1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
//! CNF formulas.
use std::cmp::max;
use std::fmt;
use std::ops::Range;

use crate::lit::{Lit, Var};

/// A formula in conjunctive normal form (CNF).
///
/// Equivalent to Vec<Vec<Lit>> but more efficient as it uses a single buffer for all literals.
#[derive(Default, Eq)]
pub struct CnfFormula {
    var_count: usize,
    literals: Vec<Lit>,
    clause_ranges: Vec<Range<usize>>,
}

impl CnfFormula {
    /// Create an empty CNF formula.
    pub fn new() -> CnfFormula {
        CnfFormula::default()
    }

    /// Number of variables in the formula.
    ///
    /// This also counts missing variables if a variable with a higher index is present.
    /// A vector of this length can be indexed with the variable indices present.
    pub fn var_count(&self) -> usize {
        self.var_count
    }

    /// Increase the number of variables in the formula.
    ///
    /// If the parameter is less than the current variable count do nothing.
    pub fn set_var_count(&mut self, count: usize) {
        self.var_count = max(self.var_count, count)
    }

    /// Number of clauses in the formula.
    pub fn len(&self) -> usize {
        self.clause_ranges.len()
    }

    /// Iterator over all clauses.
    pub fn iter(&self) -> impl Iterator<Item = &[Lit]> {
        let literals = &self.literals;
        self.clause_ranges
            .iter()
            .map(move |range| &literals[range.clone()])
    }
}

/// Convert an iterable of [`Lit`] slices into a CnfFormula
impl<Clauses, Item> From<Clauses> for CnfFormula
where
    Clauses: IntoIterator<Item = Item>,
    Item: std::borrow::Borrow<[Lit]>,
{
    fn from(clauses: Clauses) -> CnfFormula {
        let mut cnf_formula = CnfFormula::new();
        for clause in clauses {
            cnf_formula.add_clause(clause.borrow());
        }
        cnf_formula
    }
}

impl fmt::Debug for CnfFormula {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Debug::fmt(&self.var_count(), f)?;
        f.debug_list().entries(self.iter()).finish()
    }
}

impl PartialEq for CnfFormula {
    fn eq(&self, other: &CnfFormula) -> bool {
        self.var_count() == other.var_count()
            && self.clause_ranges.len() == other.clause_ranges.len()
            && self
                .clause_ranges
                .iter()
                .zip(other.clause_ranges.iter())
                .all(|(range_a, range_b)| {
                    self.literals[range_a.clone()] == other.literals[range_b.clone()]
                })
    }
}

/// Extend a formula with new variables and clauses.
pub trait ExtendFormula: Sized {
    /// Appends a clause to the formula.
    ///
    /// `literals` can be an `IntoIterator<Item = Lit>` or `IntoIterator<Item = &Lit>`.
    fn add_clause(&mut self, literals: &[Lit]);

    /// Add a new variable to the formula and return it.
    fn new_var(&mut self) -> Var;

    /// Add a new variable to the formula and return it as positive literal.
    fn new_lit(&mut self) -> Lit {
        self.new_var().positive()
    }

    /// Iterator over multiple new variables.
    fn new_var_iter(&mut self, count: usize) -> NewVarIter<Self> {
        NewVarIter {
            formula: self,
            vars_left: count,
            phantom: std::marker::PhantomData,
        }
    }

    /// Iterator over multiple new literals.
    fn new_lit_iter(&mut self, count: usize) -> NewVarIter<Self, Lit> {
        NewVarIter {
            formula: self,
            vars_left: count,
            phantom: std::marker::PhantomData,
        }
    }

    /// Add multiple new variables and return them.
    ///
    /// Returns a uniform tuple of variables. The number of variables is inferred, so it can be used
    /// like `let (x, y, z) = formula.new_vars()`.
    fn new_vars<Vars: UniformTuple<Var>>(&mut self) -> Vars {
        Vars::tuple_from_iter(self.new_var_iter(Vars::tuple_len()))
    }

    /// Add multiple new variables and return them as positive literals.
    ///
    /// Returns a uniform tuple of variables. The number of variables is inferred, so it can be used
    /// like `let (x, y, z) = formula.new_lits()`.
    fn new_lits<Lits: UniformTuple<Lit>>(&mut self) -> Lits {
        Lits::tuple_from_iter(self.new_lit_iter(Lits::tuple_len()))
    }
}

/// Iterator over new variables or literals.
///
/// Created by the [`new_var_iter`][ExtendFormula::new_var_iter] and
/// [`new_lit_iter`][ExtendFormula::new_lit_iter] methods of [`ExtendFormula`].
pub struct NewVarIter<'a, F, V = Var> {
    formula: &'a mut F,
    vars_left: usize,
    phantom: std::marker::PhantomData<V>,
}

impl<'a, F, V> Iterator for NewVarIter<'a, F, V>
where
    F: ExtendFormula,
    V: From<Var>,
{
    type Item = V;

    fn next(&mut self) -> Option<V> {
        if self.vars_left == 0 {
            None
        } else {
            let var = self.formula.new_var();
            self.vars_left -= 1;
            Some(V::from(var))
        }
    }
}

impl ExtendFormula for CnfFormula {
    fn add_clause(&mut self, clause: &[Lit]) {
        let begin = self.literals.len();
        self.literals.extend_from_slice(clause);
        let end = self.literals.len();

        for &lit in self.literals[begin..end].iter() {
            self.var_count = max(lit.index() + 1, self.var_count);
        }

        self.clause_ranges.push(begin..end);
    }

    fn new_var(&mut self) -> Var {
        let var = Var::from_index(self.var_count);
        self.var_count += 1;
        var
    }
}

/// Helper trait to initialize multiple variables of the same type.
pub trait UniformTuple<Item> {
    fn tuple_len() -> usize;
    fn tuple_from_iter(items: impl Iterator<Item = Item>) -> Self;
}

macro_rules! ignore_first {
    ($a:tt, $b:tt) => {
        $b
    };
}

macro_rules! array_like_impl {
    ($count:expr, $($call:tt)*) => {
        impl<Item> UniformTuple<Item> for ($(ignore_first!($call, Item)),*) {
            fn tuple_len() -> usize { $count }
            fn tuple_from_iter(mut items: impl Iterator<Item = Item>) -> Self {
                ($(items.next().unwrap().into $call),*)
            }
        }
    }
}

macro_rules! array_like_impl_4 {
    ($count:expr, $($call:tt)*) => {
        array_like_impl!($count * 4 + 2, $(()()()$call)* ()());
        array_like_impl!($count * 4 + 3, $(()()()$call)* ()()());
        array_like_impl!($count * 4 + 4, $(()()()$call)* ()()()());
        array_like_impl!($count * 4 + 5, $(()()()$call)* ()()()()());
    }
}

array_like_impl_4!(0,);
array_like_impl_4!(1, ());
array_like_impl_4!(2, ()());
array_like_impl_4!(3, ()()());
array_like_impl_4!(4, ()()()());

#[cfg(any(test, feature = "proptest-strategies"))]
#[doc(hidden)]
pub mod strategy {
    use super::*;

    use proptest::{collection::SizeRange, prelude::*, *};

    use crate::lit::strategy::lit;

    pub fn vec_formula(
        vars: impl Strategy<Value = usize>,
        clauses: impl Into<SizeRange>,
        clause_len: impl Into<SizeRange>,
    ) -> impl Strategy<Value = Vec<Vec<Lit>>> {
        let clauses = clauses.into();
        let clause_len = clause_len.into();

        // Not using ind_flat_map makes shrinking too expensive
        vars.prop_ind_flat_map(move |vars| {
            collection::vec(
                collection::vec(lit(0..vars), clause_len.clone()),
                clauses.clone(),
            )
        })
    }

    pub fn cnf_formula(
        vars: impl Strategy<Value = usize>,
        clauses: impl Into<SizeRange>,
        clause_len: impl Into<SizeRange>,
    ) -> impl Strategy<Value = CnfFormula> {
        let clauses = clauses.into();
        let clause_len = clause_len.into();

        let clause_lens = collection::vec(collection::vec(Just(()), clause_len), clauses);
        (vars, clause_lens).prop_flat_map(move |(vars, clause_lens)| {
            let total_lits: usize = clause_lens.iter().map(|l| l.len()).sum();
            collection::vec(lit(0..vars), total_lits)
                .prop_map(move |literals| {
                    let mut clause_ranges = Vec::with_capacity(clause_lens.len());

                    let mut offset = 0;
                    for len in clause_lens.iter() {
                        clause_ranges.push(offset..offset + len.len());
                        offset += len.len();
                    }

                    CnfFormula {
                        var_count: vars,
                        literals,
                        clause_ranges,
                    }
                })
                .no_shrink() // Shrinking too expensive without this
        })
    }
}

#[cfg(test)]
mod tests {
    use super::{strategy::*, *};

    use proptest::*;

    #[test]
    fn new_vars() {
        let mut formula = CnfFormula::new();
        let (x, y, z) = formula.new_vars();

        assert_ne!(x, y);
        assert_ne!(y, z);
        assert_ne!(x, y);
        assert_eq!(formula.var_count(), 3);
    }

    #[test]
    fn simple_roundtrip() {
        let input = cnf![
            1, 2, 3;
            -1, -2;
            7, 2;
            ;
            4, 5;
        ];

        let formula = CnfFormula::from(input.iter().cloned());

        for (clause, &ref_clause) in formula.iter().zip(input.iter()) {
            assert_eq!(clause, ref_clause);
        }

        assert_eq!(formula.var_count(), 7);
    }

    proptest! {
        #[test]
        fn roundtrip_from_vec(input in vec_formula(1..200usize, 0..1000, 0..10)) {
            let formula = CnfFormula::from(input.clone());

            for (clause, ref_clause) in formula.iter().zip(input.iter()) {
                prop_assert_eq!(clause, &ref_clause[..]);
            }

            let var_count = input
                .iter()
                .flat_map(|clause| clause.iter().map(|lit| lit.index() + 1))
                .max()
                .unwrap_or(0);

            prop_assert_eq!(formula.var_count(), var_count);
        }

        #[test]
        fn roundtrip_from_cnf(input in cnf_formula(1..100usize, 0..1000, 0..10)) {
            let roundtrip = CnfFormula::from(input.iter());

            for (clause_a, clause_b) in input.iter().zip(roundtrip.iter()) {
                prop_assert_eq!(clause_a, clause_b);
            }

            prop_assert!(roundtrip.var_count() <= input.var_count());

            if roundtrip.var_count() == input.var_count() {
                prop_assert_eq!(roundtrip, input);
            }
        }
    }
}