1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
/*!
Split Vecs in O(1) time.

You can split a [`Vec`] into two using [`Vec::split_off`](std::vec::Vec::split_off),
but since most allocators can't just go and split up an allocation, this needs to allocate space
for a second [`Vec`] and, even worse, copy the relevant elements over, which takes O(n) time.
You could also split it into slices using `Vec::split_at` or
`Vec::split_at_mut`, but this will not give you owned
data you can move around or move out of at will.

This crate provides a way to split a [`Vec`] into two owned [`VecShard`]s that
behave similar to Vecs that takes constant time.
The catch is that the [`VecShard`]s use reference counting to determine when the last of them is dropped.
Only then is the memory from the original [`Vec`] deallocated.
The individual items in the shards, however, are dropped as soon as the shard is dropped.

This functionality is provided through an extension trait for [`Vec`], [`ShardExt`](crate::ShardExt).

# Basic Example

```
use vecshard::ShardExt;

let animals = vec!["penguin", "owl", "toucan", "turtle", "spider", "mosquitto"];

// split the vec into 2 shards
let (cool_animals, uncool_animals) = animals.split_inplace_at(4);

// shards can be indexed as usual
assert_eq!(cool_animals[3], "turtle");
assert_eq!(uncool_animals[0], "spider");

// ..including with a range as index
assert_eq!(cool_animals[1..3], ["owl", "toucan"]);

// they deref into slices, so you can use them as such:
assert_eq!(cool_animals.len(), 4);
assert!(uncool_animals.ends_with(&["mosquitto"]));

// shards can also be split up again:
let (cool_birds, cool_reptiles) = cool_animals.split_inplace_at(3);
assert_eq!(*cool_birds, ["penguin", "owl", "toucan"]);
assert_eq!(*cool_reptiles, ["turtle"]);
```

# Conversion

Shards can be freely converted both [`From`](std::convert::From) and [`Into`](std::convert::Into) Vecs.
Note that the latter may need to allocate if there are other shards also using the shards allocation.

```
# use vecshard::{VecShard, ShardExt};

let vec = vec![1, 2, 3];
let shard = VecShard::from(vec);
let vec2 : Vec<_> = shard.into();
```

# Iteration

To iterate over a [`VecShard`], you have several choices.
[`VecShard<T>`](crate::VecShard) itself is a draining [`Iterator`] and returns owned `T` instances,
removing them from its own storage.
If you only need `&T` or `&mut T`, you can deref it to a slice and iterate over that.
Finally, if you need an owning [`Iterator`] but do not want to drain the shard,
you can [`clone`][std::clone::Clone::clone] the shard and iterate over that.

```
# use vecshard::{VecShard, ShardExt};
let mut shard = VecShard::from(vec!['y', 'e', 'e', 't']);

assert_eq!(Some('y'), shard.next());
assert_eq!(Some('e'), shard.next());

assert_eq!(*shard, ['e', 't']);
```

# Optional Features

This crate has zero dependencies by default, but if you want to serialize and deserialize `VecShard`,
you can enable the `serde` feature like this:

```toml
[dependencies.vecshard]
optional = true
version = "0.2.1"
```

[`VecShard`]: crate::VecShard
*/

use std::{
    cmp::{Eq, PartialEq},
    fmt,
    hash::{Hash, Hasher},
    iter::FusedIterator,
    mem,
    ops::{Deref, DerefMut, Index, IndexMut},
    ptr,
    slice::{self, SliceIndex},
    sync::Arc,
};

pub mod error;
use crate::error::{CantMerge, WouldAlloc, WouldMove};

#[cfg(feature = "serde")]
mod serde_impl;

/// An extension trait for things that can be split into shards
///
/// For your convenience, this is implemented for both [`Vec`](std::vec::Vec) and
/// [`VecShard`](crate::VecShard), so you can split recursively:
///
/// ```
/// # use vecshard::ShardExt;
/// let drinks = vec!["heineken", "jupiler", "turmbräu", "orange juice", "champagne"];
///
/// let (beers, other_drinks) = drinks.split_inplace_at(3);
/// let (bad_beers, good_beers) = beers.split_inplace_at(2);
///
/// assert_eq!(*good_beers, ["turmbräu"]);
/// ```
pub trait ShardExt {
    type Shard;

    /// Split this array into two shards at the given index.
    /// This is an O(1) operation, as it keeps the underlying storage.
    /// In exchange, this means that the memory will not be reclaimed until
    /// all existing shards using it are dropped.
    fn split_inplace_at(self, at: usize) -> (Self::Shard, Self::Shard);
}

/// The raw guts of a Vec, used to free its allocation when all the shards are gone.
struct VecDropper<T> {
    ptr: *mut T,
    capacity: usize,
}

impl<T> Drop for VecDropper<T> {
    fn drop(&mut self) {
        unsafe {
            // Set len to 0 because we only want to free the memory.
            // Dropping the elements themselves is taken care of by the shards.
            mem::drop(Vec::from_raw_parts(self.ptr, 0, self.capacity));
        }
    }
}

/// A shard of a [`Vec<T>`](std::vec::Vec), can be used mostly like a Vec.
///
/// The major difference is that, when dropped, [`VecShard<T>`](crate::VecShard)
/// will not immediately free its allocated memory.
/// Instead, it will only drop all its items.
/// The memory itself will be freed once all VecShards from the Vec are gone.
pub struct VecShard<T> {
    dropper: Arc<VecDropper<T>>,

    data: *mut T,
    len: usize,
}

// These are the same as for Vec<T>
// Probably sound, since the only thing we share is the Arc
unsafe impl<T: Send> Send for VecShard<T> {}
unsafe impl<T: Sync> Sync for VecShard<T> {}

impl<T> VecShard<T> {
    fn into_raw_parts(self) -> (Arc<VecDropper<T>>, *mut T, usize) {
        let dropper = unsafe { ptr::read(&self.dropper as *const Arc<VecDropper<T>>) };
        let data = self.data;
        let len = self.len;
        mem::forget(self);
        (dropper, data, len)
    }

    /// Try to merge the given shards without moving them around.
    ///
    /// This can only succeed if `left` and `right` were split off from the same Vec
    /// and are directly adjacent to each other.
    /// Furthermore, `right` needs to be at a higher address than left so the elements stay in the right order.
    ///
    /// Returns the merged shard on success and an `Err` otherwise.
    ///
    /// This function will always run in O(1) time.
    pub fn merge_inplace(left: Self, right: Self) -> Result<Self, CantMerge<T, WouldMove>> {
        use WouldMove::*;
        // Are the shards even from the same Vec?
        if !Arc::ptr_eq(&left.dropper, &right.dropper) {
            Err(CantMerge {
                reason: DifferentAllocations,
                left,
                right,
            })
        } else if unsafe { left.data.add(left.len) } == right.data {
            let (ldropper, ldata, llen) = left.into_raw_parts();
            let (rdropper, _, rlen) = right.into_raw_parts();
            std::mem::drop(rdropper);
            Ok(VecShard {
                dropper: ldropper,
                data: ldata,
                len: llen + rlen,
            })
        } else if unsafe { right.data.add(right.len) } == left.data {
            Err(CantMerge {
                left,
                right,
                reason: WrongOrder,
            })
        } else {
            Err(CantMerge {
                reason: NotAdjacent,
                left,
                right,
            })
        }
    }

    /// Try to merge the given shards without allocating a new `Vec`.
    ///
    /// This function will always succeed if the passed shards can be merged in-place
    /// or if they're the only two shards within a Vec.
    ///
    /// Returns the merged shard on success and an `Err` otherwise.
    ///
    /// This function may take time line in the length of the input shards, but it will never allocate.
    pub fn merge_noalloc(left: Self, right: Self) -> Result<Self, CantMerge<T, WouldAlloc>> {
        use WouldMove::*;

        let cant_merge = match Self::merge_inplace(left, right) {
            // happy path
            Ok(shard) => return Ok(shard),
            Err(err) => err,
        };

        if cant_merge.reason == DifferentAllocations {
            return Err(CantMerge {
                left: cant_merge.left,
                right: cant_merge.right,
                reason: WouldAlloc::DifferentAllocations,
            });
        }

        let (ldropper, ldata, llen) = cant_merge.left.into_raw_parts();
        let (rdropper, rdata, rlen) = cant_merge.right.into_raw_parts();

        if cant_merge.reason == WrongOrder {
            // semi-fast path: we only need to rotate
            unsafe { slice::from_raw_parts_mut(rdata, llen + rlen).rotate_left(rlen) };
            Ok(VecShard {
                dropper: ldropper,
                data: rdata,
                len: llen + rlen,
            })
        } else if cant_merge.reason == NotAdjacent && Arc::strong_count(&ldropper) == 2 {
            // There are only 2 references to the dropper left,
            // and we're holding ldropper and rdropper, so we can freely re-use the allocation

            let new_data = unsafe {
                if rdata < ldata {
                    // If right is actually on the left side, we have to shuffle things around
                    if llen < rlen {
                        //  ...  |---------- r ----------| ... |------ l ------|
                        ptr::swap_nonoverlapping(rdata, ldata, llen);
                        //  ...  |------ l ------|- ..r -| ... |----- r.. -----|
                        ptr::copy(ldata, rdata.add(rlen), llen);
                        //  ...  |------ l ------|- ..r -|----- r.. -----|  ...
                        slice::from_raw_parts_mut(rdata.add(llen), rlen).rotate_left(rlen - llen);
                    //      ...  |------ l ------|---------- r ----------|  ...
                    } else {
                        //  ...  |------ r ------| ... |---------- l ----------|
                        ptr::swap_nonoverlapping(rdata, ldata, rlen);
                        //  ...  |----- l.. -----| ... |------ r ------|- ..l -|
                        slice::from_raw_parts_mut(ldata, llen).rotate_left(rlen);
                        //  ...  |----- l.. -----| ... |- ..l -|------ r ------|
                        ptr::copy(ldata, rdata.add(rlen), llen);
                        //  ...  |---------- l ----------|------ r ------|  ...
                    };
                    rdata
                } else {
                    // Otherwise, just scootch it over
                    //  ...  |---------- l ----------|    ...  |------ r ------|
                    ptr::copy(rdata, ldata.add(llen), rlen);
                    //  ...  |---------- l ----------|------ r ------|   ...
                    ldata
                }
            };
            Ok(VecShard {
                data: new_data,
                len: llen + rlen,
                dropper: ldropper,
            })
        } else {
            Err(CantMerge {
                reason: WouldAlloc::OtherShardsLeft,
                left: VecShard {
                    dropper: ldropper,
                    data: ldata,
                    len: llen,
                },
                right: VecShard {
                    dropper: rdropper,
                    data: rdata,
                    len: rlen,
                },
            })
        }
    }

    /// Merge the given shards into a single shard.
    ///
    /// This will attempt an O(1) merge like `merge_inplace` but fall back to copying slices around
    /// within their allocation and possibly allocating a new Vec if needed.
    pub fn merge(left: Self, right: Self) -> Self {
        Self::merge_noalloc(left, right).unwrap_or_else(|err| {
            let (_ldropper, ldata, llen) = err.left.into_raw_parts();
            let (_rdropper, rdata, rlen) = err.right.into_raw_parts();

            // Give up and allocate
            let mut vec = Vec::with_capacity(llen + rlen);
            unsafe {
                ptr::copy(ldata, vec.as_mut_ptr(), llen);
                ptr::copy(rdata, vec.as_mut_ptr().add(llen), rlen);
                vec.set_len(llen + rlen);
            }
            Self::from(vec)
        })
    }
}

impl<T> ShardExt for VecShard<T> {
    type Shard = VecShard<T>;

    fn split_inplace_at(mut self, at: usize) -> (Self::Shard, Self::Shard) {
        assert!(at <= self.len);

        let right = VecShard {
            dropper: self.dropper.clone(),
            data: unsafe { self.data.add(at) },
            len: self.len - at,
        };

        // for the left shard, just cut ourselves down to size
        self.len = at;

        (self, right)
    }
}

impl<T> Drop for VecShard<T> {
    fn drop(&mut self) {
        // Drop all the elements
        // The VecDropper will take care of freeing the Vec itself, if needed
        for o in 0..self.len {
            unsafe { ptr::drop_in_place(self.data.add(o)) };
        }
    }
}

impl<T> Deref for VecShard<T> {
    type Target = [T];

    fn deref(&self) -> &[T] {
        unsafe { slice::from_raw_parts(self.data, self.len) }
    }
}

impl<T> DerefMut for VecShard<T> {
    fn deref_mut(&mut self) -> &mut [T] {
        unsafe { slice::from_raw_parts_mut(self.data, self.len) }
    }
}

impl<T, I: SliceIndex<[T]>> Index<I> for VecShard<T> {
    type Output = <I as slice::SliceIndex<[T]>>::Output;

    fn index(&self, idx: I) -> &Self::Output {
        &((**self)[idx])
    }
}

impl<T, I: SliceIndex<[T]>> IndexMut<I> for VecShard<T> {
    fn index_mut(&mut self, idx: I) -> &mut Self::Output {
        &mut ((**self)[idx])
    }
}

impl<T: PartialEq> PartialEq for VecShard<T> {
    fn eq(&self, rhs: &Self) -> bool {
        **self == **rhs
    }
}

impl<T: Eq> Eq for VecShard<T> {}

impl<T> Iterator for VecShard<T> {
    type Item = T;

    fn next(&mut self) -> Option<T> {
        if self.len > 0 {
            let res = unsafe { self.data.read() };
            self.len -= 1;
            self.data = unsafe { self.data.add(1) };
            Some(res)
        } else {
            None
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.len, Some(self.len))
    }
}

impl<T> ExactSizeIterator for VecShard<T> {
    fn len(&self) -> usize {
        self.len
    }
}

impl<T> DoubleEndedIterator for VecShard<T> {
    fn next_back(&mut self) -> Option<T> {
        if self.len > 0 {
            self.len -= 1;
            Some(unsafe { self.data.add(self.len).read() })
        } else {
            None
        }
    }
}

impl<T> FusedIterator for VecShard<T> {}

impl<T: Hash> Hash for VecShard<T> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        Hash::hash(&**self, state)
    }
}

impl<T> From<Vec<T>> for VecShard<T> {
    fn from(mut v: Vec<T>) -> Self {
        let res = VecShard {
            dropper: Arc::new(VecDropper {
                ptr: v.as_mut_ptr(),
                capacity: v.capacity(),
            }),
            data: v.as_mut_ptr(),
            len: v.len(),
        };
        mem::forget(v);
        res
    }
}

impl<T> Into<Vec<T>> for VecShard<T> {
    fn into(self) -> Vec<T> {
        // First, move everything out of self so we don't drop anything
        let (dropper, data, len) = self.into_raw_parts();

        // Optimization: if this shard is the only one left from the backing Vec, we re-use its allocation
        if let Ok(dropper) = Arc::try_unwrap(dropper) {
            // If our data is already at the start of the backing Vec, we don't need to move it
            if data != dropper.ptr {
                unsafe { ptr::copy(data, dropper.ptr, len) };
            }
            let v = unsafe { Vec::from_raw_parts(dropper.ptr, len, dropper.capacity) };
            // Make sure we don't drop anything that the new Vec will need
            mem::forget(dropper);
            v
        } else {
            // Otherwise, just allocate a new Vec
            let mut v = Vec::with_capacity(len);
            unsafe {
                ptr::copy_nonoverlapping(data, v.as_mut_ptr(), len);
                v.set_len(len);
            };
            v
        }
    }
}

impl<T: Clone> Clone for VecShard<T> {
    fn clone(&self) -> VecShard<T> {
        // Not much we can do here, just make a new Vec
        let mut vec = Vec::with_capacity(self.len);
        vec.extend_from_slice(unsafe { slice::from_raw_parts(self.data, self.len) });
        VecShard::from(vec)
    }
}

impl<T: fmt::Debug> fmt::Debug for VecShard<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{:?}", &**self)
    }
}

impl<T> ShardExt for Vec<T> {
    type Shard = VecShard<T>;

    fn split_inplace_at(self, at: usize) -> (Self::Shard, Self::Shard) {
        VecShard::from(self).split_inplace_at(at)
    }
}