1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
#![doc = crate::doc_macro::make_svgbobdoc!(
//! # `varlen`
//! Ergonomic variable-length types.
//!
//! 1. [Summary](#summary)
//! 1. [Motivation](#motivation)
//! 1. [Examples](#examples)
//! 1. [Overview of types](#overview-of-types)
//! 1. [Use of Pin](#use-of-pin)
//! 1. [Feature flags](#feature-flags)
//! 
//! # Summary
//! 
//! `varlen` defines foundational types and traits for working with variable-length types in Rust.
//! 
//! The main example of variable-length type is a struct that stores a dynamically-sized array
//! directly in its storage, without requiring a pointer to a separate memory allocation. `varlen`
//! helps you define such types, and lets you build arbitrary concatenations and structs of them.
//! Additionally, it provides equivalents of the standard library's `Box<T>` and `Vec<T>` types
//! that are adapted to work well with variable-length types.
//! 
//! If you want to reduce the number of pointer indirections in your types by storing 
//! variable-sized arrays directly in your objects, then `varlen` is the library for you.
//! 
//! # Motivation
//! 
//! Traditionally when we use variable-sized data such as strings or arrays, we use a pointer
//! to a separately allocated object. For example, the following object ...
//! 
//! ```
//! type Person = (/* age */ usize, /* name */ Box<str>, /* email */ Box<str>);
//! let person: Person = 
//!     (16, Box::from("Harry Potter"), Box::from("harry.potter@example.com"));
//! ```
//! 
//! ... is represented in memory like this, with three separately allocated objects:
//! 
//! ```svgbob
//! "Person"
//! +------------+--------------------+-------------------+--------------------+-------------------+
//! | "16 (age)" | "0x1234 (str ptr)" | "12 (str length)" | "0x5678 (str ptr)" | "24 (str length)" |
//! +------------+--------------------+-------------------+--------------------+-------------------+
//!                 |                                       |
//!                 |                                       |
//!     .-----------'                         .-------------'
//!     |                                     |
//!     v "str payload"                       v "str payload"
//!     +------------------+                  +------------------------------+
//!     | "'Harry Potter'" |                  | "'harry.potter@example.com'" |
//!     +------------------+                  +------------------------------+
//! ```
//! 
//! Sometimes we can reduce the number of object allocations by bringing the variable-length
//! storage directly into the parent object, perhaps with a memory layout like this:
//! 
//! ```svgbob
//! +-----+
//! | ptr |
//! +-----+
//!   | 
//!   |
//!   |  "Person"
//!   |  +-------------+-------------------+------------------+-------------------+------------------------------+
//!   '->| "16 (age)"  | "12 (str length)" | "'Harry Potter'" | "24 (str length)" | "'harry.potter@example.com'" |
//!      +-------------+-------------------+------------------+-------------------+------------------------------+
//! ```
//! 
//! This layout reduced the number of object allocations from 3 to 2, potentially improving
//! memory allocator performance, and potentially also improving [CPU cache locality](https://en.wikipedia.org/wiki/Locality_of_reference).
//! It also reduced the number of pointers from 3 to 2, saving memory.
//! 
//! The main disadvantage of this layout is that size and layout of the `Person` object is not
//! known at compile time; it is only known at runtime, when the lengths of the strings are known.
//! Working with such layouts in plain Rust is cumbersome, and also requires unsafe code to do
//! the necessary pointer arithmetic.
//! 
//! `varlen` lets you easily define and use such types, without you having to write any
//! unsafe code. The following code will create an object with the memory layout from above:
//! 
//! ```
//! use varlen::prelude::*;
//! type Person = Tup3</* age */ FixedLen<usize>, /* name */ Str, /* email */ Str>;
//! let person: VBox<Person> = VBox::new(tup3::Init(
//!     FixedLen(16),
//!     Str::copy("Harry Potter"),
//!     Str::copy("harry.potter@example.com"),
//! ));
//! ```
//! 
//! # Examples
//! 
//! ```
//! use varlen::prelude::*;
//! 
//! // Define a variable-length tuple:
//! type MyTuple = Tup3<FixedLen<usize>, Str, Array<u16>>;
//! # fn example1() {
//! let my_tuple: VBox<MyTuple> = VBox::new(tup3::Init(
//!     FixedLen(16), Str::copy("hello"), Array::copy(&[1u16, 2])));
//! 
//! // Put multiple objects in a sequence, with tightly packed memory layout:
//! let sequence: Seq<MyTuple> = seq![my_tuple.vcopy(), my_tuple.vcopy()];
//! 
//! # #[cfg(feature = "bumpalo")]
//! # {
//! // Or arena-allocate them, if the "bumpalo" crate feature is enabled:
//! let arena = bumpalo::Bump::new();
//! let arena_tuple: Owned<MyTuple> = Owned::new_in(my_tuple.vcopy(), &arena);
//! # }
//! # }
//! 
//! // Define a newtype wrapper for the tuple:
//! define_varlen_newtype! {
//!     #[repr(transparent)]
//!     pub struct MyStruct(MyTuple);
//! 
//!     with init: struct MyStructInit<_>(_);
//!     with inner_ref: fn inner(&self) -> &_;
//!     with inner_mut: fn inner_mut(self: _) -> _;
//! }
//! # fn example2() {
//! # let my_tuple: VBox<MyTuple> = VBox::new(tup3::Init(
//! #     FixedLen(16), Str::copy("hello"), Array::copy(&[1u16, 2])));
//! let my_struct: VBox<MyStruct> = VBox::new(MyStructInit(my_tuple));
//! # }
//! 
//! // Define a variable-length struct via a procedural macro, if the "macro"
//! // crate feature is enabled.
//! # #[cfg(feature = "macro")]
//! # mod using_macro {
//! # use super::*;
//! #[define_varlen]
//! struct MyMacroStruct {
//!     age: usize,
//!     #[varlen]
//!     name: Str,
//!     #[varlen]
//!     email: Str,
//!     #[varlen]
//!     child: MyStruct,
//! }
//! # pub fn example3() {
//! # let my_tuple: VBox<MyTuple> = VBox::new(tup3::Init(
//! #     FixedLen(16), Str::copy("hello"), Array::copy(&[1u16, 2])));
//! # let my_struct: VBox<MyStruct> = VBox::new(MyStructInit(my_tuple));
//! let s: VBox<MyMacroStruct> = VBox::new(
//!     my_macro_struct::Init{
//!         age: 16,
//!         name: Str::copy("Harry Potter"),
//!         email: Str::copy("harry.potter@example.com"),
//!         child: my_struct,
//!     }
//! );
//! # }
//! 
//! // #[define_varlen] also let you directly specify array lengths:
//! #[define_varlen]
//! struct MultipleArrays {
//!     #[controls_layout]
//!     len: usize,
//! 
//!     #[varlen_array]
//!     array1: [u16; *len],
//! 
//!     #[varlen_array]
//!     array2: [u8; *len],
//! 
//!     #[varlen_array]
//!     half_array: [u16; (*len) / 2],
//! }
//! # pub fn example4() {
//! let base_array = vec![0u16, 64000, 13, 105];
//! let a: VBox<MultipleArrays> = VBox::new(multiple_arrays::Init{
//!     len: base_array.len(),
//!     array1: FillSequentially(|i| base_array[i]),
//!     array2: FillSequentially(|i| base_array[base_array.len() - 1 - i] as u8),
//!     half_array: FillSequentially(|i| base_array[i * 2]),
//! });
//! # }
//! # }
//! 
//! # fn main() {
//! #   example1();
//! #   example2();
//! #   #[cfg(feature = "macro")] {
//! #     using_macro::example3();
//! #     using_macro::example4();
//! #   }
//! # }
//! ```
//! 
)]
//! # Overview of types
//!
//! `varlen` provides variable-length versions of various standard-library types and traits.
//! This table gives the correspondence:
//!
//!
//! | Name                     | Fixed-length type `T` | Variable-length type `T`                      | Notes                                                                                   |
//! |--------------------------|-----------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------|
//! | Immutable reference      | `&T`                  | `&T`                                          |                                                                                         |
//! | Mutable reference        | `&mut T`              | [`Pin<&mut T>`](std::pin::Pin)                | `Pin<>` required for safety, see below                                                  |
//! | Owning, non-allocated    | `T`                   | [`Owned<'storage, T>`](crate::owned::Owned)   | `Owned<T>` is still a pointer to `T`'s payload                                          |
//! | Owning, allocated        | [`Box<T>`]            | [`VBox<T>`](crate::vbox::VBox)                |                                                                                         |
//! | Sequence                 | [`Vec<T>`]            | [`Seq<T>`](crate::seq::Seq)                   | `Seq` has tightly-packed _variable-size_ elements. Random access is somewhat restricted |
//! | String                   | [`String`]            | [`Str`](crate::str::Str)                      | String payload immediately follows the size, no pointer following                       |
//! | Array (fixed-size elems) | [`Box<[u16]>`]        | [`Array<u16>`](crate::array::Array)           | Array payload immediately follows the size, no pointer following                        |
//! | Tuple                    | `(T, U)`              | [`Tup2<T, U>`](crate::tuple::Tup2)            | Field `U` might not be at a statically known offset from start of object                |
//! | Clone                    | `Clone::clone()`      | [`VClone::vclone()`](crate::VClone::vclone)   |                                                                                         |
//! | Copy                     | <implicit>            | [`VCopy::vcopy()`](crate::VCopy::vcopy)       |                                                                                         |
//!
//!
//! # Use of `Pin`
//!
//! Mutable references to variable-length types use [`Pin<&mut T>`](std::pin::Pin) rather than
//! `&mut T`. By doing so, we prevent patterns such as calling [`std::mem::swap`] on
//! variable-length types. Such patterns would be a safety hazard, because the part of the type
//! that the Rust compiler knows about when calling [`std::mem::swap`] is just the
//! "fixed-size head" of the type. However, almost all variable-length types additionally have a
//! "variable-sized tail" that the Rust compiler doesn't know about. Swapping the head but not
//! the tail could violate a type's invariants, potentially breaking safety.
//!
//! If you never write `unsafe` code, you don't need to worry about this issue. The only practical
//! consequence is that mutable access to a variable-length type is always mediated through
//! [`Pin<&mut T>`](std::pin::Pin) rather than `&mut T`, and you will have to work with the slightly
//! more cumbersome `Pin` APIs.
//!
//! On the other hand, if you write `unsafe` code, you may have to be aware of the following
//! invariant. If `T` is a variable-length type, we require that any reference `&T` points to
//! a "valid" `T`, which we consider to be one which has a fixed-length head
//! (of size `std::mem::size_of::<T>()`) followed by a variable-length tail, and the head and
//! tail are "consistent" with each other. Here, "consistent" means that they were produced by
//! a call to one of the type's [`Initializer`] instances. In `unsafe` code, where you might
//! have access to a `&mut T` (without a `Pin`), you must avoid code patterns which modify the
//! head without also correspondingly modifying the tail.
//!
//! # Feature flags
//!
//! This crate has no *required* dependencies. The following feature flags exist, which can turn
//! on some dependencies.
//!
//! * `bumpalo`. Enables support for allocating an [`Owned<T>`](crate::owned::Owned) in an `bumpalo::Bump` arena. Adds a dependency on `bumpalo`.
//! * `macro`. Enables procedural macro support, for defining variable-length structs using [`#[define_varlen]`](crate::define_varlen). Adds a dependency on `varlen_macro`, `syn` and `quote`.
//! * `doc`. Enables pretty SVG diagrams in documentation. Adds a lot of dependencies.

#![no_std]
extern crate alloc;

#[cfg(doc)]
extern crate std;
#[cfg(doc)]
use std::boxed::Box;
#[cfg(doc)]
use std::string::String;
#[cfg(doc)]
use std::vec::Vec;

pub mod array;
pub mod array_init;
#[doc(hidden)]
pub mod macro_support;
pub mod marker;
pub mod newtype;
pub mod owned;
pub mod prelude;
pub mod seq;
pub mod str;
pub mod tuple;
pub mod vbox;

mod doc_macro;

pub use crate::str::Str;
pub use array::Array;
use core::marker::PhantomData;
use core::ptr::NonNull;
pub use owned::Owned;
pub use seq::Seq;
#[cfg(feature = "macro")]
pub use varlen_macro::define_varlen;
pub use vbox::VBox;

/// The fundamental trait for variable-length types.
///
/// This type is analogous to `Sized` for fixed-length types. Provides functionality required
/// for:
/// * moving an object: need to know its [layout][`VarLen::calculate_layout`] and
///   [alignment][`VarLen::ALIGN`].
/// * dropping an object: the Rust compiler's tracking of [`Drop`] is insufficient for
///   variable-length types, since we need to track the variable-length tail too. Instead,
///   we use [`vdrop`][`VarLen::vdrop`].
///
/// Most users of this trait are not expected to implement this trait or call its functions
/// directly. Instead, you will typically use an existing implementation, such as a
/// [tuple type][`crate::tuple`] or a [`#[define_varlen]`][`crate::define_varlen`] struct.
///
/// # Examples
///
/// Generic function on variable-length type:
///
/// ```
/// use varlen::prelude::*;
/// fn push2<T: VarLen>(x: VBox<T>, y: VBox<T>, seq: &mut Seq<T>) {
///     seq.push(x);
///     seq.push(y);
/// }
/// let mut s = Seq::new();
/// push2(
///     VBox::new(Str::copy("hello")),
///     VBox::new(Str::copy("world")),
///     &mut s);
/// let mut iter = s.iter();
/// assert_eq!(&iter.next().unwrap()[..], "hello");
/// assert_eq!(&iter.next().unwrap()[..], "world");
/// assert!(iter.next().is_none());
/// ```
///
/// # Safety
///
/// To safely implement this trait, you must guarantee that the reported layout of your type
/// is correct. Specifically:
/// * [`VarLen::ALIGN`] must be a power of 2.
/// * the alignment reported by [`VarLen::ALIGN`] is large enough to support the alignment
///   requirements of all the fields within this type. An implication of this is that this
///   alignment must be at least large as `std::mem::align_of::<Self>()`, which is the alignment
///   requirement of the fixed-length header.
/// * the layout reported by [`VarLen::calculate_layout()`] reports the correct size of
///   the object, including its variable-length tail
///
/// The layout of an existing object must not change its size.
pub unsafe trait VarLen: Sized {
    /// This type's internal dynamic calculations of where its tail fields are.
    ///
    /// All you can do with this type is get the overall `size()`, and pass the layout
    /// to `drop_tail()` or `Initializer::initialize()`.
    type Layout: Layout;

    /// Calculates the layout of the internal fields of this object.
    ///
    /// # Examples
    ///
    /// ```
    /// use varlen::prelude::*;
    /// use varlen::Layout;
    /// let s = VBox::new(Str::copy("hello"));
    /// assert_eq!(s.calculate_layout().size(), std::mem::size_of::<usize>() + 5);
    /// ```
    fn calculate_layout(&self) -> Self::Layout;

    /// Alignment of this type, including its fixed-length header.
    ///
    /// # Examples
    ///
    /// ```
    /// use varlen::prelude::*;
    /// type T = Array<u64, u16>;
    /// // Fixed-length header is just the u16 length field:
    /// assert_eq!(std::mem::align_of::<T>(), std::mem::align_of::<u16>());
    /// // Variable-length tail includes the u64 array elements too:
    /// assert_eq!(T::ALIGN, std::mem::align_of::<u64>());
    /// ```
    ///
    /// # Safety
    ///
    /// Implementors of this trait must guarantee:
    /// * `ALIGN` is a power of 2.
    /// * `ALIGN` is at least equal to `core::mem::align_of::<Self>()`.
    const ALIGN: usize;

    /// Drops `self`.
    ///
    /// Rust's automatic [`Drop`] logic only accounts for the "head" (fixed-length) part
    /// of a type, and isn't aware of the presence of a variable-length "tail". On `VarLen`
    /// types, you should use `vdrop` instead of [`std::mem::drop`].
    ///
    /// # See also
    ///
    /// Containers types such as [`VBox`][crate::vbox::VBox], [`Owned`][crate::owned::Owned],
    /// and [`Seq`][crate::seq::Seq] take care of dropping their contents. You typically do
    /// not need to call [`vdrop`][`VarLen::vdrop`] directly.
    ///
    /// # Examples
    ///
    /// Drop on a [`VBox`]'s memory allocation.
    ///
    /// ```
    /// use varlen::prelude::*;
    /// use varlen::Layout as _;
    /// use std::pin::Pin;
    /// use std::alloc::Layout;
    /// type Ty = Tup2<FixedLen<String>, Str>;
    /// let v: VBox<Ty> =
    ///     VBox::new(tup2::Init(
    ///         FixedLen("hello".to_string()),
    ///         Str::copy("world"),
    ///     ));
    /// unsafe {
    ///     let p = v.into_raw();
    ///     let pp: Pin<&mut Ty> = Pin::new_unchecked(&mut *p);
    ///     let layout = pp.calculate_layout();
    ///     let size = layout.size();
    ///     pp.vdrop(layout);
    ///     std::alloc::dealloc(
    ///         p as *mut u8,
    ///         Layout::from_size_align(size, Ty::ALIGN).unwrap());
    /// }
    /// ```
    ///
    /// # Safety
    ///
    /// The caller must ensure:
    ///  * `vdrop` is called at most once on `self`
    ///  * `layout` must have been returned by `calculate_layout()` on
    ///    this object or `calculate_layout_cautious()` on its initializer.
    unsafe fn vdrop(self: core::pin::Pin<&mut Self>, layout: Self::Layout);

    /// If false, [`vdrop()`][`VarLen::vdrop`] is a noop, and may be skipped without changing
    /// behavior.
    ///
    /// This is the equvialent of [`std::mem::needs_drop()`] that accounts for the tail of
    /// the type too, not just the head.
    const NEEDS_VDROP: bool;
}

/// Support for cloning variable-length types.
///
/// # Examples
///
/// ```
/// use varlen::prelude::*;
///
/// let s_box: VBox<Str> = VBox::new(Str::copy("hello"));
/// let s: &Str = &*s_box;
/// let seq: Seq<Str> = seq![s.vclone(), s.vclone(), s.vclone()];
/// let mut iter = seq.iter();
/// assert_eq!(&iter.next().unwrap()[..], "hello");
/// assert_eq!(&iter.next().unwrap()[..], "hello");
/// assert_eq!(&iter.next().unwrap()[..], "hello");
/// assert!(iter.next().is_none());
/// ```
pub trait VClone<'a>: VarLen {
    /// An initializer that can produce a clone of an object of type `Self`.
    ///
    /// # Examples
    ///
    /// ```
    /// use varlen::prelude::*;
    ///
    /// let s_box: VBox<Str> = VBox::new(Str::copy("hello"));
    /// let s: &Str = &*s_box;
    /// let seq: Seq<Str> = seq![s.vclone(), s.vclone(), s.vclone()];
    /// let mut iter = seq.iter();
    /// assert_eq!(&iter.next().unwrap()[..], "hello");
    /// assert_eq!(&iter.next().unwrap()[..], "hello");
    /// assert_eq!(&iter.next().unwrap()[..], "hello");
    /// assert!(iter.next().is_none());
    /// ```
    type Cloner: Initializer<Self>;

    /// Returns an initializer that will clone `self` when run.
    ///
    /// # Examples
    ///
    /// ```
    /// use varlen::prelude::*;
    ///
    /// let s_box: VBox<Str> = VBox::new(Str::copy("hello"));
    /// let s: &Str = &*s_box;
    /// let seq: Seq<Str> = seq![s.vclone(), s.vclone(), s.vclone()];
    /// let mut iter = seq.iter();
    /// assert_eq!(&iter.next().unwrap()[..], "hello");
    /// assert_eq!(&iter.next().unwrap()[..], "hello");
    /// assert_eq!(&iter.next().unwrap()[..], "hello");
    /// assert!(iter.next().is_none());
    /// ```
    fn vclone(&'a self) -> Self::Cloner;
}

/// Support for shallow byte-wise copy of varlen types.
///
/// Types that implement this trait can be copied by a bulk copy of the
/// byte buffer at which the object is stored.
///
/// # Examples
///
/// ```
/// use varlen::prelude::*;
///
/// let s1: VBox<Str> = VBox::new(Str::copy("hello"));
/// let s2: VBox<Str> = VBox::new(s1.vcopy());
/// ```
///
/// # Safety
///
/// Implementors of this trait must guarantee that this type is safe for
/// bytewise copy. Usually it is sufficient to guarantee that all fields
/// implement `VCopy`.
pub unsafe trait VCopy<'a>: VClone<'a> {
    /// Returns an initializer that does a bulk byte copy of `self`.
    ///
    /// # Examples
    ///
    /// ```
    /// use varlen::prelude::*;
    ///
    /// let s1: VBox<Str> = VBox::new(Str::copy("hello"));
    /// let s2: VBox<Str> = VBox::new(s1.vcopy());
    /// ```
    fn vcopy(&'a self) -> VCopier<'a, Self> {
        VCopier(self)
    }
}

/// An initializer that constructs a bytewise copy of `T`.
///
/// See [`VCopy::vcopy`].
///
/// # Examples
///
/// ```
/// use varlen::prelude::*;
///
/// let s1: VBox<Str> = VBox::new(Str::copy("hello"));
/// let s2: VBox<Str> = VBox::new(s1.vcopy());
/// ```
pub struct VCopier<'a, T>(&'a T);

// Safety: implementor of `VCopy` promises that initialization via memcpy
// is safe.
unsafe impl<'a, T: VCopy<'a>> Initializer<T> for VCopier<'a, T> {
    #[inline]
    fn calculate_layout_cautious(&self) -> Option<T::Layout> {
        Some(self.0.calculate_layout())
    }

    #[inline]
    unsafe fn initialize(self, dst: NonNull<T>, layout: T::Layout) {
        let size = layout.size();
        core::ptr::copy_nonoverlapping(
            self.0 as *const _ as *const u8,
            dst.as_ptr() as *mut u8,
            size,
        );
    }
}

/// A layout of a variable-length object.
pub trait Layout {
    /// The size of the object in bytes.
    fn size(&self) -> usize;
}

/// A type that knows how to construct a variable-length object.
///
/// Construction of a variable-length object proceeds as follows:
///
/// 1. The `Initializer` calculates how much memory is required for the object,
///    returns that information to the caller.
/// 2. The caller, such as [`VBox`][crate::vbox::VBox] or [`Seq`][crate::seq::Seq],
///    reserves that much memory for the object.
/// 3. The `Initializer` populates the reserved memory.
///
/// An `Initializer` is responsible for steps (1) and (3) of this protocol. Step (1)
/// is handled by [`calculate_layout_cautious`][`Initializer::calculate_layout_cautious`],
/// and step (3) is handled by [`initialize`][`Initializer::initialize`].
///
/// Directly defining or using an `Initializer` involves writing `unsafe` code.
/// You can typically avoid this `unsafe` code by using the standard container types
/// such as [`VBox`][crate::vbox::VBox] aod [`Seq`][crate::seq::Seq] and the standard
/// initializers that the tuple/struct/array/string types provide.
///
/// # Examples
///
/// Full lifecycle of initialization and destruction:
///
/// ```
/// use varlen::prelude::*;
/// use varlen::Layout as _;
/// use std::alloc::Layout;
/// use std::pin::Pin;
/// use std::ptr::NonNull;
///
/// // Make an initializer. This is a cheap pointer-only operation.
/// let init = Str::copy("hello world");
///
/// // Step 1: calculate memory requirement.
/// let layout = init.calculate_layout_cautious().unwrap();
/// let alloc_layout = Layout::from_size_align(layout.size(), Str::<usize>::ALIGN).unwrap();
/// let mut s: Pin<&mut Str> = unsafe {
///     // Step 2: allocate memory.
///     let mem = std::alloc::alloc(alloc_layout);
///     let mut mem = NonNull::new(mem as *mut Str).unwrap();
///     // Step 3: populate the memory.
///     init.initialize(mem, layout);
///     // Now use the initialized object
///     Pin::new_unchecked(mem.as_mut())
/// };
/// // Read its value
/// assert_eq!(&s[..], "hello world");
/// // Eventually delete it
/// unsafe {
///     let layout = s.calculate_layout();
///     let ptr = s.as_mut().get_unchecked_mut() as *mut _ as *mut u8;
///     s.vdrop(layout);
///     std::alloc::dealloc(ptr, alloc_layout);
/// }
/// ```
///
/// # Safety
///
/// An implementor of this trait is required to ensure:
///  * When `self.initialize(dst, layout)` is called with `layout=self.calculate_layout_cautious()`,
///    the `initialize()` function doesn't write past offset `layout.size()` of `dst`.
///  * When `initialize(dst, layout)` is called with layout=self.calculate_layout_cautious()`, then
///    after the `initialize()` function returns the object `T` is "initialized", i.e. it is safe
///    to use as a `&T` or as a `Pin<&mut T>`.
///  * The layout returned by `calculate_layout_cautious()` matches the layout returned by
///    [`VarLen::calculate_layout()`] on the initialized object.
pub unsafe trait Initializer<T: VarLen> {
    /// Calculates the layout of the object, returning `None` if any of the calculated sizes
    /// or offsets would overflow `usize`.
    ///
    /// # Examples
    ///
    /// ```
    /// use varlen::prelude::*;
    /// use varlen::Layout as _;
    ///
    /// // Succeeds on most sizes:
    /// let init = SizedInit(4usize, FillWithDefault);
    /// assert_eq!(
    ///     Initializer::<Array<u32>>::calculate_layout_cautious(&init)
    ///     .unwrap().size(),
    ///     std::mem::size_of::<usize>() + 4 * std::mem::size_of::<u32>());
    /// // Fails on `usize` overflow:
    /// let init = SizedInit(usize::MAX, FillWithDefault);
    /// assert!(
    ///    Initializer::<Array<u32>>::calculate_layout_cautious(&init)
    ///    .is_none());
    /// ```
    fn calculate_layout_cautious(&self) -> Option<T::Layout>;

    /// Populates the destination pointer.
    ///
    /// See the [trait documentation][`Initializer`] for details on the initialization protocol.
    ///
    /// # Safety
    ///
    /// Trait implementor requirements are documented in the [trait documentation][`Initializer`].
    ///
    /// Additionally, the function caller must guarantee:
    ///
    /// * You must call `initialize` with the layout returned by
    ///   [`calculate_layout_cautious()`][`Initializer::calculate_layout_cautious`]
    ///   on the same initializer object.
    /// * `dst` must be writable, with size as specified by `self.calculate_layout().size()`.
    #[allow(rustdoc::missing_doc_code_examples)]
    unsafe fn initialize(self, dst: NonNull<T>, layout: T::Layout);
}

/// Presents a fixed-length type `T` as a variable-length type.
///
/// Useful for creating tuples consisting of some variable-length types
/// and some fixed-length types.
///
/// # Examples
///
/// Put a fixed-length type in a variable-sized box:
///
/// ```
/// use varlen::prelude::*;
/// let b: VBox<FixedLen<u16>> = VBox::new(FixedLen(4));
/// assert_eq!(b.0, 4);
/// ```
///
/// Create a tuple of variable-length types and a fixed-length type:
///
/// ```
/// use varlen::prelude::*;
/// let b: VBox<Tup2<FixedLen<u16>, Str>> = VBox::new(tup2::Init(
///     FixedLen(4), Str::copy("hello")));
/// assert_eq!(b.refs().0.0, 4);
/// assert_eq!(&b.refs().1[..], "hello");
/// ```
pub struct FixedLen<T>(pub T);

/// The variable-length layout of a fixed-length type.
///
/// # Examples
///
/// ```
/// use varlen::prelude::*;
/// use varlen::Layout as _;
/// let layout = FixedLen(4u16).calculate_layout_cautious().unwrap();
/// assert_eq!(layout.size(), std::mem::size_of::<u16>());
/// ```
pub struct FixedLenLayout<T>(PhantomData<T>);

impl<T> PartialEq for FixedLenLayout<T> {
    fn eq(&self, _other: &Self) -> bool {
        true
    }
}
impl<T> Eq for FixedLenLayout<T> {}

impl<T> Layout for FixedLenLayout<T> {
    fn size(&self) -> usize {
        core::mem::size_of::<T>()
    }
}

unsafe impl<T> Initializer<FixedLen<T>> for FixedLen<T> {
    fn calculate_layout_cautious(&self) -> Option<FixedLenLayout<T>> {
        Some(FixedLenLayout(PhantomData))
    }

    unsafe fn initialize(self, dst: NonNull<FixedLen<T>>, _layout: FixedLenLayout<T>) {
        dst.as_ptr().write(self);
    }
}

unsafe impl<T> VarLen for FixedLen<T> {
    type Layout = FixedLenLayout<T>;

    fn calculate_layout(&self) -> Self::Layout {
        FixedLenLayout(PhantomData)
    }

    const ALIGN: usize = core::mem::align_of::<T>();

    const NEEDS_VDROP: bool = true;

    unsafe fn vdrop(self: core::pin::Pin<&mut Self>, _layout: Self::Layout) {
        // Safety: drop_in_place is called only once, because Self::vdrop() is
        // called only once.
        core::ptr::drop_in_place(self.get_unchecked_mut() as *mut Self)
    }
}

/// Initializer that clones from a [`FixedLen<T>`].
///
/// # Examples
///
/// ```
/// use varlen::prelude::*;
/// let orig = FixedLen(4u16);
/// let the_clone = VBox::new(orig.vclone());
/// assert_eq!(orig.0, the_clone.0);
/// ```
pub struct FixedLenCloner<'a, T>(&'a T);

impl<'a, T: 'a + Clone> VClone<'a> for FixedLen<T> {
    type Cloner = FixedLenCloner<'a, T>;
    fn vclone(&'a self) -> Self::Cloner {
        FixedLenCloner(&self.0)
    }
}

unsafe impl<'a, T: Clone> Initializer<FixedLen<T>> for FixedLenCloner<'a, T> {
    fn calculate_layout_cautious(&self) -> Option<FixedLenLayout<T>> {
        Some(FixedLenLayout(PhantomData))
    }

    unsafe fn initialize(self, dst: NonNull<FixedLen<T>>, _layout: FixedLenLayout<T>) {
        dst.as_ptr().write(FixedLen(self.0.clone()));
    }
}

// Safety: coyable if T is.
unsafe impl<'a, T: 'a + Copy> VCopy<'a> for FixedLen<T> {}