1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
#![warn(missing_docs)]
#![cfg_attr(feature = "simd", feature(doc_cfg))]

/*!
This crate provides traits for doing 2D vector geometry operations using standard types

# Scalars

Simple vector math is implemented for vectors with the following scalar types:
* `u8`-`u128`
* `usize`
* `i8`-`i128`
* `isize`
* `f32`
* `f64`
* Any type that implements [`Scalar`]

`f32` and `f64` implement [`FloatingScalar`], which
gives some additional operations only applicable to floating-point numbers.

Each scalar type has an associated module that has type definitions for standard
geometric types using that scalar.

For example, instead of writing
```
# use vector2math::*;
let square = <[f32; 4]>::square([0.0; 2], 1.0);
```
You can instead write
```
# use vector2math::*;
let square = f32::Rect::square([0.0; 2], 1.0);
```

# Vectors

Vectors can be of the following forms:
* `[T; 2]`
* `(T, T)`
* Any type that implements [`Vector2`]

Many 2D Vector operations are supported.
```
use vector2math::*;

let a = [2, 6];
let b = [4, -1];
assert_eq!(2, a.x());
assert_eq!(-1, b.y());
assert_eq!([-2, -6], a.neg());
assert_eq!([6, 5], a.add(b));
assert_eq!([-2, 7], a.sub(b));
assert_eq!([12, -3], b.mul(3));
assert_eq!([8, -6], b.mul2(a));
assert_eq!([1, 3], a.div(2));
assert_eq!([0, -6], a.div2(b));
assert_eq!(2, a.dot(b));
```

Vectors that implement [`FloatingVector2`] have additional operations:
```
use vector2math::*;

assert_eq!(5.0, [3.0, 4.0].mag());
assert_eq!(10.0, [-1.0, -2.0].dist([5.0, 6.0]));
let rotation_calculation = [1.0, 0.0].rotate_about(f64::TAU / 8.0, [0.0; 2]);
let rotation_solution = [2f64.powf(0.5) / 2.0; 2];
assert!(rotation_calculation.sub(rotation_solution).mag() < std::f64::EPSILON);
```

# Rectangles

Many types can be used to define axis-aligned rectangles:
* `[[T; 2]; 2]`
* `[(T, T); 2]`
* `((T, T), (T, T))`
* `([T; 2], [T; 2])`
* `[T; 4]`
* `(T, T, T, T)`
* Any type that implements [`Pair`] where the associated
[`Pair::Item`] type implements [`Vector2`].
```
use vector2math::*;

let rect = [1i32, 2, 4, 6];
assert_eq!([1, 2], rect.top_left());
assert_eq!([4, 6], rect.size());
assert_eq!([3, 5], rect.center());
assert_eq!(20, rect.perimeter());
assert_eq!(24, rect.area());
assert!(rect.contains([3, 5]));
let corners = rect.corners();
assert_eq!(corners[0], [1, 2]);
assert_eq!(corners[1], [5, 2]);
assert_eq!(corners[2], [5, 8]);
assert_eq!(corners[3], [1, 8]);
```

# Circles

A few types can be used to define circles:
* `([T; 2], T)`
* `((T, T), T)`
* Any pair of types where the first implements [`FloatingVector2`]
and the second is the vector's [`Vector2::Scalar`] type.
```
use vector2math::*;
use std::f64;

let circle = ([2.0, 3.0], 4.0);
assert!((circle.circumference() - 25.132_741_228_718_345).abs() < f64::EPSILON);
assert!((circle.area() - 50.265_482_457_436_69).abs() < f64::EPSILON);
assert!(circle.contains([0.0, 1.0]));
assert!(!circle.contains([5.0, 6.0]));
```

# Mapping

Vector, rectangle, and circle types can be easily mapped to different types:
```
use vector2math::*;

let arrayf32: [f32; 2] = [1.0, 2.0];
let arrayf64: [f64; 2] = arrayf32.map_into();
let pairf64: (f64, f64) = arrayf64.map_into();
let arrayi16: [i16; 2] = pairf64.map_with(|f| f as i16);
assert_eq!(arrayf32, arrayi16.map_into::<f32::Vec2>());

let weird_rect = [(0.0, 1.0), (2.0, 5.0)];
let normal_rectf32: [f32; 4] = weird_rect.map_into();
let normal_rectf64: [f64; 4] = normal_rectf32.map_into();
let normal_rectu8: [u8; 4] = normal_rectf32.map_with(|f| f as u8);
assert_eq!([0, 1, 2, 5], normal_rectu8);

let pair_circlef32 = ((0.0, 1.0), 2.0);
let array_circlef32 = ([0.0, 1.0], 2.0);
assert_eq!(((0.0, 1.0), 2.0), array_circlef32.map_into::<((f64, f64), f64)>());
```

# Transforms

The [`Transform`] trait is used to define 2D vector transforms.
This crate implements [`Transform`] for all types that implement
[`Pair`](trait.Pair.html) where the [`Pair`](trait.Pair.html)'s
[`Item`](trait.Pair.html#associatedtype.Item) implments [`Trio`]
where the [`Trio`]'s [`Trio::Item`]
implements [`FloatingScalar`]. This type range includes
everything from `[[f32; 3]; 2]` to `(f64, f64, f64, f64, f64, f64)`.
[`Transform`]s can be chained and applied to vectors.
```
use vector2math::*;

let dis = [1.0; 2];
let rot = f32::TAU / 4.0;
let sc = [2.0; 2];

let transform = f32::Trans::identity().translate(dis).rotate(rot).scale(sc);

let v = [3.0, 5.0];
let v1 = v.transform(transform);
let v2 = v.add(dis).rotate(rot).mul2(sc);

assert_eq!(v1, v2);
```

# Implementing traits

Implementing these traits for your own types is simple.
Just make sure that your type is [`Copy`](https://doc.rust-lang.org/nightly/core/marker/trait.Copy.html).
```
use vector2math::*;

#[derive(Clone, Copy)]
struct MyVector {
    x: f64,
    y: f64,
}

impl Vector2 for MyVector {
    type Scalar = f64;
    fn new(x: f64, y: f64) -> Self {
        MyVector { x, y }
    }
    fn x(&self) -> f64 {
        self.x
    }
    fn y(&self) -> f64 {
        self.y
    }
}

#[derive(Clone, Copy)]
struct MyRectangle {
    top_left: MyVector,
    size: MyVector,
}

impl Rectangle for MyRectangle {
    type Vector = MyVector;
    fn new(top_left: MyVector, size: MyVector) -> Self {
        MyRectangle { top_left, size }
    }
    fn top_left(self) -> MyVector {
        self.top_left
    }
    fn size(self) -> MyVector {
        self.size
    }
}

let rect: MyRectangle = [1, 2, 3, 4].map_into();
assert_eq!(12.0, rect.area());
assert_eq!(6.0, rect.bottom());
```
*/

#[cfg(feature = "simd")]
#[cfg_attr(feature = "simd", doc(cfg(feature = "simd")))]
pub mod simd;

pub mod circle;
pub use circle::Circle;
mod group;
pub use group::*;
pub mod rectangle;
pub use rectangle::Rectangle;
mod scalar;
pub use scalar::*;
mod transform;
pub use transform::*;

macro_rules! int_mod {
    ($T:ident) => {
        /// Standard geometric types for a scalar type
        pub mod $T {
            /// A dimension type
            pub type Dim = $T;
            /// A standard 2D vector type
            pub type Vec2 = [Dim; 2];
            /// A standard rectangle type
            pub type Rect = [Dim; 4];
        }
    };
}

int_mod!(u8);
int_mod!(u16);
int_mod!(u32);
int_mod!(u64);
int_mod!(u128);
int_mod!(usize);
int_mod!(i8);
int_mod!(i16);
int_mod!(i32);
int_mod!(i64);
int_mod!(i128);
int_mod!(isize);

macro_rules! float_mod {
    ($T:ident) => {
        /// Standard geometric types for a scalar type
        pub mod $T {
            /// A dimension type
            pub type Dim = $T;
            /// A standard 2D vector type
            pub type Vec2 = [Dim; 2];
            /// A standard rectangle type
            pub type Rect = [Dim; 4];
            /// A standard circle type
            pub type Circ = (Vec2, Dim);
            /// A standard transform type
            pub type Trans = [[Dim; 3]; 2];
        }
    };
}

float_mod!(f32);
float_mod!(f64);

use std::ops::Neg;

pub use Circle as _;
pub use Rectangle as _;
pub use Transform as _;

/// Trait for manipulating 2D vectors
pub trait Vector2: Copy {
    /// The scalar type
    type Scalar: Scalar;
    /// Get the x component
    fn x(&self) -> Self::Scalar;
    /// Get the y component
    fn y(&self) -> Self::Scalar;
    /// Create a new vector from an x and y component
    fn new(x: Self::Scalar, y: Self::Scalar) -> Self;
    /// Set the x component
    fn set_x(&mut self, x: Self::Scalar) {
        *self = Vector2::new(x, self.y())
    }
    /// Set the y component
    fn set_y(&mut self, y: Self::Scalar) {
        *self = Vector2::new(self.x(), y)
    }
    /// Get this vector with a different x component
    fn with_x(self, x: Self::Scalar) -> Self {
        Self::new(x, self.y())
    }
    /// Get this vector with a different y component
    fn with_y(self, y: Self::Scalar) -> Self {
        Self::new(self.x(), y)
    }
    /// Create a new square vector
    fn square(s: Self::Scalar) -> Self {
        Self::new(s, s)
    }
    /// Map this vector to a vector of another type
    #[inline(always)]
    fn map_into<V>(self) -> V
    where
        V: Vector2,
        V::Scalar: From<Self::Scalar>,
    {
        V::new(V::Scalar::from(self.x()), V::Scalar::from(self.y()))
    }
    /// Map this vector to a `[Self::Scalar; 2]`
    ///
    /// This is an alias for `Vector2::map_into::<[Self::Scalar; 2]>()` that is more concise
    fn map_vec2(self) -> [Self::Scalar; 2] {
        self.map_into()
    }
    /// Map the individual components of this vector
    fn map_dims<F>(self, mut f: F) -> Self
    where
        F: FnMut(Self::Scalar) -> Self::Scalar,
    {
        Self::new(f(self.x()), f(self.y()))
    }
    /// Map this vector to a vector of another type using a function
    fn map_with<V, F>(self, mut f: F) -> V
    where
        V: Vector2,
        F: FnMut(Self::Scalar) -> V::Scalar,
    {
        V::new(f(self.x()), f(self.y()))
    }
    /// Negate the vector
    #[inline(always)]
    fn neg(self) -> Self
    where
        Self::Scalar: Neg<Output = Self::Scalar>,
    {
        Self::square(Self::Scalar::ZERO).sub(self)
    }
    /// Add this vector to another
    #[inline(always)]
    fn add(self, other: Self) -> Self {
        Self::new(self.x() + other.x(), self.y() + other.y())
    }
    /// Subtract another vector from this one
    #[inline(always)]
    fn sub(self, other: Self) -> Self {
        Self::new(self.x() - other.x(), self.y() - other.y())
    }
    /// Multiply this vector by a scalar
    #[inline(always)]
    fn mul(self, by: Self::Scalar) -> Self {
        self.mul2(Self::square(by))
    }
    /// Multiply this vector component-wise by another
    #[inline(always)]
    fn mul2(self, other: Self) -> Self {
        Self::new(self.x() * other.x(), self.y() * other.y())
    }
    /// Divide this vector by a scalar
    #[inline(always)]
    fn div(self, by: Self::Scalar) -> Self {
        self.div2(Self::square(by))
    }
    /// Divide this vector component-wise by another
    #[inline(always)]
    fn div2(self, other: Self) -> Self {
        Self::new(self.x() / other.x(), self.y() / other.y())
    }
    /// Add another vector into this one
    #[inline(always)]
    fn add_assign(&mut self, other: Self) {
        *self = self.add(other);
    }
    /// Subtract another vector into this one
    #[inline(always)]
    fn sub_assign(&mut self, other: Self) {
        *self = self.sub(other);
    }
    /// Multiply a scalar into this vector
    #[inline(always)]
    fn mul_assign(&mut self, by: Self::Scalar) {
        *self = self.mul(by);
    }
    /// Multiply another vector component-wise into this one
    #[inline(always)]
    fn mul2_assign(&mut self, other: Self) {
        *self = self.mul2(other);
    }
    /// Divide a scalar into this vector
    #[inline(always)]
    fn div_assign(&mut self, by: Self::Scalar) {
        *self = self.div(by);
    }
    /// Divide another vector component-wise into this one
    #[inline(always)]
    fn div2_assign(&mut self, other: Self) {
        *self = self.div2(other);
    }
    /// Get the value of the dimension with the higher magnitude
    fn max_dim(self) -> Self::Scalar {
        if self.x().abs() > self.y().abs() {
            self.x()
        } else {
            self.y()
        }
    }
    /// Get the value of the dimension with the lower magnitude
    fn min_dim(self) -> Self::Scalar {
        if self.x().abs() < self.y().abs() {
            self.x()
        } else {
            self.y()
        }
    }
    /// Get the dot product of this vector and another
    fn dot(self, other: Self) -> Self::Scalar {
        let sum = self.mul2(other);
        sum.x() + sum.y()
    }
}

impl<P> Vector2 for P
where
    P: Pair + Copy,
    P::Item: Scalar,
{
    type Scalar = P::Item;
    #[inline(always)]
    fn x(&self) -> P::Item {
        self.first()
    }
    #[inline(always)]
    fn y(&self) -> P::Item {
        self.second()
    }
    #[inline(always)]
    fn new(x: P::Item, y: P::Item) -> Self {
        Self::from_items(x, y)
    }
}

/// Trait for manipulating floating-point 2D vectors
pub trait FloatingVector2: Vector2
where
    Self::Scalar: FloatingScalar,
{
    /// Create a new unit vector from the given angle in radians
    fn from_angle(radians: Self::Scalar) -> Self {
        Self::new(radians.cos(), radians.sin())
    }
    /// Get the distance between this vector and another
    #[inline(always)]
    fn dist(self, to: Self) -> Self::Scalar {
        self.sub(to).mag()
    }
    /// Get the squared distance between this vector and another
    #[inline(always)]
    fn squared_dist(self, to: Self) -> Self::Scalar {
        self.sub(to).squared_mag()
    }
    /// Get the vector's magnitude
    #[inline(always)]
    fn mag(self) -> Self::Scalar {
        self.squared_mag().sqrt()
    }
    /// Get the vector's squared magnitude
    #[inline(always)]
    fn squared_mag(self) -> Self::Scalar {
        self.x().square() + self.y().square()
    }
    /// Get the unit vector
    #[inline(always)]
    fn unit(self) -> Self {
        let mag = self.mag();
        if mag < Self::Scalar::EPSILON {
            Self::new(Self::Scalar::ZERO, Self::Scalar::ZERO)
        } else {
            self.div(mag)
        }
    }
    /// Rotate the vector some number of radians about the origin
    fn rotate(self, radians: Self::Scalar) -> Self {
        self.rotate_about(radians, Self::square(Self::Scalar::ZERO))
    }
    /// Rotate the vector some number of radians about a pivot
    fn rotate_about(self, radians: Self::Scalar, pivot: Self) -> Self {
        let sin = radians.sin();
        let cos = radians.cos();
        let origin_point = self.sub(pivot);
        let rotated_point = Self::new(
            origin_point.x() * cos - origin_point.y() * sin,
            origin_point.x() * sin + origin_point.y() * cos,
        );
        rotated_point.add(pivot)
    }
    /// Linear interpolate the vector with another
    #[inline(always)]
    fn lerp(self, other: Self, t: Self::Scalar) -> Self {
        Self::square(Self::Scalar::ONE - t)
            .mul2(self)
            .add(Self::square(t).mul2(other))
    }
    /// Get the arctangent of the vector, which corresponds to
    /// the angle it represents bounded between -π to π
    fn atan(self) -> Self::Scalar {
        self.y().atan2(self.x())
    }
    /// Apply a transform to the vector
    fn transform<T>(self, transform: T) -> Self
    where
        T: Transform<Scalar = Self::Scalar>,
    {
        transform.apply(self)
    }
    /// Project this vector onto another
    fn project(self, other: Self) -> Self {
        let mag = other.mag();
        if mag < Self::Scalar::EPSILON {
            Self::new(Self::Scalar::ZERO, Self::Scalar::ZERO)
        } else {
            other.unit().mul(self.dot(other) / mag)
        }
    }
}

impl<T> FloatingVector2 for T
where
    T: Vector2,
    T::Scalar: FloatingScalar,
{
}

#[cfg(test)]
#[test]
fn margins() {
    let rect = [0, 0, 8, 8];
    assert!(rect.contains([1, 1]));
    assert!(!rect.inner_margin(2).contains([1, 1]));
}
#[cfg(test)]
#[test]
fn transforms() {
    let v = [1.0, 3.0];
    let rot = 1.0;
    let pivot = [5.0; 2];
    let transform = f32::Trans::identity().rotate_about(rot, pivot);
    let v1 = v.rotate_about(rot, pivot);
    let v2 = v.transform(transform);
    dbg!(v1.dist(v2) / f32::EPSILON);
    assert!(v1.dist(v2).is_near_zero(10.0));
}

#[cfg(test)]
#[test]
fn rect_with_bound() {
    let rect = [0, 0, 5, 5];
    let rt3 = rect.with_top(3);
    let rb8 = rect.with_bottom(8);
    let rl1 = rect.with_left(1);
    let rr1 = rect.with_right(1);
    assert_eq!(rt3, [0, 3, 5, 2]);
    assert_eq!(rb8, [0, 0, 5, 8]);
    assert_eq!(rl1, [1, 0, 4, 5]);
    assert_eq!(rr1, [0, 0, 1, 5]);
}