    }

    /// Returns an iterator over the underlying data.
    #[inline]
    pub fn iter(&self) -> slice::Iter<'_, T> {
        self.as_slice().iter()
    }

    /// Returns a mutable iterator over the underlying data.
    #[inline]
    pub fn iter_mut(&mut self) -> slice::IterMut<'_, T> {
        self.as_mut_slice().iter_mut()
    }

    /// Returns an iterator over the rows in this matrix.
    #[inline]
    pub fn iter_rows(&self) -> IterRows<'_, T, M, N> {
        IterRows::new(self)
    }

    /// Returns a mutable iterator over the rows in this matrix.
    #[inline]
    pub fn iter_rows_mut(&mut self) -> IterRowsMut<'_, T, M, N> {
        IterRowsMut::new(self)
    }

    /// Returns an iterator over the columns in this matrix.
    #[inline]
    pub fn iter_columns(&self) -> IterColumns<'_, T, M, N> {
        IterColumns::new(self)
    }

    /// Returns a mutable iterator over the columns in this matrix.
    #[inline]
    pub fn iter_columns_mut(&mut self) -> IterColumnsMut<'_, T, M, N> {
        IterColumnsMut::new(self)
    }

    /// Returns a matrix of the same size as self, with function `f` applied to
    /// each element in column-major order.
    #[inline]
    pub fn map<F, U>(self, f: F) -> Matrix<U, M, N>
    where
        F: FnMut(T) -> U,
    {
        // SAFETY: the iterator has the exact number of elements required.
        unsafe { new::collect_unchecked(self.into_iter().map(f)) }
    }

    /// Returns the L1 norm of the matrix.
    ///
    /// Also known as *Manhattan Distance* or *Taxicab norm*. L1 Norm is the sum
    /// of the magnitudes of the vectors in a space.
    ///
    /// # Note
    ///
    /// If the matrix is a *row vector* this method might not do what you what
    /// you expect. For example:
    ///
    /// ```
    /// # use vectrix::matrix;
    /// #
    /// let row_vector = matrix![1, 2, 3];
    /// assert_eq!(row_vector.l1_norm(), 3);
    ///
    /// let column_vector = matrix![1; 2; 3];
    /// assert_eq!(column_vector.l1_norm(), 6);
    /// ```
    pub fn l1_norm(&self) -> T
    where
        T: Copy + Ord + Abs + Zero + Sum<T>,
    {
        (0..N)
            .map(|i| self.data[i].iter().copied().map(Abs::abs).sum())
            .max()
            .unwrap_or_else(Zero::zero)
    }
}

////////////////////////////////////////////////////////////////////////////////
// Matrix<T, N, N> methods
////////////////////////////////////////////////////////////////////////////////

impl<T, const N: usize> Matrix<T, N, N> {
    /// Returns an identity matrix.
    #[must_use]
    #[inline]
    pub fn identity() -> Self
    where
        T: Copy + One + Zero,
    {
        let mut matrix = Self::zero();
        for i in 0..N {
            matrix[(i, i)] = T::one();
        }
        matrix
    }

    /// Returns the diagonal of the matrix.
    pub fn diagonal(&self) -> Vector<T, N>
    where
        T: Copy + Zero,
    {
        let mut vector = Vector::zero();
        for i in 0..N {
            vector[i] = self[(i, i)];
        }
        vector
    }
}