1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
use crate::*;

use core::fmt;

/// A list-like [`Valuable`] sub-type.
///
/// Implemented by [`Valuable`] types that have a list-like shape. This includes
/// [`Vec`] and other Rust [collection] types. `Listable` types may or may not
/// store items in contiguous memory. Any type that implements [`IntoIterator`]
/// may implement `Listable`. Values that implement `Listable` must return
/// [`Value::Listable`] from their [`Valuable::as_value`] implementation.
///
/// [collection]: https://doc.rust-lang.org/stable/std/collections/index.html
///
/// # Inspecting
///
/// Inspecting `Listable` items is done by visiting the collection. When
/// visiting a `Listable`, contained values are either passed one-by-one by
/// repeatedly calling [`visit_value()`] or all at once by calling
/// [`visit_primitive_slice()`]. The [`visit_primitive_slice()`] method has
/// lower overhead but can only be used when the `Listable` type contains
/// primitive values.
///
/// See [`Visit`] documentation for more details.
///
/// # Implementing
///
/// If the type stores values in slices internally, then those slices are passed
/// to [`Valuable::visit_slice`], which handles calling
/// [`visit_primitive_slice()`] if possible.
///
/// [`visit_value()`]: Visit::visit_value
/// [`visit_primitive_slice()`]: Visit::visit_primitive_slice
///
/// ```
/// use valuable::{Listable, Valuable, Value, Visit};
///
/// struct MyCollection<T> {
///     chunks: Vec<Vec<T>>,
/// }
///
/// impl<T: Valuable> Valuable for MyCollection<T> {
///     fn as_value(&self) -> Value<'_> {
///         Value::Listable(self)
///     }
///
///     fn visit(&self, visit: &mut dyn Visit) {
///         for chunk in &self.chunks {
///             // Handles visiting the slice
///             Valuable::visit_slice(chunk, visit);
///         }
///     }
/// }
///
/// impl<T: Valuable> Listable for MyCollection<T> {
///     fn size_hint(&self) -> (usize, Option<usize>) {
///         let len = self.chunks.iter().map(|chunk| chunk.len()).sum();
///         (len, Some(len))
///     }
/// }
/// ```
pub trait Listable: Valuable {
    /// Returns the bounds on the remaining length of the `Listable`.
    ///
    /// Specifically, `size_hint()` returns a tuple where the first element
    /// is the lower bound, and the second element is the upper bound.
    ///
    /// The second half of the tuple that is returned is an [`Option`]`<`[`usize`]`>`.
    /// A [`None`] here means that either there is no known upper bound, or the
    /// upper bound is larger than [`usize`].
    ///
    /// # Implementation notes
    ///
    /// It is not enforced that a `Listable` implementation yields the declared
    /// number of elements. A buggy iterator may yield less than the lower bound
    /// or more than the upper bound of elements.
    ///
    /// `size_hint()` is primarily intended to be used for optimizations such as
    /// reserving space for the elements of the `Listable`, but must not be
    /// trusted to e.g., omit bounds checks in unsafe code. An incorrect
    /// implementation of `size_hint()` should not lead to memory safety
    /// violations.
    ///
    /// That said, the implementation should provide a correct estimation,
    /// because otherwise it would be a violation of the trait's protocol.
    ///
    /// [`usize`]: type@usize
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use valuable::Listable;
    ///
    /// let a = vec![1, 2, 3];
    ///
    /// assert_eq!((3, Some(3)), a.size_hint());
    /// ```
    fn size_hint(&self) -> (usize, Option<usize>);
}

macro_rules! deref {
    (
        $(
            $(#[$attrs:meta])*
            $ty:ty,
        )*
    ) => {
        $(
            $(#[$attrs])*
            impl<T: ?Sized + Listable> Listable for $ty {
                fn size_hint(&self) -> (usize, Option<usize>) {
                    T::size_hint(&**self)
                }
            }
        )*
    };
}

deref! {
    &T,
    &mut T,
    #[cfg(feature = "alloc")]
    alloc::boxed::Box<T>,
    #[cfg(feature = "alloc")]
    alloc::rc::Rc<T>,
    #[cfg(not(valuable_no_atomic_cas))]
    #[cfg(feature = "alloc")]
    alloc::sync::Arc<T>,
}

macro_rules! slice {
    (
        $(
            $(#[$attrs:meta])*
            ($($generics:tt)*) $ty:ty,
        )*
    ) => {
        $(
            $(#[$attrs])*
            impl<$($generics)*> Valuable for $ty {
                fn as_value(&self) -> Value<'_> {
                    Value::Listable(self as &dyn Listable)
                }

                fn visit(&self, visit: &mut dyn Visit) {
                    T::visit_slice(self, visit);
                }
            }

            $(#[$attrs])*
            impl<$($generics)*> Listable for $ty {
                fn size_hint(&self) -> (usize, Option<usize>) {
                    (self.len(), Some(self.len()))
                }
            }
        )*
    };
}

slice! {
    (T: Valuable) &'_ [T],
    #[cfg(feature = "alloc")]
    (T: Valuable) alloc::boxed::Box<[T]>,
    #[cfg(feature = "alloc")]
    (T: Valuable) alloc::rc::Rc<[T]>,
    #[cfg(not(valuable_no_atomic_cas))]
    #[cfg(feature = "alloc")]
    (T: Valuable) alloc::sync::Arc<[T]>,
    (T: Valuable, const N: usize) [T; N],
    #[cfg(feature = "alloc")]
    (T: Valuable) alloc::vec::Vec<T>,
}

macro_rules! collection {
    (
        $(
            $(#[$attrs:meta])*
            ($($generics:tt)*) $ty:ty,
        )*
    ) => {
        $(
            $(#[$attrs])*
            impl<$($generics)*> Valuable for $ty {
                fn as_value(&self) -> Value<'_> {
                    Value::Listable(self as &dyn Listable)
                }

                fn visit(&self, visit: &mut dyn Visit) {
                    for value in self.iter() {
                        visit.visit_value(value.as_value());
                    }
                }
            }

            $(#[$attrs])*
            impl<$($generics)*> Listable for $ty {
                fn size_hint(&self) -> (usize, Option<usize>) {
                    (self.len(), Some(self.len()))
                }
            }
        )*
    };
}

collection! {
    #[cfg(feature = "alloc")]
    (T: Valuable) alloc::collections::LinkedList<T>,
    #[cfg(feature = "alloc")]
    (T: Valuable + Ord) alloc::collections::BinaryHeap<T>,
    #[cfg(feature = "alloc")]
    (T: Valuable + Ord) alloc::collections::BTreeSet<T>,
    #[cfg(feature = "std")]
    (T: Valuable + Eq + std::hash::Hash, H: std::hash::BuildHasher) std::collections::HashSet<T, H>,
}

#[cfg(feature = "alloc")]
impl<T: Valuable> Valuable for alloc::collections::VecDeque<T> {
    fn as_value(&self) -> Value<'_> {
        Value::Listable(self as &dyn Listable)
    }

    fn visit(&self, visit: &mut dyn Visit) {
        let (first, second) = self.as_slices();
        T::visit_slice(first, visit);
        T::visit_slice(second, visit);
    }
}

#[cfg(feature = "alloc")]
impl<T: Valuable> Listable for alloc::collections::VecDeque<T> {
    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.len(), Some(self.len()))
    }
}

impl fmt::Debug for dyn Listable + '_ {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        struct DebugListable<'a, 'b> {
            fmt: fmt::DebugList<'a, 'b>,
        }

        impl Visit for DebugListable<'_, '_> {
            fn visit_value(&mut self, value: Value<'_>) {
                self.fmt.entry(&value);
            }
        }

        let mut debug = DebugListable {
            fmt: fmt.debug_list(),
        };

        self.visit(&mut debug);
        debug.fmt.finish()
    }
}