1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

#![deny(missing_docs,
        missing_debug_implementations, missing_copy_implementations,
        trivial_casts, trivial_numeric_casts,
        unsafe_code,
        unstable_features,
        unused_import_braces, unused_qualifications)]

#![cfg_attr(feature = "dev", allow(unstable_features))]
#![cfg_attr(feature = "dev", feature(plugin))]
#![cfg_attr(feature = "dev", plugin(clippy))]


//! A simple implementation of van Emde Boas trees.

use std::mem;

/// The van Emde Boas tree itself.
#[derive(Debug, Clone)]
pub struct VEBTree {
    children: Vec<Option<VEBTree>>,
    summary: Option<Box<VEBTree>>,
    // special cases of min and max:
    // if the tree is empty, min > max
    // if the tree contains only one element, min == max == that element.
    min: i64,
    max: i64,
    universe: i64,
    sqrt_universe: i64,
}

// helper macros

macro_rules! subtree {
    ( $self_: ident, $x: expr ) => {
        $self_.children.get($x).expect("child idx out of bounds").as_ref()
    }
}

macro_rules! summary {
    ( $self_: ident ) => {
        $self_.summary.as_ref().expect("summary not present")
    }
}

macro_rules! summary_mut {
    ( $self_: ident ) => {
        $self_.summary.as_mut().expect("summary not present")
    }
}

impl VEBTree {
    fn high(&self, x: i64) -> i64 {
        ((x as f64) / (self.sqrt_universe as f64)).floor() as i64
    }

    fn low(&self, x: i64) -> i64 {
        x % self.sqrt_universe
    }

    fn index(&self, i: i64, j: i64) -> i64 {
        i * self.sqrt_universe + j
    }

    /// Generates a new van Emde Boas tree. Will return an error if
    /// the input is less than 1 or greater than the max value of an isize.
    pub fn new(max_elem: i64) -> Result<Self, &'static str> {
        if max_elem <= 1 {
            Err("universe size must be > 1")
        } else if max_elem > isize::max_value() as i64 {
            Err("universe too big")
        } else {
            // sqrt_universe: 2^(floor(log_2(universe) / 2))
            let sqrt_universe = (((max_elem as f64).ln() / (2f64).ln()) / 2f64).exp2() as i64;
            Ok(VEBTree {
                universe: max_elem,
                sqrt_universe: sqrt_universe,
                min: max_elem,
                max: -1,
                summary: if max_elem == 2 {
                    None
                } else {
                    Some(Box::new(VEBTree::new(sqrt_universe).unwrap()))
                },
                children: if max_elem == 2 {
                    vec![]
                } else {
                    vec![None; sqrt_universe as usize]
                },
            })
        }
    }

    // =========
    // observers
    // =========

    /// Returns the lowest value stored in the tree, or None if it's empty.
    /// Takes constant time.
    pub fn minimum(&self) -> Option<i64> {
        if self.is_empty() {
            None
        } else {
            Some(self.min)
        }
    }

    /// Returns the highest value stored in the tree, or None if it's empty.
    /// Takes constant time.
    pub fn maximum(&self) -> Option<i64> {
        if self.is_empty() {
            None
        } else {
            Some(self.max)
        }
    }

    /// Returns the maximum value it's possible to store in the tree.
    /// Takes constant time.
    pub fn universe(&self) -> i64 {
        self.universe
    }

    /// Returns true if the tree is empty.
    /// Takes constant time.
    pub fn is_empty(&self) -> bool {
        self.min > self.max
    }

    /// Returns true if this van Emde Boas tree contains the specified value.
    /// Takes O(log(log(U))) time, where U is the argument to the constructor.
    pub fn has(&self, x: i64) -> bool {
        if x == self.min || x == self.max {
            true
        } else if self.universe == 2 || x > self.universe {
            false
        } else {
            subtree!(self, self.high(x) as usize).map_or(false, |subtree| subtree.has(self.low(x)))
        }
    }

    fn find_in_subtree(&self, x: i64) -> Option<i64> {
        // subtree not present - we need to look in a different cluster. Since universe
        // > 2, we know summary exists.
        summary!(self).find_next(self.high(x)).map_or(None, |next_index| {
            Some(self.index(next_index, subtree!(self, next_index as usize).unwrap().min))
        })
    }

    /// Finds the next highest value in this van Emde Boas tree, or None if it doesn't exit.
    /// Takes O(log(log(U))) time, where U is the argument to the constructor.
    pub fn find_next(&self, x: i64) -> Option<i64> {
        // base case
        if self.is_empty() {
            None
        } else if self.universe == 2 {
            if x == 0 && self.max == 1 {
                Some(1)
            } else {
                None
            }
        } else if x < self.min {
            Some(self.min)
        } else {
            let idx = self.high(x);
            let low = self.low(x);
            // look in subtrees
            subtree!(self, idx as usize).map_or_else(|| self.find_in_subtree(x), |subtree| {
                let max_low = subtree!(self, idx as usize).unwrap().max;
                if low < max_low {
                    Some(self.index(idx, subtree.find_next(low).unwrap()))
                } else {
                    self.find_in_subtree(x)
                }
            })
        }
    }

    // ========
    // mutators
    // ========

    fn empty_insert(&mut self, x: i64) {
        self.min = x;
        self.max = x;
    }

    /// Insert a value into this van Emde Boas tree.
    /// Takes O(log(log(U))) time, where U is the argument to the constructor.
    pub fn insert(&mut self, mut x: i64) {
        if self.is_empty() {
            self.empty_insert(x);
        } else {
            if self.min == self.max {
                if x < self.min {
                    self.min = x;
                }
                if x > self.max {
                    self.max = x;
                }
            }
            if x < self.min {
                mem::swap(&mut self.min, &mut x);
            }
            if x > self.max {
                self.max = x;
            }
            let idx = self.high(x);
            let low = self.low(x);
            let sqrt = self.sqrt_universe;
            let subtree = &mut self.children[idx as usize];
            match *subtree {
                Some(ref mut subtree) => subtree.insert(low),
                None => {
                    let mut new_tree = VEBTree::new(sqrt).unwrap();
                    new_tree.empty_insert(low);
                    mem::replace(subtree, Some(new_tree));
                    summary_mut!(self).insert(idx);
                }
            }
        }
    }

    /// Removes an element from this van Emde Boas tree.
    /// Takes O(log(log(U))) time, where U is the argument to the constructor.
    pub fn delete(&mut self, mut x: i64) {
        if self.min == self.max && self.min == x {
            self.min = self.universe;
            self.max = -1;
        } else {
            if self.min == x {
                // we need to calculate the new minimum
                self.min = if summary!(self).is_empty() {
                    self.max // return
                } else {
                    // we need to insert the old minimum
                    x = subtree!(self, summary!(self).min as usize).unwrap().min;
                    x
                }
            }
            if self.max == x {
                // we need to calculate the new maximum
                self.max = if summary!(self).is_empty() {
                    // only 1 element in the tree
                    self.min
                } else {
                    subtree!(self, summary!(self).max as usize).unwrap().max
                }
            }
            if !summary!(self).is_empty() {
                // recurse
                let idx = self.high(x);
                let low = self.low(x);
                let mut subtree = &mut self.children[idx as usize];
                subtree.as_mut().unwrap().delete(low);
                // don't store empty trees, and remove from summary as well
                if subtree.as_ref().unwrap().is_empty() {
                    subtree.take();
                    summary_mut!(self).delete(idx);
                }
            }
        }
    }

}

#[test]
fn creation() {
    assert!(VEBTree::new(50).is_ok());
}

#[test]
fn creation_fail() {
    assert!(VEBTree::new(1).is_err());
}

#[test]
fn insertion_and_has() {
    let mut tree = VEBTree::new(50).unwrap();
    assert!(!tree.has(25));
    assert!(!tree.has(26));
    tree.insert(25);
    assert!(tree.has(25));
    assert!(!tree.has(26));
    tree.insert(26);
    assert!(tree.has(25));
    assert!(tree.has(26));
}

#[test]
fn is_empty() {
    let mut tree = VEBTree::new(50).unwrap();
    assert!(tree.is_empty());
    tree.insert(25);
    assert!(!tree.is_empty());
    tree.delete(25);
    assert!(tree.is_empty());
}

#[test]
fn find_next() {
    let mut tree = VEBTree::new(50).unwrap();
    println!("find next: empty: {:?}", tree);
    assert!(tree.find_next(0).is_none());
    assert!(tree.find_next(24).is_none());
    assert!(tree.find_next(25).is_none());
    tree.insert(25);
    println!("find next: 25: {:?}", tree);
    assert!(tree.find_next(0).is_some());
    assert!(tree.find_next(24).is_some());
    assert!(tree.find_next(25).is_none());
}

#[test]
fn delete() {
    let mut tree = VEBTree::new(50).unwrap();
    println!("delete: empty: {:?}", tree);
    assert!(!tree.has(25));
    assert!(!tree.has(26));
    tree.insert(25);
    println!("delete: 25: {:?}", tree);
    assert!(tree.has(25));
    assert!(!tree.has(26));
    tree.insert(26);
    println!("delete: 25 and 26: {:?}", tree);
    assert!(tree.has(25));
    assert!(tree.has(26));
    tree.delete(26);
    println!("delete: 26 (1 deletion): {:?}", tree);
    assert!(!tree.has(26));
    assert!(tree.has(25));
    tree.delete(25);
    println!("delete: empty (2 deletions): {:?}", tree);
    assert!(!tree.has(26));
    assert!(!tree.has(25));
}