1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
// Copyright 2015-2020 Parity Technologies (UK) Ltd.
// This file is part of Tetsy Vapory.

// Tetsy Vapory is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Tetsy Vapory is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Tetsy Vapory.  If not, see <http://www.gnu.org/licenses/>.

use std::sync::{Arc, Weak};
use std::thread;
use std::time::Duration;

use crossbeam_deque as deque;
use fnv::FnvHashMap;
use log::{trace, debug};
use num_cpus;
use parking_lot::{Mutex, RwLock};
use slab::Slab;
use time::Duration as TimeDuration;
use timer::{Guard as TimerGuard, Timer};

use crate::{IoError, IoHandler};

/// Timer ID
pub type TimerToken = usize;
/// IO Handler ID
pub type HandlerId = usize;

/// Maximum number of tokens a handler can use
pub const TOKENS_PER_HANDLER: usize = 16384;
const MAX_HANDLERS: usize = 8;

/// IO access point. This is passed to all IO handlers and provides an interface to the IO subsystem.
pub struct IoContext<Message> where Message: Send + Sync + 'static {
	handler: HandlerId,
	shared: Arc<Shared<Message>>,
}

impl<Message> IoContext<Message> where Message: Send + Sync + 'static {
	/// Register a new recurring IO timer. 'IoHandler::timeout' will be called with the token.
	pub fn register_timer(&self, token: TimerToken, delay: Duration) -> Result<(), IoError> {
		let channel = self.channel();

		let msg = WorkTask::TimerTrigger {
			handler_id: self.handler,
			token,
		};

		let delay = TimeDuration::from_std(delay)
			.map_err(|e| ::std::io::Error::new(::std::io::ErrorKind::Other, e))?;
		let guard = self.shared.timer.lock().schedule_repeating(delay, move || {
			channel.send_raw(msg.clone());
		});

		self.shared.timers.lock().insert(token, guard);

		Ok(())
	}

	/// Register a new IO timer once. 'IoHandler::timeout' will be called with the token.
	pub fn register_timer_once(&self, token: TimerToken, delay: Duration) -> Result<(), IoError> {
		let channel = self.channel();

		let msg = WorkTask::TimerTrigger {
			handler_id: self.handler,
			token,
		};

		let delay = TimeDuration::from_std(delay)
			.map_err(|e| ::std::io::Error::new(::std::io::ErrorKind::Other, e))?;
		let guard = self.shared.timer.lock().schedule_with_delay(delay, move || {
			channel.send_raw(msg.clone());
		});

		self.shared.timers.lock().insert(token, guard);

		Ok(())
	}

	/// Delete a timer.
	pub fn clear_timer(&self, token: TimerToken) -> Result<(), IoError> {
		self.shared.timers.lock().remove(&token);
		Ok(())
	}

	/// Broadcast a message to other IO clients
	pub fn message(&self, message: Message) -> Result<(), IoError> {
		if let Some(ref channel) = *self.shared.channel.lock() {
			channel.push(WorkTask::UserMessage(Arc::new(message)));
		}
		for thread in self.shared.threads.read().iter() {
			thread.unpark();
		}

		Ok(())
	}

	/// Get message channel
	pub fn channel(&self) -> IoChannel<Message> {
		IoChannel { shared: Arc::downgrade(&self.shared) }
	}

	/// Unregister current IO handler.
	pub fn unregister_handler(&self) -> Result<(), IoError> {
		self.shared.handlers.write().remove(self.handler);
		Ok(())
	}
}

/// Allows sending messages into the event loop. All the IO handlers will get the message
/// in the `message` callback.
pub struct IoChannel<Message> where Message: Send + Sync + 'static {
	shared: Weak<Shared<Message>>,
}

impl<Message> Clone for IoChannel<Message> where Message: Send + Sync + 'static {
	fn clone(&self) -> IoChannel<Message> {
		IoChannel {
			shared: self.shared.clone(),
		}
	}
}

impl<Message> IoChannel<Message> where Message: Send + Sync + 'static {
	/// Send a message through the channel
	pub fn send(&self, message: Message) -> Result<(), IoError> {
		if let Some(shared) = self.shared.upgrade() {
			match *shared.channel.lock() {
				Some(ref channel) => channel.push(WorkTask::UserMessage(Arc::new(message))),
				None => self.send_sync(message)?
			};

			for thread in shared.threads.read().iter() {
				thread.unpark();
			}
		}

		Ok(())
	}

	/// Send a message through the channel and handle it synchronously
	pub fn send_sync(&self, message: Message) -> Result<(), IoError> {
		if let Some(shared) = self.shared.upgrade() {
			for id in 0 .. MAX_HANDLERS {
				if let Some(h) = shared.handlers.read().get(id) {
					let handler = h.clone();
					let ctxt = IoContext { handler: id, shared: shared.clone() };
					handler.message(&ctxt, &message);
				}
			}
		}

		Ok(())
	}

	// Send low level io message
	fn send_raw(&self, message: WorkTask<Message>) {
		if let Some(shared) = self.shared.upgrade() {
			if let Some(ref channel) = *shared.channel.lock() {
				channel.push(message);
			}

			for thread in shared.threads.read().iter() {
				thread.unpark();
			}
		}
	}

	/// Create a new channel disconnected from an event loop.
	pub fn disconnected() -> IoChannel<Message> {
		IoChannel {
			shared: Weak::default(),
		}
	}
}

/// General IO Service. Starts an event loop and dispatches IO requests.
/// 'Message' is a notification message type
pub struct IoService<Message> where Message: Send + Sync + 'static {
	thread_joins: Mutex<Vec<thread::JoinHandle<()>>>,
	shared: Arc<Shared<Message>>,
}

// Struct shared throughout the whole implementation.
struct Shared<Message> where Message: Send + Sync + 'static {
	// All the I/O handlers that have been registered.
	handlers: RwLock<Slab<Arc<dyn IoHandler<Message>>>>,
	// All the background threads, so that we can unpark them.
	threads: RwLock<Vec<thread::Thread>>,
	// Used to create timeouts.
	timer: Mutex<Timer>,
	// List of created timers. We need to keep them in a data struct so that we can cancel them if
	// necessary.
	timers: Mutex<FnvHashMap<TimerToken, TimerGuard>>,
	// Channel used to send work to the worker threads.
	channel: Mutex<Option<deque::Worker<WorkTask<Message>>>>,
}

// Messages used to communicate with the event loop from other threads.
enum WorkTask<Message> where Message: Send + Sized {
	Shutdown,
	TimerTrigger {
		handler_id: HandlerId,
		token: TimerToken,
	},
	UserMessage(Arc<Message>)
}

impl<Message> Clone for WorkTask<Message> where Message: Send + Sized {
	fn clone(&self) -> WorkTask<Message> {
		match *self {
			WorkTask::Shutdown => WorkTask::Shutdown,
			WorkTask::TimerTrigger { handler_id, token } => WorkTask::TimerTrigger { handler_id, token },
			WorkTask::UserMessage(ref msg) => WorkTask::UserMessage(msg.clone()),
		}
	}
}

impl<Message> IoService<Message> where Message: Send + Sync + 'static {
	/// Starts IO event loop
	pub fn start() -> Result<IoService<Message>, IoError> {
		let (tx, rx) = deque::fifo();

		let shared = Arc::new(Shared {
			handlers: RwLock::new(Slab::with_capacity(MAX_HANDLERS)),
			threads: RwLock::new(Vec::new()),
			timer: Mutex::new(Timer::new()),
			timers: Mutex::new(FnvHashMap::default()),
			channel: Mutex::new(Some(tx)),
		});

		let thread_joins = (0 .. num_cpus::get()).map(|_| {
			let rx = rx.clone();
			let shared = shared.clone();
			thread::spawn(move || {
				do_work(&shared, rx)
			})
		}).collect::<Vec<_>>();

		*shared.threads.write() = thread_joins.iter().map(|t| t.thread().clone()).collect();

		Ok(IoService {
			thread_joins: Mutex::new(thread_joins),
			shared,
		})
	}

	/// Stops the IO service.
	pub fn stop(&mut self) {
		trace!(target: "shutdown", "[IoService] Closing...");
		// Clear handlers so that shared pointers are not stuck on stack
		// in Channel::send_sync
		self.shared.handlers.write().clear();
		let channel = self.shared.channel.lock().take();
		let mut thread_joins = self.thread_joins.lock();
		if let Some(channel) = channel {
			for _ in 0 .. thread_joins.len() {
				channel.push(WorkTask::Shutdown);
			}
		}
		for thread in thread_joins.drain(..) {
			thread.thread().unpark();
			thread.join().unwrap_or_else(|e| {
				debug!(target: "shutdown", "Error joining IO service worker thread: {:?}", e);
			});
		}
		trace!(target: "shutdown", "[IoService] Closed.");
	}

	/// Register an IO handler with the event loop.
	pub fn register_handler(&self, handler: Arc<dyn IoHandler<Message>+Send>) -> Result<(), IoError> {
		let id = self.shared.handlers.write().insert(handler.clone());
		assert!(id <= MAX_HANDLERS, "Too many handlers registered");
		let ctxt = IoContext { handler: id, shared: self.shared.clone() };
		handler.initialize(&ctxt);
		Ok(())
	}

	/// Send a message over the network. Normaly `HostIo::send` should be used. This can be used from non-io threads.
	pub fn send_message(&self, message: Message) -> Result<(), IoError> {
		if let Some(ref channel) = *self.shared.channel.lock() {
			channel.push(WorkTask::UserMessage(Arc::new(message)));
		}
		for thread in self.shared.threads.read().iter() {
			thread.unpark();
		}
		Ok(())
	}

	/// Create a new message channel
	#[inline]
	pub fn channel(&self) -> IoChannel<Message> {
		IoChannel {
			shared: Arc::downgrade(&self.shared)
		}
	}
}

impl<Message> Drop for IoService<Message> where Message: Send + Sync {
	fn drop(&mut self) {
		self.stop()
	}
}

fn do_work<Message>(shared: &Arc<Shared<Message>>, rx: deque::Stealer<WorkTask<Message>>)
	where Message: Send + Sync + 'static
{
	loop {
		match rx.steal() {
			deque::Steal::Retry => continue,
			deque::Steal::Empty => thread::park(),
			deque::Steal::Data(WorkTask::Shutdown) => break,
			deque::Steal::Data(WorkTask::UserMessage(message)) => {
				for id in 0 .. MAX_HANDLERS {
					if let Some(handler) = shared.handlers.read().get(id) {
						let ctxt = IoContext { handler: id, shared: shared.clone() };
						handler.message(&ctxt, &message);
					}
				}
			},
			deque::Steal::Data(WorkTask::TimerTrigger { handler_id, token }) => {
				if let Some(handler) = shared.handlers.read().get(handler_id) {
					let ctxt = IoContext { handler: handler_id, shared: shared.clone() };
					handler.timeout(&ctxt, token);
				}
			},
		}
	}
}