1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
// Copyright 2015-2020 Parity Technologies (UK) Ltd.
// This file is part of Tetsy Vapory.

// Tetsy Vapory is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Tetsy Vapory is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Tetsy Vapory.  If not, see <http://www.gnu.org/licenses/>.

use std::{cmp, mem, f64};
use std::hash::{Hash, Hasher};
use std::collections::HashSet;
use siphasher::sip::SipHasher;

/// BitVec structure with journalling
/// Every time any of the blocks is getting set it's index is tracked
/// and can be then drained by `drain` method
struct BitVecJournal {
    elems: Vec<u64>,
    journal: HashSet<usize>,
}

impl BitVecJournal {
	pub fn new(size: usize) -> BitVecJournal {
		let extra = if size % 64 > 0  { 1 } else { 0 };
		BitVecJournal {
			elems: vec![0u64; size / 64 + extra],
			journal: HashSet::new(),
		}
	}

	pub fn from_parts(parts: &[u64]) -> BitVecJournal {
		BitVecJournal {
			elems: parts.to_vec(),
			journal: HashSet::new(),
		}
	}

	pub fn set(&mut self, index: usize) {
		let e_index = index / 64;
		let bit_index = index % 64;
		let val = self.elems.get_mut(e_index).unwrap();
		*val |= 1u64 << bit_index;
		self.journal.insert(e_index);
	}

	pub fn get(&self, index: usize) -> bool {
		let e_index = index / 64;
		let bit_index = index % 64;
		self.elems[e_index] & (1 << bit_index) != 0
	}

	pub fn drain(&mut self) -> Vec<(usize, u64)> {
		let journal = mem::replace(&mut self.journal, HashSet::new()).into_iter();
		journal.map(|idx| (idx, self.elems[idx])).collect::<Vec<(usize, u64)>>()
	}

	pub fn saturation(&self) -> f64 {
		self.elems.iter().fold(0u64, |acc, e| acc + e.count_ones() as u64) as f64 / (self.elems.len() * 64) as f64
	}
}

/// Bloom filter structure
pub struct Bloom {
	bitmap: BitVecJournal,
	bitmap_bits: u64,
	k_num: u32,
}

impl Bloom {
	/// Create a new bloom filter structure.
	/// bitmap_size is the size in bytes (not bits) that will be allocated in memory
	/// items_count is an estimation of the maximum number of items to store.
	pub fn new(bitmap_size: usize, items_count: usize) -> Bloom {
		assert!(bitmap_size > 0 && items_count > 0);
		let bitmap_bits = (bitmap_size as u64) * 8u64;
		let k_num = Bloom::optimal_k_num(bitmap_bits, items_count);
		let bitmap = BitVecJournal::new(bitmap_bits as usize);
		Bloom {
			bitmap: bitmap,
			bitmap_bits: bitmap_bits,
			k_num: k_num,
		}
	}

	/// Initializes bloom filter from saved state
	pub fn from_parts(parts: &[u64], k_num: u32) -> Bloom {
		let bitmap_size = parts.len() * 8;
		let bitmap_bits = (bitmap_size as u64) * 8u64;
		let bitmap = BitVecJournal::from_parts(parts);
		Bloom {
			bitmap: bitmap,
			bitmap_bits: bitmap_bits,
			k_num: k_num,
		}
	}

	/// Create a new bloom filter structure.
	/// items_count is an estimation of the maximum number of items to store.
	/// fp_p is the wanted rate of false positives, in ]0.0, 1.0[
	pub fn new_for_fp_rate(items_count: usize, fp_p: f64) -> Bloom {
		let bitmap_size = Bloom::compute_bitmap_size(items_count, fp_p);
		Bloom::new(bitmap_size, items_count)
	}

	/// Compute a recommended bitmap size for items_count items
	/// and a fp_p rate of false positives.
	/// fp_p obviously has to be within the ]0.0, 1.0[ range.
	pub fn compute_bitmap_size(items_count: usize, fp_p: f64) -> usize {
		assert!(items_count > 0);
		assert!(fp_p > 0.0 && fp_p < 1.0);
		let log2 = f64::consts::LN_2;
		let log2_2 = log2 * log2;
		((items_count as f64) * f64::ln(fp_p) / (-8.0 * log2_2)).ceil() as usize
	}

	/// Records the presence of an item.
	pub fn set<T>(&mut self, item: T)
		where T: Hash
	{
		let base_hash = Bloom::sip_hash(&item);
		for k_i in 0..self.k_num {
			let bit_offset = (Bloom::bloom_hash(base_hash, k_i) % self.bitmap_bits) as usize;
			self.bitmap.set(bit_offset);
		}
	}

	/// Check if an item is present in the set.
	/// There can be false positives, but no false negatives.
	pub fn check<T>(&self, item: T) -> bool
		where T: Hash
	{
		let base_hash = Bloom::sip_hash(&item);
		for k_i in 0..self.k_num {
			let bit_offset = (Bloom::bloom_hash(base_hash, k_i) % self.bitmap_bits) as usize;
			if !self.bitmap.get(bit_offset) {
				return false;
			}
		}
		true
	}

	/// Return the number of bits in the filter
	pub fn number_of_bits(&self) -> u64 {
		self.bitmap_bits
	}

	/// Return the number of hash functions used for `check` and `set`
	pub fn number_of_hash_functions(&self) -> u32 {
		self.k_num
	}

	fn optimal_k_num(bitmap_bits: u64, items_count: usize) -> u32 {
		let m = bitmap_bits as f64;
		let n = items_count as f64;
		let k_num = (m / n * f64::ln(2.0f64)).ceil() as u32;
		cmp::max(k_num, 1)
	}

	fn sip_hash<T>(item: &T) -> u64
		where T: Hash
	{
		let mut sip = SipHasher::new();
		item.hash(&mut sip);
		let hash = sip.finish();
		hash
	}

	fn bloom_hash(base_hash: u64, k_i: u32) -> u64 {
		if k_i < 2 {
			base_hash
		} else {
			base_hash.wrapping_add((k_i as u64).wrapping_mul(base_hash) % 0xffffffffffffffc5)
		}
	}

	/// Drains the bloom journal returning the updated bloom part
	pub fn drain_journal(&mut self) -> BloomJournal {
		BloomJournal {
			entries: self.bitmap.drain(),
			hash_functions: self.k_num,
		}
	}

	/// Returns the ratio of set bits in the bloom filter to the total bits
	pub fn saturation(&self) -> f64 {
		self.bitmap.saturation()
	}
}

/// Bloom journal
/// Returns the tuple of (bloom part index, bloom part value) where each one is representing
/// an index of bloom parts that was updated since the last drain
pub struct BloomJournal {
    pub hash_functions: u32,
    pub entries: Vec<(usize, u64)>,
}

#[cfg(test)]
mod tests {
	use super::Bloom;
	use std::collections::HashSet;

	#[test]
	fn get_set() {
		let mut bloom = Bloom::new(10, 80);
		let key = vec![115u8, 99];
		assert!(!bloom.check(&key));
		bloom.set(&key);
		assert!(bloom.check(&key));
	}

	#[test]
	fn journalling() {
		let initial = vec![0u64; 8];
		let mut bloom = Bloom::from_parts(&initial, 3);
		bloom.set(&vec![5u8, 4]);
		let drain = bloom.drain_journal();

		assert_eq!(2, drain.entries.len())
	}

	#[test]
	fn saturation() {
		let initial = vec![0u64; 8];
		let mut bloom = Bloom::from_parts(&initial, 3);
		bloom.set(&vec![5u8, 4]);

		let full = bloom.saturation();
		// 2/8/64 = 0.00390625
		assert!(full >= 0.0039f64 && full <= 0.004f64);
	}

	#[test]
	fn hash_backward_compatibility_for_new() {
		let ss = vec!["you", "should", "not", "break", "hash", "backward", "compatibility"];
		let mut bloom = Bloom::new(16, 8);
		for s in ss.iter() {
			bloom.set(&s);
		}

		let drained_elems: HashSet<u64> = bloom.drain_journal().entries.into_iter().map(|t| t.1).collect();
		let expected: HashSet<u64> = [2094615114573771027u64, 244675582389208413u64].iter().cloned().collect();
		assert_eq!(drained_elems, expected);
		assert_eq!(bloom.k_num, 12);
	}

	#[test]
	fn hash_backward_compatibility_for_from_parts() {
		let stored_state = vec![2094615114573771027u64, 244675582389208413u64];
		let k_num = 12;
		let bloom = Bloom::from_parts(&stored_state, k_num);

		let ss = vec!["you", "should", "not", "break", "hash", "backward", "compatibility"];
		let tt = vec!["this", "doesnot", "exist"];
		for s in ss.iter() {
			assert!(bloom.check(&s));
		}
		for s in tt.iter() {
			assert!(!bloom.check(&s));
		}

	}
}