1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
use std::hash::Hash;
use std::collections::HashMap;
use std::collections::hash_map::Entry;

#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum TemporalRelation {
    Equal,
    Caused,
    EffectOf,
    Concurrent,
}

#[derive(PartialEq, Eq, Debug)]
pub struct VectorClock<HostType: Hash + Eq> {
    entries: HashMap<HostType, u64>,
}

impl<HostType: Clone + Hash + Eq> VectorClock<HostType> {
    pub fn new() -> VectorClock<HostType> {
        VectorClock {
            entries: HashMap::new(),
        }
    }

    pub fn incremented(&self, host: HostType) -> Self {
        let mut entries = self.entries.clone();

        match entries.entry(host) {
            Entry::Vacant(e) => { e.insert(1); },
            Entry::Occupied(mut e) => {
                let v = *e.get();
                e.insert(v + 1);
            },
        };

        VectorClock {
            entries: entries,
        }
    }

    pub fn temporal_relation(&self, other: &Self) -> TemporalRelation {
        if self == other {
            TemporalRelation::Equal
        }
        else if self.superseded_by(other) {
            TemporalRelation::Caused
        }
        else if other.superseded_by(self) {
            TemporalRelation::EffectOf
        }
        else {
            TemporalRelation::Concurrent
        }
    }

    fn superseded_by(&self, other: &Self) -> bool {
        let mut has_smaller = false;

        for (host, &self_n) in self.entries.iter() {
            let other_n = *other.entries.get(host).unwrap_or(&0);

            if self_n > other_n {
                return false;
            }

            has_smaller = has_smaller || (self_n < other_n);
        }

        for (host, &other_n) in other.entries.iter() {
            let self_n = *self.entries.get(host).unwrap_or(&0);

            if self_n > other_n {
                return false;
            }

            has_smaller = has_smaller || (self_n < other_n);
        }

        has_smaller
    }

    pub fn merge_with(&self, other: &Self) -> Self {
        let mut entries = self.entries.clone();

        for (host, &other_n) in other.entries.iter() {
            match entries.entry(host.clone()) {
                Entry::Vacant(e) => { e.insert(other_n); },
                Entry::Occupied(mut e) => {
                    let self_n = *e.get();

                    if other_n > self_n {
                        e.insert(other_n);
                    }
                }
            }
        }

        VectorClock {
            entries: entries,
        }
    }
}

#[cfg(test)]
mod test {
    use super::{VectorClock, TemporalRelation};

    type StrVectorClock = VectorClock<&'static str>;

    #[test]
    fn test_empty_ordering() {
        let c1 = StrVectorClock::new();
        let c2 = StrVectorClock::new();

        assert_eq!(c1, c2);

        assert!(c1.temporal_relation(&c2) == TemporalRelation::Equal);
        assert!(c2.temporal_relation(&c1) == TemporalRelation::Equal);
    }

    #[test]
    fn test_incremented_ordering() {
        let c1 = StrVectorClock::new();
        let c2 = c1.incremented("A");

        assert!(!(c1 == c2));

        assert!(c1.temporal_relation(&c2) == TemporalRelation::Caused);
        assert!(c2.temporal_relation(&c1) == TemporalRelation::EffectOf);
    }

    #[test]
    fn test_diverged() {
        let base = StrVectorClock::new();
        let c1 = base.incremented("A");
        let c2 = base.incremented("B");

        assert!(!(c1 == c2));

        assert!(c1.temporal_relation(&c2) == TemporalRelation::Concurrent);
        assert!(c2.temporal_relation(&c1) == TemporalRelation::Concurrent);
    }

    #[test]
    fn test_merged() {
        let base = StrVectorClock::new();
        let c1 = base.incremented("A");
        let c2 = base.incremented("B");

        let m = c1.merge_with(&c2);

        assert!(m.temporal_relation(&c1) == TemporalRelation::EffectOf);
        assert!(c1.temporal_relation(&m) == TemporalRelation::Caused);

        assert!(m.temporal_relation(&c2) == TemporalRelation::EffectOf);
        assert!(c2.temporal_relation(&m) == TemporalRelation::Caused);
    }
}